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Usein haettujen dokumenttien tallentaminen vilimuistehin on laajassa kaytossa
World Wide Web -jarjestelmassa verkkoliikenteen vahentamiseksi ja suosittujen
palvelimien kuorman vahentamiseksi. Perinteisissa valimuistijarjestelmissa objek-
teja kasitellaan muuttumattomina, mutta eraista objektityypeista, tarkemmin sa-
nottuna multimediaobjekteista, voidaan poistaa informaatiota ilman, ettd objekti
muuttuu kayttokelvottomaksi.

Tamé diplomity6 tutkii joustavia valimuistijirjestelmia, joissa tallennettuja multi-
mediaobjekteja voidaan typistaa alemmalle resoluutiotasolle, mika lyhentaa objek-
tien lihettamiseen tarvittavaa aikaa ja pienentdd niiden vaatimaa tilaa valimuistissa.
Tyossa kehitetaan joustaviin valimuistehin soveltuvia korvaamisalgoritmeja, ja nii-
den vaikutuksia suorituskykyyn analysoidaan.
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Chapter 1

Introduction

The explosive growth of World Wide Web (the Web) has surprised everyone.
People today have an unprecedented amount of information right at their
fingertips. They can access distant sources of information from the comfort
of their own homes, share information with other people from all around the
globe, and make purchases with a simple click of the mouse button. But
the access to all this wealth of information comes at a price. If you want to
see something, you must wait. Sometimes you must wait so long, that the
World Wide Web has even been termed as the World Wide Wait.

Congested networks are by no means a newcomer to the computer world.
They have been with us since the dawn of the computerized era and they
will haunt us well into the future. In trying to solve the future problems we
should look into the past and learn from the works of our predecessors. The
past solutions have all revolved around multiple factors, as no single, magical
remedy has proven to be enough to rid the networks of their congestion.
New, more efficient protocols have been introduced, network links have been
upgraded and the users have been educated in the virtues of bandwidth
conservation.

This is also the way that the research around the problems of the Web
has taken. Protocols are being updated, new techniques for reducing the
traffic have been implemented, but will it be enough? As more and more
people flock to connect themselves to the Web, and new and exciting services
are opened, will these measures be enough? This thesis investigates a small
facet of the global problem by studying the advantages of caching techniques
specially designed for popular multimedia objects.

Multimedia data have been present in the Web from almost the beginning
and visually pleasing Web-pages have been a large factor in Web’s success
among people. But the need to make Web pages more and more esthetically
pleasing and attractive for commercial purposes is growing. No longer will a
single image be sufficient, but to capture the attention of promiscuous users,
a Web page must contain video and audio to spice it up. This multimedia
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revolution will increase the traffic in the network considerably, and ways to
alleviate these problems must be found.

This chapter presents an overview of the Web architecture, its prob-
lems and motivates the advantages of using specific techniques geared for
multimedia object-types to alleviate the current problems.

1.1 World Wide Web

The World Wide Web is based on a client-server architecture. The users use
a client software (browser) to make requests for documents at remote servers.
The server replies by sending the requested document and possibly some
additional meta-data about the document itself, such as the content type,
expiration date, etc. Most of the Web documents are written in Hypertext
Markup Language (HTML) [1] and may contain images or links to other
documents.

From a means of exchanging information between scientists, the Web
has grown into a vast, chaotic mass of information accessible by anyone
with a computer and a modem. The early popularity of the Web is widely
attributed to graphical web browsers, such as NCSA Mosaic and Netscape
Navigator, which quickly inserted themselves into the mainstream in 1994—
95. Nowadays, information about almost anything is available on the Web
and electronic commerce is making its mark.

To bring order into this chaos, some companies are running directory
services, e.g. Yahoo!!, or search engines, e.g. AltaVista? which help users
by either organizing the information in a hierarchical structure or indexing
Web-documents and allowing users to make searches among the indexed
documents.

The search engines have also brought a new type of client into the Web,
the robot, or indexer. These are computer programs which fetch documents
from the Web, parse and index them and should the document contain links
to other documents, recursively go after those documents as well. This
makes it possible to build a database containing information about an enor-
mous number of Web documents. Users can then easily search using suitable
keywords, and the search engine searches the database and gives as result
links to documents which probably match the user’s needs.

But even with the help of indexes and search engines, information still
proves to be elusive in some cases. Sometimes the pages have not been
updated which results in incorrect information being distributed and some-
times documents get removed which invalidates all links to the removed
information. Of course, good administration and frequent updates will keep

!<URL:http://www.yahoo.com>
2<URL:http://www.altavista.digital.com>
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the documents accurate but this solves only a part of the problems on the
Web.

As some servers and documents are more popular than others, this can
create congestion on some links which increases the time the users have
to wait for complete delivery of the requested data. This congestion can
be relieved in many ways, the three most popular being (in no particular
order):

e Install better machines as servers and deploy faster links.

e Compress the transmitted data. Although this would only reduce the
amount of data in the network, but would not relieve the heavily loaded
servers.

e Use caching to reduce the traffic.

The first solution, to upgrade the infrastructure, would very likely lead
into a vicious circle of continuous and costly upgrading. This is because
it would seem to the users that the congestion problems have gone away,
and they would still keep on happily wasting the available resources. Even
though the cost of upgrading the links and servers would in the end be paid,
at least in part, by the normal users, the price increases would probably not
be sufficient to make the users find out about the causes of the problems.

This means that a more efficient way of using the current resources must
be found. This is the way of the other two solution, compression and caching.
Both of them have their merits, but most of the current research work has
concentrated on caching.

1.2 Hypertext Transfer Protocol

The protocol used to transmit information in the Web is called Hypertext
Transfer Protocol, or HT'TP for short. The most widely deployed version
currently is HT'TP/1.0 [2]. It is a quite simple application level protocol,
but unfortunately in its simplicity is a major contributor to Web congestion.
This stems from the way the connections to servers are handled. For each
object, be it an HTML-page, inlined image or a video sequence, a new
HTTP-connection is made. Since many popular web pages contain quite a
few inlined images 3 this causes a great number of connections being opened
to the server and increases the load at the server. Also, due to the slow-start
mechanism [36] of TCP, the underlying transport protocol, the connections
start at a slow rate to avoid clogging the link even though the bandwidth
would be available.

3At the time of this writing (May '98), the popular Dilbert-comic page located at
<URL:http://www.unitedmedia.com/comics/dilbert/> has 22 inlined images!
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The new HTTP/1.1 [3] remedies this problem by introducing persistent
connections. A client opens a connection to a server and makes all requests
using this one and same connection. This saves time since there is no need
to set up new connections for the inlined images and the effects of the slow-
start are mitigated by the longer connection time. HT'TP /1.1 also introduces
methods to control the caching of the documents and a possibility for clients
to indicate which content types are preferred.

The other big improvement of HT'TP/1.1 for the purposes of this the-
sis, is the possibility for progressive transmission using the range-request
method. The advantages of progressive transmission under simple assump-
tions are studied in detail in [26, 28]. Progressive transmission means sending
the object in layers, where the first layer contains a coarse version of the
object and subsequent layers contain the finer and finer details. For pro-
gressive transmission to be effective, the object being transmitted must be
encoded using a layered, or progressive, method.

1.3 Web Traffic Distribution

Knowing the nature of Web traffic is essential for developing methods to
improve performance. For compression methods to be effective, most of the
traffic should be uncompressed, since trying to compress already compressed
documents is an exercise in futility. A study of FTP-traffic on the NSFNet
backbone [10] found out that 31 % of the FTP-traffic was uncompressed.
Most of this uncompressed traffic consisted of directory listings and similar
frequently referenced objects.

Currently as HTTP has replaced FTP as the protocol causing most
traffic on the Internet, the situation has changed since very little directory
listings are being passed, but the users instead go directly for the HTML-
pages. HTML-pages are typically not compressed, but virtually all other
traffic in the Web is compressed in some way or another.

Similarly, for a caching scheme to be effective, the traffic must have
locality of reference, at least to some degree. Locality of reference means
that the same objects get requested again by the same or different users.
Fortunately, this has been found to be the case [39].

A recent statistic about HTTP-traffic can be found in table 1.1. This
table has been constructed from two days worth of proxy logfiles from
<URL:ftp://ircache.nlanr.net/Traces/> and contains the relative parts of
different types of Web-objects, in both the number of requests as well as the
number of bytes transmitted. The total number of requests was 2,226,603.

Table 1.1 shows also the MIME-types [13] for the data. Because the
available logfiles have been sanitized to protect the privacy of the users,
information about the MIME-type, which is normally included in the logfiles,
is not present. For table 1.1 this MIME-type has been determined from the
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Type Requests | Bytes MIME-type
GIF-image 514 % | 21.7% image/gif
JPEG-image | 25.5 % 25.5 % image/jpeg
HTML 16.0 % 9.9 % text/html
CGI-Script 4.0 % 1.1 % N/A
Other 09% | 45 % N/A
Java 0.5 % 0.2 % N/A
Binary 0.5 % 16.2 % | application/octet-stream
Audio 0.5 % 5.3 % audio/*
Compressed 0.3 % 9.5 % N/A
Text 0.3 % 0.3 % text /plain
Video 0.1 % 5.8 % video/*

Table 1.1: Traffic distribution from NLANR

filename extension in the URL and might therefore not be totally accurate.

In the table CGI-Script refers to URLs containing cgi-bin as part of the
path or ending in .cgi, .asp or .map. Java is Java-related objects (.java
or .class), Binary refers to executables (.exe, .d11 or .bin and the like)
and Compressed is URLs ending in .gz, .zip, .Z, etc. The category Other
is for objects that could not be classified with the heuristic employed.

From table 1.1 we can clearly see, that requests to HIML-pages and a
few image types constitute about 93 % of all traffic and that the two most
popular formats are GIF and JPEG. These two formats account for almost
50 % of all the bytes transferred with the remaining bytes divided among
binaries, HTML, compressed data, audio and video. Among these media
types only HTML would lend itself well to compression, hence the use of
compression to reduce the traffic on the Web might not yield the expected
results.

In contrast with the above, more recent trace, table 1.2 shows the traffic
distribution of the traces used in [9]. There were 1,143,842 requests in the
trace.

This trace is from year 1995 and it is obvious that the content of the
Web has changed dramatically over the last three years. Previously most of
the traffic consisted of HTML-pages and GIFs with an occasional audio or
video file thrown in. Nowadays, JPEG has become popular and the Web is
also used as a means of distributing software, taking the role of FTP in this
area.

Part of the JPEGs poor success in the Boston University trace could be
explained by the software. The traces have been obtained from a modified
version of the NCSA Mosaic which did not support inline JPEGs before
version 2.6, released in July 1995, two months after the data collecting for the
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Type Requests | Bytes | MIME-type
GIF-image 704 % | 38.8% image/gif
Other 17.7% | 16.6 % N/A
HTML 10.7 % 8.3 % text/html
JPEG-image 0.6 % 7.0 % image/jpeg

Text 0.3 % 5.3 % text/plain
CGI-Script 0.1 % 0.06 % N/A

Audio 0.07 % 9.7 % audio/*

Video 0.06 % 14.2 % video/*

Table 1.2: Traffic distribution from Boston University (1995)

Boston University trace was finished. Therefore all the JPEGs in table 1.2
refer to images that have been loaded separately, and not as inlined images.

The Web has also become more interactive. This can be seen from the
number of requests to CGI-scripts. These account for 4 % of the modern
traffic but three years ago they were almost non-existent.

1.4 Organization

This thesis is organized as follows. Chapter 2 presents an overview of
caching. Multimedia objects and their properties are discussed in chap-
ter 3. The theory behind soft caching technology is detailed in chapter 4. In
chapter 5 the JPEG-image format and its applications to soft caching are
presented. Chapter 6 describes the different cache replacement algorithms
studied in this thesis and chapter 7 presents the experiments performed.
The results are presented in chapter 8 and chapter 9 discusses the results.
Finally, chapter 10 provides some concluding remarks.



Chapter 2

Caching

Caching has been extensively used in microprocessors and operating systems
to speed up memory look-ups or improve the performance of the virtual
memory system. Also, distributed systems and, more recently, network
applications can benefit greatly from caching. More details of caching in
operating systems can be found in [37].

FOLDOC!, Free On-Line Dictionary Of Computing, defines a cache as
“a small fast memory holding recently accessed data, designed to speed up
subsequent access to the same data.” For processors the cache holds a few
recently used memory pages in a special, fast memory in the processor.
Virtual memory systems use the main memory of the computer to cache
memory pages which otherwise would be paged out to disk.

A typical computer program exhibits large amounts of both temporal and
spatial locality which can be exploited by a caching system to drastically
improve performance. Temporal locality means that if a memory address
is accessed, it will likely be accessed again in near future. Spatial locality
means that when an address is accessed, the nearby addresses are likely to
be accessed also.

If the address requested is already in the cache, a “hit” is scored and the
data can be delivered quickly to the requesting program. If the requested
address is not in the cache, a “miss” occurs and the data must be fetched
from the main storage (main memory for processors, disk swap for virtual
memory systems) at the cost of a usually significant slow-down. The ratio
of hits to the total number of requests is called the “cache hit-rate”.

If the requested data is not in the cache, it is fetched from the secondary
storage, delivered to the requester and then it is written into the cache.
This might cause the cache to overflow and some items will then need to
be removed from the cache. Exactly which items are removed, depends on
the replacement policy of the cache. In a virtual memory system, the Least
Recently Used (LRU) (see [37]) policy, which removes the least recently used

!<URL:http://wombat.doc.ic.ac.uk/>
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items has been found to yield the best performance.

These caching systems have some properties not shared by network or
distributed applications. Since the objects being cached are memory pages,
they all are of equal size and since a miss must be fetched from the secondary
storage, which is the same for each memory page, the cost of a miss is also
equal for each object.

2.1 Caching in the Web

The explosive growth of the traffic on the Web has forced people to find
solutions to improve the speed of the Web. As the objects requested by
the users are of varying sizes and spread out all over the world, over very
differing links, the cost of a miss in a web cache depends greatly on the
actual object requested. While it is relatively easy to find good algorithms
for virtual memory caches, a web caching system must decide which of the
following three criteria to optimize:

1. Minimize the number of requests passed to the origin servers, or max-
imize the cache hit-rate.

2. Minimize the number of bytes that need to travel in the network, or
maximize the so-called byte hit-rate. The byte hit-rate is defined as
the number of bytes found in the cache to the total number of bytes
transmitted.

3. Minimize the time that the end-user must wait.

In a virtual memory system, where the objects are all of the same size
and each miss costs an equal amount of time, maximizing the hit-rate will
also optimize the other two criteria. But on the Web, where the sizes and
link bandwidths differ, this is no longer true.

Most of the early work on web caching, such as [40], concentrated on
maximizing either the hit-rate or the byte hit-rate and paid little attention to
the time the users need to wait. Yet, the GVU’s 88h WWW User Survey [14]
found out, that the largest problem on the Internet experienced by the users
is the download speed of the pages. Recently the work on web caching has
taken also into account the time that the users must wait [4, 5, 32,41, 42].

Other aspects of web caching which make it different from operating sys-
tems, is that not all objects can be cached and that the caching can be done
in several places. It can be done at the client, the server or in the network
between these two. In the following, issues regarding the cacheability of an
object are explored and the three caching approaches are detailed and their
properties are discussed.
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2.2 Cacheable Objects

Objects on the Web are not identical. This means that the properties of
the object must be taken into account when making decisions regarding
that object. For example, a page, that shows the results from a database
query should not be cached because the page might contain some sensitive
information about the user which should not be shown to others. Likewise,
any page which contains changing information, e.g. stock quotes, weather
information, might give false and outdated information if taken from a cache.

Fortunately there are methods to counter these problems. The caching
entity can discard certain types of objects (e.g. URLs containing cgi-bin)
and the HTTP-server can inform the client about the lifetime of the object
via the Expires-header. In the absence of explicit lifetime information,
the caching entity must either verify the validity of cached objects (either
periodically or when request is made) or use some heuristic to approximate
the lifetime of the object. This latter method results in a faster performance
but may also result in serving documents that contain outdated, or stale
information.

Wessels [39] defines the staleness ratio as:

now — last_update

staleness = (2.1)

last_update — last_modi fication

and estimates that the users would find a staleness ratio of 10 % accept-
able. This way of calculating staleness has the advantage that older objects
have low staleness values which intuitively means that if an object has not
been changed in a long time, it will not likely be modified in the near future.

The new HTTP/1.1-protocol allows the server to give out much more
information about the cacheability of the object by setting directives which
the caching entity can use to help in determining the freshness of the object.
An example of these methods is the possibility to state the conditions when
a cached object should be revalidated and when it can be served directly
from the cache.

Web caching does have one advantage compared to virtual memory sys-
tems. Because the Web is read-only, there are never any problems with
viewers modifying pages which would invalidate all cached copies. The only
place where the object can be modified is at the origin server and a cache
can always make a request to see if the object has been modified.

Expiration issues will be discussed in more detail in chapter 6.

2.3 Client Caching

Caching at the client end has been present in the web for a long time. Even
the earliest versions of the popular Netscape browser [24] implemented a
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cache which would store recently accessed pages in the client’s memory and
disk. Currently, all modern browsers implement some sort of caching.

Because the caching is done on the user’s machine, this type of caching
will especially benefit dial-up users, since a hit will avoid the need to transfer
the object over the slow dial-up link. Another advantage of client caching is
the automatic adaptation of the cache contents to the user’s access patterns.

Suppose a user frequently accesses a given web page. If the page is
cached at a dedicated per-user cache, as in a web browser cache, then the
next access to the same page will very likely find the page in the cache.
Were the cache shared between several users, the accesses of the other users
might have caused this page to be removed from the cache.

2.4 Server Caching

While client caching serves to reduce the amount of data in the network,
server caching reduces the load exerted on the server. A simple server cache
would hold the most requested documents in main memory and thus avoid
the need to read the object from the disk when it is requested.

Another way to reduce the load on the server is server replication. A
classical example of server replication is the NCSA server (see [6,20] for
more details). To handle the increasing load, NCSA’s solution was to make
several workstations work in a round-robin fashion to balance the load on
the server. This round-robin scheduling was achieved through a rotating
DNS list which mapped the requests to the server? to the next available
server. This scheme is also fault-tolerant with regard to server crashes.

2.5 Proxy Caching

The third possibility of caching in the Web is proxy-based caching. Proxies
have been traditionally used to enable users behind a firewall to access the
external network. But already in the early phases of Web development, in
1994, the first proxy caches appeared [21].

In proxy caching the cache is moved into the network, into a proxy
server. This server receives requests from the clients and forwards them to
the server. When the proxy receives the reply, it transmits it back to the
client and caches a local copy of the object. This way, if another client using
the same proxy requests the same object, it can be found in the cache, thus
avoiding the need to fetch it from the remote server. A typical proxy setup
is depicted in figure 2.1.

A proxy can cache either in-bound or out-bound traffic or both. An
in-bound proxy receives requests from remote clients and requests the docu-
ments from the local server. At first glance, this type of arrangement might

><URL:http://www.ncsa.uiuc.edu/>
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Figure 2.1: Clients (C), Proxy (P) and Servers (S)

seem a waste of money. Why should an organization run a server to the
benefit of remote users? The answer comes from the caching done at the
proxy. When a remote user requests the same document as a previous user,
the document can likely be found in the cache and it can be served from
there. This diminishes both the load at the server as well as in the local
network. This type of proxy should be placed at the border of the local
network and the Internet.

A much more typical application of proxy caching is the out-bound proxy.
In this scheme, the proxy receives the requests from local clients and caches
the documents from the remote servers. Typically this type of caching is
used in campus and corporate networks to reduce the amount of out-going
traffic. The advantage of out-bound proxy caching with regard to client
caching is that if the users access mostly the same documents, it will be
more efficient to cache only one copy of the document at the proxy instead
of caching one copy at each client. The slow-down in speed, local disk
vs. proxy server on local network, is usually negligible making this a very
efficient form of caching.

2.5.1 Hierarchical Proxies

A new caching scheme is the hierarchical caching. The key idea is to have
several proxy caches working together in a hierarchy. Hierarchical caching
in the Web is discussed in more detail in [8]. The hierarchy can be anything
from a small campus proxy tree to a large scale national hierarchical caching



CHAPTER 2. CACHING 12

system [23].

In this setup, each proxy has a defined relationship to other proxies in the
hierarchy (parent, child, sibling) and this relationship governs the proxy’s
actions. For example, when a requests results in a miss in the proxy, it might
query its parent for the object. If the parent has the object in its cache,
the document can be served quickly, since the proxies in the hierarchy are
usually connected to each other by high-bandwidth links. If the parent does
not possess the object requested, it can either query its parent or siblings
or request the object from the origin server, depending on the configuration
of the hierarchy.

2.6 Summary

Web caching is here to stay and current research efforts are aimed at making
the most out of the existing infrastructure by means of caching.

Caches in the Web can be placed in different places — client, server or
proxy. Each of these solutions has merits and shortcomings. Different types
of caches can work together in a hierarchy which can span anything from a
small corporate network to a large-scale nation-wide caching mesh.



Chapter 3

Multimedia Objects

As the statistics about Web traffic in chapter 1 show, most of the Web
traffic is generated by multimedia data, i.e. images, sound and video. These
multimedia objects account for 75 % of all requests and create almost 60 %
of the bytes transmitted in the network. Since these types of objects have
properties not shared by other object type (e.g. they can sustain information
loss), it could be advantageous to treat them differently from other objects.

Currently most of the images on the Web are inline-images, meaning
that the HTML-page contains a reference to the image which is shown by
the browser as a part of the page. The other way of sending images over the
Web is as separate objects. In this case the image is displayed either by the
browser or by an external program. The images of the first type tend to be
smaller in size.

Modern Web-browsers make it possible for users to enable and disable
automatic loading of inline-images, and by default this is enabled. The
GVU’s 8¢h WWW User Survey [14] confirms that 90 % of the people turn
off automatic image loading under only 25 % of the time. In other words,
even though speed is perceived as the main problem, the image content is
deemed important enough to warrant longer download delays.

Video and audio are slowly making their way into the Web as more and
more user computers are powerful enough to handle the display of video
sequences. A significant part of the video content on the Web is produced
by large news companies, such as CNN!, who use video sequences to deliver
their news reports on the Web. The handling of video sequences at the
client is done by an external program which sometimes is able to show the
sequence in the browser window (working as a plug-in).

The use of multimedia objects to spice up the web pages is spreading
and if the infrastructure can keep up with the development, there is little
doubt that the future web pages will contain more and more multimedia
objects to attract the users.

!<URL:http://cnn.com>
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This chapter presents an overview of the different multimedia object
types, their properties and suggests possible ways of processing them to
improve the performance.

3.1 Images

Images have been a part of the Web since its beginning. Nowadays many
popular web pages use graphical images in an attempt to make them more
appealing. Even though the old saying about a picture being worth a thou-
sand words might still hold, in the Web transmitting an image might be far
costlier than transmitting those “thousand words.” It is therefore impera-
tive, that the image formats compress the information but still retain a good
quality image. As seen in chapter 1, the most popular image formats used
in the Web are GIF and JPEG and in the following an overview of these
two formats and their uses is given.

Other image formats are also sometimes used, but major browsers do
not support displaying them inlined and therefore they would have to be
used as separate images.

3.1.1 GIF

The Graphics Interchange Format (GIF) is a lossless image format developed
by CompuServe. Because GIF can only handle 256 different colors in one
image, it is best suited for computer graphics, line art, drawings and such.
Natural images, e.g. photographs, usually contain much more colors and
thus degrade in quality if compressed with GIF. In the Web, GIF images are
mostly used for navigation buttons, graphs and icons which can be efficiently
compressed with GIF.

The newer GIF89a-specification [15] defines an interlaced mode which
allows images to be transmitted progressively. Using the interlaced mode
allows the browser to display a coarse version of the image already when only
a small part of the image has been downloaded. However, the specification
only allows for 4 layers in the interlaced mode and the last layer contains
half of the lines in the image. This results in the image being usually almost
unusable until the last layer has been received, which defeats the purpose of
progressive transmission.

3.1.2 JPEG

The Joint Photographic Expert Group (JPEG) [29] is an ISO standard for
compressing natural, i.e. real-world images. JPEG is a lossy compression
method and is best suited for natural images. Line art and drawings usu-
ally do not take well to JPEG-compression. JPEG-standard defines both



CHAPTER 3. MULTIMEDIA OBJECTS 15

sequential and progressive modes of coding and leaves great latitude to the
implementor regarding the choice of the details of progressive coding.

Since JPEG-format is the format chosen for soft caching in this thesis,
it will be discussed in more detail in chapter 5.

3.1.3 Future Image Formats

Given the patent problems surrounding the LZW-compression used in GIF,
the image coding community has set out to develop alternative, problem-free
formats. The first to surface was the Portable Network Graphics (PNG) [30]
which is intended as a replacement for GIF. For lossy compression, the
JPEG-2000 (see [17] for the call of contributions) is being developed as the
successor of JPEG. Other alternatives, such as the wavelet-based EZW [33]
are also being studied.

It is not certain whether any of the proposed formats will emerge as a
clear winner or if the current duality between lossy and lossless compression
will persist. However, what is already known is that that the future image
format will be progressive. All three formats mentioned above will support a
progressive mode of coding and could therefore benefit from the advantages
of progressive transmission.

Another important question surrounding future image formats is whether
any of them will replace current GIFs and JPEGs. In order to be successful,
a format must be supported by both the utilities used in creating the images
and the browsers used by the viewers.

3.2 Video and Audio

The video and audio traffic on the Web can be divided into two categories:
1. Video and audio sequences transmitted as single objects.
2. Streaming transmission.

The video and audio sequences transmitted as single objects are bet-
ter suited for caching. These are for example files stored at an FTP-server
which can be downloaded and played later. The other category, streaming
media, is a newer addition to the Web and is not easily cacheable. Stream-
ing video and audio transmissions have usually been transmitted over the
MBone [22] where all intervening entities are aware of the streaming nature
of the transmission.

To cache streaming transmission, the caching entity, e.g. a proxy server,
must intercept the traffic and store it locally. In addition, due to the lossy
nature of streaming transmission (e.g. over UDP), simply storing the data
is not enough. The caching entity must decode part of the transmission in
order to discover which parts are missing and act accordingly. This would
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create extra load on the cache but would also allow the cache to improve the
quality of the transmission by trying to recreate or approximate the missing
bits.

While for images there are only two popular formats, this is not the case
for video and audio. The streaming transmission are usually done using a
special format, such as RealAudio [31]. For single objects the multitude
of different formats is overwhelming. Audio files are mostly .wav, .au,
ATFF, MP3 and video files mostly MPEG, QuickTime or AVI. The different
formats require each different procedures to manipulate and since some for-
mats contain proprietary extensions, it would be also costly to implement
the functions needed to process these types of objects.

3.3 Recoding

Recoding is the name for the operation where an object is transformed
through a lossy transform to a lower quality representation. An example of
a recoding operation might be the removal of a scan layer from a progressive
JPEG-image. Recoding throws away information contained in the object but
this information loss should be done in a way that the observable effects of
the operation are minimized.

Recoding works best in an environment where information loss can be
tolerated and the objects being handled can be transformed into a progres-
sive representation. It is clear that a text file can suffer little or no loss at
all before becoming unusable, but an image, especially already lossily com-
pressed JPEGs, do not suffer much from the removal of some information.

The recoded object has a lower quality than the original. This is obvi-
ously true, since some information was thrown away, but in most instances
this information loss cannot be seem because it is very small. What can be
easily seen, on the other hand, is the often substantial reduction in object
size compared to the information loss. This means that objects can be re-
coded a few times without any observable loss of quality and a significant
decrease in object size.

All this comes at a price. The recoding requires some CPU-time to
perform the operation. It is therefore essential, that the attainable gains
(shorter transmission time, smaller storage size) be carefully weighed against
the CPU-time required to perform the operation. For this reason, object
types for which the recoding operation is costly, i.e. video and audio, might
not be useful for recoding purposes. All the more so since they are rarely
requested. In this thesis, only JPEG-images are studied because they are
widely supported and software to manipulate is freely available.

Recoding also raises a non-technical issue which must be dealt with.
Even though the information loss is hardly visible, the image is not identi-
cal to the original image. The question is how the information about the
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recoding should be conveyed to the user. This matter is still under study,
but a good way to tell the user could be a small icon or button outside
the main browser window?. Equally important is that the user must be
able to request the full object when the quality of the recoded object is not
satisfactory.

3.4 Object Size

As mentioned above, before recoding an object it must be decided whether
the potential gains of recoding are worth the CPU-time required to perform
the operation.

Since memory is “cheaper” than CPU-time, recoding small object is not
useful if only smaller storage size is the objective. For larger objects the
potential savings are quite significant and the recoding is not that much
more “expensive”’ to perform.

If one also considers the savings in transmission time, then also smaller
object should be recoded, but whether even the smallest objects present
enough gains depends on the environment. If the link from the cache con-
taining the recoded objects is a high-speed LAN, the gains of recoding very
small objects are measured in fractions of a second due to the small object
size. For slower links, such as dial-up, even a small difference in size will
make it worthwhile the CPU-power because the potential gains are large
enough.

Another size consideration is how much space the object takes up on
the screen. The amount of data taken up by an object could be diminished
by shrinking the object both horizontally and vertically, i.e. downsampling
the image. Using this method, large images could be made smaller and the
amount of bytes in the image would be reduced drastically. It should be
noted that this method could wreck havoc if the composition of the page
containing the image has been carefully determined for this given image size.
Even though HTML is not a page layout language, some content providers
try to control the layout with certain sized images and other tricks. This is a
completely futile pursuit because of the heterogeneous nature of the clients
accessing the Web, e.g. different screens, graphical vs. non-graphical, etc.
Nevertheless, it is widely used.

In this thesis only JPEG-images are considered. Because of this reason,
the image size issues need more attention than with audio and video files.
For these other two object types, because of the large sizes of the objects,
recoding provides large gains. For example, if a 2 megabyte MPEG-video
file is recoded by 5 %, it will be transmitted almost 30 seconds faster over a

*For example the bottom right corner of browser window as it is done in current
browsers.
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28.8 kbps link!?

3.5 Summary

Multimedia objects are already popular on the Web and in the future their
number will increase. Since multimedia objects have properties not shared
by other types of objects, e.g. they can sustain information loss, it is possible
to treat them differently. If the object can be divided into layers, then it
can also be recoded into a lower quality version.

Recoded objects can be transmitted in less time than originals and they
take up less space but the loss in quality is far less than the reduction in
size making recoding an attractive option. The CPU-cost of recoding must
be taken into account, especially in the case of very small objects.

Objects can be recoded either by removing higher layers of resolution
or downsampling them. Both methods have their uses and present some
dangers.

3GVU’s survey found this to be the most common connection speed for users
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Soft Caching

Current caching strategies treat all objects the same way and are based on
the assumption that object integrity must be preserved. This holds true for
all caching schemes, regardless of where it is done. For many object types
this assumption is perfectly valid. A file containing an executable binary
program is useless unless all the bits are present. Likewise, is is not possible
to remove much data from a textual file without rendering it unintelligible.

However, there is one large class of objects which can suffer informa-
tion loss without becoming unusable. These are the multimedia objects as
described in chapter 3. A multimedia object can be recoded to a lower qual-
ity form which takes up significantly less space without losing much of the
quality. The main idea of soft caching is to take advantage of this recod-
ing possibility to treat cached multimedia objects differently from generic
objects. The goal is to improve the performance of the cache on all three
measures from chapter 2, hit-rate, byte hit-rate and download time.

The term “soft caching” will be used in this thesis to describe a caching
system, where the objects can be recoded and the cache can thus contain
partial objects. The term “hard caching” or normal caching, refers to a
classical caching system, where the object either is completely in the cache
or is not cached at all.

Earlier work on soft caching [7, 27, 38] has studied the cache replacement
criteria in a soft caching system and provides some initial simulations on the
performance gain of a soft caching system against a normal system. The
work has indicated that soft caching can have a performance clearly superior
to that of a normal system. For example, the results in [38] show that the
average download time in a soft caching system is in the best of cases only
one third of that of the normal system.

This chapter will present the soft caching framework and discuss the dif-
ferences of soft caching and normal caching. The impact of these differences
on the three performance metrics from chapter 2 — hit-rate, byte hit-rate
and download time — is explored. The implementation issues will also be

19
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discussed.

4.1 Framework

Soft caching has many possible application arenas. Figure 4.1 shows a sim-
plified view of a proxy caching system.

B
c)—(pr—=_(s

Figure 4.1: Simplified Proxy Caching System

In figure 4.1, C is the client, P the proxy and S is the server. The link
bandwidths between these three are B; between client and proxy and Bj
between proxy and server.

4.1.1 Scenarios

Interesting scenarios where soft caching can be applied are:

1. By << Bjy. This is the typical dial-up scenario where the link between
the client and the proxy is the bottleneck. To speed things up, the only
possibility is to recode objects in the proxy before they are transmitted
over the slow dial-up link.

2. B1 > Bsy. This scenario represents a LAN-setup where the client is
connected to the proxy by a high-speed LAN. In this case, the objective
of soft caching is, by using recoding and progressive transmission, to
reduce utilization of the outgoing bandwidth.

3. Cost(Bg) >> Cost(Bj). This is an interesting variation of scenario 2.
In this case, the outgoing bandwidth is much more expensive finan-
cially than the bandwidth between the proxy and the client. The
same philosophy applies, but soft caching should be more aggressive
to reduce the link usage even more than in scenario 2.

4. B; = oo. This is not a proxy caching scheme, but client caching.
The client uses recoding to overcome memory limitations imposed on
it. Since recoding makes objects smaller, the client can hold more
objects. Because it is done at the client, the user can set preferences
on how much objects should be recoded.
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4.1.2 User Interaction

The interaction between the different parts — client, proxy and server — in a
soft caching system is almost identical to the normal system. The phases of
making a request are depicted in figure 4.2.

Figure 4.2: User Interaction in a Soft Caching System

The different phases in figure 4.2 are as follows:
1. Client makes a request.

2. Proxy responds by sending the object at the resolution currently stored
in the cache.

3. If that resolution is not enough, the client makes a request to the origin
server for the missing bits

4. Server responds. This reply is also cached at the proxy.

Ideally, the proxy would contain the exact resolution required by the
client. If the resolution is too high (object is too large) then the resources
at the proxy and the bandwidth on the client-proxy link are wasted. If the
resolution is too low (quality is too low) then the resources on the external
links are wasted.

The above strategy is known as the “hard access” strategy [38] in which
the user always makes requests for full objects. This is the way the Web
works today.

In the future, the “soft access” scenario, where the user can request
partial objects, e.g. using the methods provided by HT'TP/1.1, will be more
likely. In this case the steps 1-4 from above will read:

1. User makes a request which may refer only to a part of an object.
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2. Proxy responds immediately with the resolution available in the cache.
If this is enough to satisfy the range specified in the request, the request
is fulfilled.

3. In the case where the user requested more than was available in the
cache, the proxy makes immediately the request to the origin server to
get the missing bits. This happens in parallel with sending the already
available data to the user.

4. The server responds with the missing bits which are forwarded to the
user and stored in the cache.

4.2 Soft Caching Performance

The performance of a caching system can be measured along three axis.
These are hit-rate, byte hit-rate and download time as presented in chap-
ter 2. In the processor and virtual memory caches, all these three share the
optimum due to the homogeneous nature of the objects being cached.

In the heterogeneous Web, the optimal point according to one of them,
might not yield optimal performance according to the other two. Even
though the metrics are not completely dependent on each other, they are
not completely independent either.

For example, if one wishes to achieve a high byte hit-rate, one should
cache large objects in favor of small ones. This is because a single hit on a
large object will boost the byte hit-rate. Because high byte hit-rate means
that a larger part of the bytes needed were found in the cache, one would
be tempted to conclude that this also yields a shorter download time. Alas,
this is not necessarily true, since the cached bytes might have come from a
nearby, well-connected server while the uncached bytes needed to be fetched
from a far-away server. In this example, caching the objects from the far-
away server would have resulted in a shorter average download time.

The existence of partial objects in a soft caching system adds a twist
into this already interesting scenario. This additional complexity follows
from the lower quality of recoded objects and the subsequent possibility
that a user might find this quality unacceptably low and request a reload.
Such hits on cached objects should not be counted as full hits, since after
all, the cache had made an erroneous decision concerning the object, i.e.
recoded it when more quality should have been kept.

In the following, these three metrics will be analyzed in a soft caching
context to present how they differ from their normal counterparts.

4.2.1 Hit-rate

Hit-rate is defined as the ratio of the objects found in the cache to the total
number of objects referenced. Traditionally, hit-rate has been the most
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important metric because in the traditional caches all the three metrics
were equal. In the early studies on Web caching hit-rate was also used as
the primary metric.

However, on the Web, hit-rate is not a very useful metric. This is because
gains in hit-rate do not translate into anything meaningful to the person
operating the cache. A high hit-rate means that a large portion of the
documents referenced were found in the cache. In fact, this means that the
cache was doing more work and the operator should make sure that the
cache is powerful enough to sustain this load.

High hit-rate does have one benefit, though. The more hits on the docu-
ments in the cache are scored, the less requests are sent to the origin server.
This means a lighter load on the origin server which could be crucial for
a very popular server where any reduction in load could result in visible
performance boost.

In a soft cache all of the above remains true. The added complexity stems
from the recoded objects. If a hit is scored on a heavily recoded object and
the user requests a reload, should this count as a hit? The answer is no,
since in this case the origin server has to serve the missing bits and therefore
the load on the origin server is increased. This is contrary to the effects of
high hit-rate in a normal system and therefore discarding the hit is justified.

4.2.2 Byte Hit-rate

Byte hit-rate is defined as the ratio of the number of bytes found in the
cache to the total number of bytes transmitted. It can also be defined as the
hit-rate, where each hit is weighted by the size of the object, and in some
previous research it was called the weighted hit-rate [40].

Because the hits are weighted by the size of the object, having a high
hit-rate does not guarantee a high byte hit-rate, nor is the converse of a low
hit-rate resulting in a low byte hit-rate true.

Unlike hit-rate, byte hit-rate translates into something meaningful to
the operator of the cache. The higher the byte hit-rate, the fewer bytes
were sent on the out-going network link. A high byte hit-rate will therefore
save bandwidth on the out-going link giving more room for other traffic or
reducing the cost of existing traffic.

Because a high byte hit-rate means less traffic, one might be tempted
to maximize the byte hit-rate in order to minimize the costs. This would
mean caching the largest objects, since a hit on one of them would result
in a much higher byte hit-rate. For a small ISP this might seem like an
attractive scenario.

However, this would mean that a lot of smaller objects would not have
been cached because of the space taken up by the large object. Since many
objects are small (HTML-pages, small GIFs, etc.) this would drastically
increase the average download time which makes the users unhappy. This
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might lead to the users deserting the small ISP in favor of a bigger one which
provides a more sensible cache setup.

In soft caching the above is, again, true. Unlike hit-rate in soft caching,
byte hit-rate does not suffer from recoded objects in soft caching. Even if a
user requests a reload of a heavily recoded object, the bits that were cached
need not be retransmitted from the origin server, under the assumption that
the latter is capable of progressive transmission.

And when a user accepts a recoded object, the benefits should be cal-
culated based on the original size of the object. The rationale behind this
is that if the user accepts a recoded object, then the user thinks that this
representation is equal to the original and therefore the cache has saved that
many bytes on the out-going link.

4.2.3 Average Download Time

The average download time is the time that the user must wait on average
for an object to be downloaded from the Web to the user’s computer. It
should be noted, that this is per object and not per Web-page which might
contain several objects.

Of the three performance metrics, download time is the only one visible
to the user. The shorter the average wait for a page, the happier the user.
For smaller ISPs keeping their users happy might mean the difference of
staying in business and going bankrupt.

Unfortunately, the download time is somewhat orthogonal to the other
two metrics making it harder to optimize it. Bolot et al. [5] have derived the
replacement criterion which minimizes the average download time of objects
as seen by the user. The criterion is a function of the last reference time,
object size and the time it took to retrieve the object.

As with byte hit-rate, soft caching has advantages with download time
as well. Because the connection between the cache and the client is usually
faster than the connection from the cache to the origin server, all the bytes
that can be sent from the cache will reduce the average download time.

In the unlikely event that the connection from the client to the cache is
slower than most of the links to the origin servers, then caching will not help
much on reducing the download time since the object can be fetched faster
from the server to the cache than the cache can transmit it to the client.
This might be the case for some dial-up users.

4.3 Implementation

The important issues to be considered when implementing the soft caching
framework are:
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1. What types of clients?
Are the clients connected through dial-up or LAN? In the former case
recoding should be rather aggressive in order to make the objects
smaller so that they can be transmitted faster. In the latter case ef-
forts should be concentrated on maximizing the gains in byte hit-rate
and download time.

2. When to recode?
The fundamental issue here is whether recoding should be used in-
stead of removing objects or should recoding be used as an additional
tool. Recoding objects which would have been removed increases their
lifetime in the cache and reduces the traffic when these objects are ref-
erenced again, since they usually are quite large.

Using recoding on objects which are not being removed helps create
more space in the cache while decreasing the download time.

3. Pure soft caching or mixed?
Should the cache handle only recodable objects or both recodable and
non-recodable objects. If the recodable and non-recodable objects are
kept in separate proxy caches, it is easier to use different methods for
treating them, such as different replacement policies, lifetimes, etc.

The drawback however is, that the cache sizes must be predetermined.
In a mixed proxy the recodable and non-recodable objects co-habit in
the same space and can share it according to their true proportions.
In a mixed proxy it is slightly harder to use different kinds of method
for different kinds of objects, but a mixed proxy also means only one
proxy to administer.

4. Where to recode? Recoding can be done at either the client or the
proxy. At the client, recoding would be most useful in conserving
space and at the proxy, recoding would be more useful in decreasing
the download time and number of bytes transmitted.

Even though all modern Web-clients allow the user to define how much
memory should be used for the cache, it is far less certain whether the
average user is aware of this possibility or would be able to adjust the
cache size. Because the processing power at the personal computers
is increasing faster than required by the applications, CPU-power of
the clients is largely unused and could be used for recoding. The
availability of CPU-cycles at a busy proxy is not guaranteed.

A working implementation of the soft caching framework is presented
in [18]. It presents a proxy caching system which recodes JPEG-images
instead of removing them in a mixed proxy setting. This is also the main
setup considered in this thesis.



CHAPTER 4. SOFT CACHING 26

4.4 Related Research

An approach similar in philosophy to soft caching is the real-time distil-
lation [11,12]. In this framework, the clients can specify what types of
documents and at which resolutions or representations they can handle.
The proxy then extracts (distills) the required information from the original
object.

The distillation is aimed at producing a suitable representation for a
client with severe limitations in its capabilities. For example, a user using a
hand-held PDA with a small, grey-scale screen could specify that all images
are to be re-encoded to a resolution matching that of the screen and to use
only grey-scale colors. Similarly, the proxy might extract the text from a
PostScript-document to a client using a text terminal.

This approach is more aimed at overcoming client limitations and re-
ducing the bandwidth usage on the client-proxy link than using the proxy
to reduce the usage of the backbone. This technique also requires an added
interface to set the target rates and formats for the distillation process.

The main difference between distillation and soft caching is that in the
former, the amount of data transmitted over the backbone is the same as
with any caching scheme, only the link from proxy to client is affected. Soft
caching reduces the global amount of data transmitted while retaining the
proxy-client link more like the normal system.

Recently a commercial implementation of a distillation-type framework
has come to the market. It is manufactured by Spyglass and sold under the
name Prism [34]. This system aims itself at non-PC-devices such as PDAs
which have severely limited displays.

4.5 Summary

This chapter has presented the soft caching framework. Soft caching differs
from traditional caching in that in a soft caching system objects can be
recoded in order to reduce the transmission time and space used in the
cache.

Issues related to the implementation of a soft caching system were dis-
cussed and an overview of an approach similar to soft caching, the real-time
distillation, was presented.



Chapter 5

JPEG Image Format

Joint Photographic Expert Group, or JPEG, is an ISO standard for lossy
compression of real-world photographic images. For a complete reference on
JPEG, see [29].

Soft caching requires objects which support a layered coding where some
of the layers can be removed without making the object unusable. The
JPEG-format has these properties. The standard defines a progressive cod-
ing and since JPEG is lossy, a JPEG-image can sustain a little extra infor-
mation loss. In addition, JPEG is a popular format which makes it easy to
study soft caching using normal Web pages instead of artificially creating
content.

Even though the GIF-format is far more popular than JPEG, it is at
heart a lossless compression. In addition, the progressive GIF-coding places
far too much information, half of the lines, into the last layer, making re-
coding immediately visible.

This chapter presents a short introduction to the baseline sequential
JPEG-format and the progressive format and shows how they can be used
in a soft caching system through recoding.

5.1 Sequential JPEG

The baseline format as defined by the standard is called sequential JPEG.
The standard requires that a decoder must implement the sequential mode,
all other modes — progressive, hierarchical and lossless — are optional.

The encoding process goes through 4 steps:

1. The image is divided into square blocks of 64 pixels. Each block is
therefore 8-by-8.

2. Each block is transformed using the Discrete Cosine Transform.

3. The DCT-coefficients are quantized.
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4. Quantized DCT-coeflicients are compressed block by block using either
Huffman or arithmetic coding.

In this process, all of the information loss occurs at quantization step
(step 3) and the compression is performed at step 4.

To form the compressed JPEG-stream, the blocks are traversed in se-
quential order starting from top left corner and going left to right and top
down.

The DC-coefficients (coefficient 0) are encoded with DPCM using the
DC-coefficient from the previous block as the predictor. The AC-coefficients
(coefficients 1-63) are collected in zig-zag-order (see figure 5.1) and are com-
pressed using the compression method from step 4. The standard defines
both Huffman and arithmetic coding but most implementations implement
only the Huffman coding because of the patents covering the arithmetic
coding.

DC |ACl
ACS

ACY

AC4

AC3

Aj61

AC62| AC63

Figure 5.1: Zig-zag pattern for AC-coefficients

5.2 Progressive JPEG

Even though the standard includes the definition of a progressive mode for
encoding JPEG-images, the first implementations did not implement the
functionality needed to use the progressive mode. Later this functionality
has been added into programs and currently all browsers and many other
viewer programs are able to decode and show progressive JPEG-images.
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When creating a progressive JPEG-image, the steps 1 to 3, i.e. transform
and quantization, remain the same. The only difference is the order in which
the coefficients are placed in the encoded JPEG-stream.

The standard does not define how to place the quantized coefficients into
the JPEG-stream but leaves this choice to the implementation. The widely
used Independent JPEG Group’s library [16] divides the information into
10 layers by placing the coefficients as described in table 5.1.

Layer | Component Bits Coeflicients Color
1 DC 11111110 0 Y, Cb, Cr
2 AC 11111100 1-5 Y
3* AC 11111110 1-63 Cr
4* AC 11111110 1-63 Cb
5 AC 11111100 6-63 Y
6 AC 00000010 1-63 Y
7 DC 00000001 0 Y, Cb, Cr
8* AC 00000001 1-63 Cr
9* AC 00000001 1-63 Cb
10 AC 00000001 1-63 Y

Table 5.1: Scan format of IJG-library

As can be seen from table 5.1, the layers containing only DC-coefficients
(layers 1 and 7) contain both luminance (Y) and chrominance (Cb, Cr)
information. The AC-layers on the other hand, contain either luminance or
one of the color components but never both luminance and chrominance.
This means that a grey-scale JPEG-image coded in progressive mode has
only 6 layers since the color components on layers 3, 4, 8 and 9 are not
present.

Since the coefficients in the progressive mode are fed into the compression
step in a different order than in sequential mode, the resulting JPEG-streams
are not identical. In some cases, the progressive image is significantly smaller
even though it contains exactly the same information. Table 5.2 presents
the effects of progressive JPEG-encoding on three different types of JPEG-
images.

In table 5.2 column “photographic” is for normal photographic images,
column “graphic” for multicolored graphical images (e.g. navigation but-
tons) and column “line art” line art drawings containing only two colors,
black and white (e.g. a comic strip). Each of the images was found on the
Web, but their distribution in this study cannot be taken to represent the
actual distribution of these types of images on the Web.

It can be seen that for photographic images, progressive JPEG-image is
slightly more likely to be smaller than sequential, but that overall, there is
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Photographic | Graphic | Line art

Images 402 7 30
Progressive smaller 223 70 30
Progressive larger 179 7 0
Average size of progressive 100 % 73 % 79 %
(% of original)

If smaller 98 % 70 % 79

If larger 101 % 104 % N/A
Smallest progressive 96 % 29 % 46 %

Table 5.2: Savings from progressive JPEG-coding

no gain in size when going from sequential to progressive.

For the other two types, progressive mode offers substantial savings in
image size. This is because these images contain large uniform areas which
the progressive mode can compress more efficiently. The sequential mode
works by 8-by-8 blocks and can not exploit similarities between blocks. The
progressive mode does not possess this limitation and could, in the best of
cases, compress a whole layer in one codeword!

The graphical and line art JPEG-images are not very common, since
the GIF-format is better suited for these types of images and usually yields
better compression. However, there are cases when the GIF-format cannot
be used and one must resort to JPEG. Such cases occur when the image has

over 256 colors or the patents surrounding GIF make it impossible to use
GIF.

5.3 Recoding and JPEG

The progressive JPEG-encoding offers an easy method of recoding. Since
the exact format of the encoded stream and its contents is unspecified in the
standard, any progressive JPEG-image can be recoded by simply removing
the last layer of information. The result is still a valid JPEG-stream that
can be decoded by any entity that is able to decode progressive JPEGs.

Of course, as more and more layers are removed from the image, the
quality becomes lower and lower until at the last layer the only thing that
is left is the seven most significant bits of the DC-coefficients. Figure 5.2
shows an example of the recoded Lena-image. In the figure are represented
the original, unrecoded image as well as images with only 6, 3 and 1 layer
of information left.

As pointed out in table 5.1 on page 29, the IJG-library does not distribute
the coefficients uniformly in the scan layers, but instead uses a different
method. This means, that different layers contain different amounts of bits
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6 layers

3 layers 1 layer

Figure 5.2: Progressively coded Lena

from the image. This opens up great possibilities for recoding. Table 5.3
shows the image size as a function of the original and previous layer during
recoding.

The values in table 5.3 were obtained from a sample of 800 JPEG-images
found on the Web which were recoded through all the 10 levels used by the
IJG-library. The images were mostly small photographic images, resolution
about 300x200 pixels and average size around 12 KB. Some of the images
were much larger (1500x1000, 400 KB or even larger) and a significant part
of them were non-photographic graphical images such as buttons and tool
bars.

For reference, the values for the Lena-image in figure 5.2 are 57 % of
original at level 6, 28 % at level 3 and 13 % at level 1.

As we see from table 5.3, the information is far from uniformly packed.
Especially noteworthy are layers 9, 8, 4 and 3 which contain only color in-
formation and therefore do not amount to much of the total information.
Another interesting observation is that the last layer represents almost 40 %
of the total number of bytes in the image. This is because the last layer con-
tains only the least significant bits of the AC-coefficients, which are generally
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Level | Percentage from | Percentage from
previous level original image
10 100 % 100 %
9 64.7 % 64.7 %
8 92.6 % 59.9 %
7 92.7 % 55.5 %
6 95.5 % 53.0 %
5 71.0 % 37.6 %
4 71.3 % 26.8 %
3 86.0 % 23.1 %
2 85.4 % 19.7 %
1 55.2 % 10.9 %

Table 5.3: Image size in the recoding process

close to a random sequence and therefore do not compress well.

5.4 Summary

This chapter has presented a short overview of the JPEG-image format
and how to use the progressive JPEG in soft caching. Progressive JPEG-
images were found to be at most the size of the sequential versions of the
same images and in some cases impressive gains in image size are possible.
Progressive JPEG also is well suited for recoding since several layers contain
a lot of bits which are not visually important and can therefore be removed.



Chapter 6

Replacement Algorithms

The property having the greatest effect on the performance of a caching
system is the cache replacement algorithm. When more space is needed in
the cache, the replacement algorithm chooses the objects to be removed.
This choice can be made on several different criteria, each having their own
merits and shortcomings.

The results concerning caching from operating system theory are well-
known, but the Web presents many new difficulties, to which the standard
algorithms do not give a good response. As discussed in chapter 2, on the
Web, the objects are of different sizes and reside on different servers, making
the cost of a cache miss almost unpredictable.

An important decision concerns the amount of space to be freed. There
are two possibilities:

1. Free only enough space so that the new object fits into the cache.

2. Whenever the cache size goes above a configured high-water mark, free
enough objects to make the cache size go below a specified low-water
mark.

Both of these approaches have their merits. The first one yields a better
utilization of the cache space, since no unneeded empty space is created.
This would make the latter strategy seem like a waste of space, since the
cache utilization is never total. However, the second approach has the ad-
vantage that the replacement algorithm is not run as often as using the first
method. If the criterion used to make the removal decision is complicated
to calculate, or keeping a sorted list of the objects is infeasible, then this
approach would yield superior performance.

In the following, classical hard cache replacement algorithms in Web
caching systems are presented and their extensions to soft caching are dis-
cussed. The issues regarding stale documents and objects expiration are
also explored further.

33
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6.1 Hard Algorithms

This section presents an overview of some of the classical cache replacement
algorithms. Only a few basic strategies are treated and their extensions to
soft caching will be discussed in the next section. For a detailed analysis of
the performances of hard algorithms, see [25, 41].

6.1.1 Least Recently Used (LRU)

The LRU replacement strategy removes the object that has been referenced
the least recently. For this purpose, it is necessary to keep in memory
the time when the document was referenced. This reference or access time
needs also to be updated when a cached object is referenced. The philosophy
behind this strategy is that if an object has not been recently referenced, it
is unlikely that it would be referenced again in the near future.

LRU has been a very popular policy in virtual memory systems and
has also been used widely in Web caches, such as the Squid proxy [35].
However, recent research has proven that this policy does not optimize the
performance of a Web cache.

6.1.2 Size

The size replacement policy uses the object size as the key to determine
which objects are to be removed. The usual way is to remove large objects
in favor of smaller ones. This increases the cache hit-rate but may not help
to improve the byte hit-rate. Since a Web cache must keep in any case the
object size in memory, this policy incurs no memory overhead.

Since this policy keeps the smaller objects, it can keep more objects in
the cache which also means more object meta-data. This could turn out
to require enormous amount of memory. For example removing a 1 MB
object and replacing it with 1000 1 KB objects would multiply the amount
of meta-data for these objects by a factor of 1000!

6.1.3 Second Chance

The second chance algorithm works in the following way. When an object is
to be removed, it is not removed but instead a flag is set to mark this event.
If the object is subsequently referenced, this flag is cleared. If the object is
not referenced again before it gets selected for removal the second time, this
flag is still set and then the object is removed. It should be noted, that the
second chance algorithm can use any algorithm to determine the objects to
be evicted. Its only purpose is to give the object a “second chance”. It is
therefore not a real replacement algorithm.
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6.1.4 Others

In the last years the research community has come up with many improved
Web cache replacement strategies to remedy the problems of LRU. Trace
based simulations have shown that these strategies have superior perfor-
mance over the basic LRU but they all require either complex calculations
or holding a significant amount of extra data required by the algorithm.

Even though these newer strategies have slightly superior performance, it
is still unclear whether this difference is in any way significant in a practical
system.

6.2 Soft Algorithms

Any of the above-mentioned algorithms is naturally directly applicable to
a soft caching system. However, because of the recoded objects in a soft
cache, the normal version of the algorithms usually fall short. Since the
purpose of this thesis is not to find yet another cache replacement strategy,
only extensions to the existing algorithms are considered.

6.2.1 Soft LRU

The LRU algorithm uses the time that the object was last referenced as
the key to decide which objects are to be removed. If the system decides
not to remove a recodable object but instead recodes it, then the reference
time must also be modified. If this is not done, then when the recoding is
finished, the very same object will still be the least recently used and would
be recoded again and again until it would be completely gone. This is clearly
undesirable.

This negative effect can be handled by modifying the object reference
time when the object is recoded. Even though the object has not been
referenced, the recoding in a way “breathes new life” to the object, justifying
this method. The only question is to which value should the reference time
be set.

Possible values can be taken from the interval between current time
and the old reference time. Ideally, the adjustment should depend on the
recoding level of the object to reflect the usefulness of keeping the object in
the cache.

6.2.2 Soft Size

Since recoding diminishes object size and the Size-policy favors small docu-
ments then it would prefer the recoded version of an object to the original
one. This means that an object that only has a few layers of information
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left would be kept in the cache. Again, this is not desirable given the low
quality of heavily recoded objects.

The way to counter this problem is to use the “useful size” of the object
as the replacement key instead of the real size on the disk. The useful size is
calculated from the original size and the recoding level. Intuitively, it should
be obtained from the original size and current size in such a way as to take
into account the gains in object size in regard to the degradation in quality.

A candidate for such a function would be:

useful_size = current_size + R(original_size — current_size)  (6.1)

where R is defined as

current_recoding_level

mazximum_recoding level

If the object can be recoded with exact precision, that is, if each recoding
level is of the exact same size, then this formula will result in the use ful _size
being always equal to original_size. In these situations another criteria is
called for.

However, with JPEGs the information is spread non-uniformly over the
layers and then the useful_size will be smaller at first and grow up to
original_size as the object is recoded to the last few levels.

6.2.3 Soft Second Chance

The second chance algorithm is also easily modified to accommodate soft
caching. In this simple modification, in addition to counting reference times,
also the recoding instants are memorized. When an object is selected for
removal, it is recoded and the time instant is memorized. If the object has
not been referenced after this instant and is again selected for removal, it is
removed instead of being recoded again. If it has been referenced, then it is
recoded again.

As in the normal case, the second chance is not the real removal algo-
rithm, but rather a modification of whatever algorithm is used to select the
replaced objects.

6.2.4 Optimal Soft Replacement Algorithm

In [43] Yang and Ramchandran derive a criterion which can be used in a
soft caching system to decide which parts of an object should be discarded
in such a way as to minimize the average download time.

The authors propose to treat each layer as a separate objects and suggest
that the objects be sorted according to the following criterion:

Bij = Pyj(Bs — Bg) (6.2)
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In this criterion, P;; is the probability, that resolution j of object ¢ is
accessed, Bg, is the bandwidth to the server holding object 7« and B is the
bandwidth from the proxy to the client. The objects with smallest 3;; are
removed first.

Albeit optimal, this algorithm is far from simple to implement efficiently.
The practical issues of implementing are discussed in more detail in [19]. The
main problem is, that although it is possible to get accurate estimates for
both the access probabilities and the bandwidths, this would consume a lot
of memory which could otherwise be used to store objects.

Because modern browsers are able to request only whole objects, the
access probabilities for the intermediate resolutions are the same as for the
last resolution and the optimal replacement policy degrades into a hard
replacement policy. In order to counter this deficiency, soft accesses must
be simulated in order to make recoding work in this context.

In the simulations performed in this thesis, soft access was simulated by
adding 0.1 to the object reference count every time an object was recoded.
This choice is completely arbitrary, but necessary for recoding to work as
expected.

The motivation behind this particular choice of adjustment is to make
it appear as if the lower layers had been accessed a bit more often than the
higher layers while trying to keep the effect on the global state of things
minimal. With 10 recoding levels, an object will get at maximum 0.9 extra
accesses through recoding.

The client bandwidth, B¢, was assumed constant and can therefore be
removed. If the cache handles a multitude of differently connected clients,
then the value of B would be different for each client and therefore the
optimal choice of recoded objects would depend on the client as well. This
presents a dilemma, and in a practical implementation it would be wiser to
treat all clients in a uniform manner.

6.2.5 Summary

In all the strategies modified above, the modifications were simple since the
effect of the recoding on the removal criterion could easily be determined.
However, if the replacement strategy is a complex function of several differ-
ent parameters, e.g. reference time, size and download time, it is far more
difficult to assess the effects of the recoding.

6.3 Expiration Issues

An important requirement for a caching system is that it should not serve
stale, or out-of-date information. In the interest of performance, most mod-
ern systems do not guarantee that an object served is always fresh (up-
to-date) but instead use some heuristic to guess the lifetime of the object



CHAPTER 6. REPLACEMENT ALGORITHMS 38

which sometimes results in serving stale objects. One such heuristic is the
staleness factor from chapter 2.

To guarantee that the document is fresh, the cache must make a query to
the origin server to make sure that the cached object has not been modified.
This adds one round-trip time from cache to server to each request and is
clearly undesirable. An easy way to avoid this would be for the servers to
add explicit expiration information (HTTP Expires-header) to their replies.
This way all intervening entities could explicitly know if a cached version is
still current. Based on our experiences from our proxy, only 5 % of replies
come back with this information.

If explicit expiration information is not available, then some heuris-
tics must be employed. The goal of these heuristics is to make sure that
only a certain, pre-defined fraction of the documents would be served stale.
HTTP/1.1 will give the server and content provider more possibilities to
share information about the object’s lifetime to other entities. This infor-
mation could help a cache to make decisions concerning the cached object.

In a soft caching system, these conditions can be relaxed because of the
properties of multimedia objects. While a text file might be updated from
time to time to add new information or correct errors, a multimedia object
is likely to remain constant throughout its life. An image for example, is
extremely rarely edited, it is rather replaced with a completely new version
and these replacements are rather infrequent. It is therefore safe to assume
that an image does not need to be verified nearly as often as normal objects.

The only exception to this “rule” are some special types of images, such
as weather maps, that change content on a regular basis. In these cases it
should be up to the content provider to produce the appropriate expiration
information, since it is usually known.

Even though it is possible for content providers to provide expiration
information, some use it in an incorrect manner. Because many web sites
contain advertisements and the advertising revenue is based on the number
of hits on the advertisement on the page, it is in the content providers
financial interest to claim that the object is not cacheable.

This way all honest caches do not cache the object but fetch it always
from the origin server causing another hit which increases revenue for the
content provider. Otherwise the object could have been cached at any in-
tervening cache which would have save network resources but any hits on
the object would not have been registered at the origin server.

6.4 Summary

This chapter has presented an overview of some classical cache replacement
algorithms as well as their possible extensions to accommodate soft caching.
Also, an algorithm tailored to optimized the download time in a soft caching
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system was presented.

Since multimedia objects tend to stay constant for the duration of their
lives, the criteria used to determine the freshness and staleness of objects in
a cache can be relaxed when dealing with multimedia objects. Objects not
sharing this property should be flagged as such by the content provider.



Chapter 7

Experiments

To compare the performance of the soft caching system to that of a normal
system, simulations were run using actual traces from different proxies as
input and the behavior of the simulator mimicked that of real proxies. The
simulator would read the log file generated by a real proxy and would then
act based on the parameters given. When the amount of data in the sim-
ulated cache would hit a high-water mark, the simulator would empty the
cache enough to make the amount of data go below a low-water mark. This
behavior is similar to the way the Squid-proxy behaves. More details of the
simulator are given in appendix B.

Simulations were run using different cache sizes, different replacement
algorithms and trying out different parameters for the soft caches. The
high-water and low-water marks were fixed at 95 % and 90 % of the cache
size, respectively.

This chapter first presents the traces used in the simulations and then
details the different sets of cache parameters that were used in the simula-
tions.

7.1 Traces

In the simulations three traces from three different places were used. The
traces were obtained from the following sources:

1. USC
This is the trace from our own laboratory and contains the accesses
for a period of about one month. We have about 20 people using the
proxy and some of them do not use browser caches making this trace
a very accurate representation of user interests in an academic setting.
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2. NLANR
This is a trace from one of the NLANR top-level proxies! and contains
two days worth of accesses. It should be noted that since this trace
comes from a proxy high in a hierarchy, many of the requests may
have been satisfied by proxies closer to the user. These requests do
not, naturally, appear in the logfile.

3. Other
This trace is a trace from the main proxy of a major university. Unlike
the other two which have all the user requests present, it contains only
the cacheable requests from the real trace, e.g. no references to CGI-
scripts. The trace spans a period of one week and it had been sanitized
before it was given to us to preserve the privacy of the users.

The trace from Boston University [9] was not used because of the low
number of JPEGs in that trace.

Table 7.1 shows the number of requests, total number of megabytes
contained in the traces as well as the average object size.

Trace | Requests | Bytes (MB) | Average object

size (KB)
USC 147 099 1410 9.5
NLANR | 351 839 2 003 12.8
Other 1 940 904 16 354 8.4

Table 7.1: Properties of the three traces

In order to be able to evaluate the performance attained by the simulated
cache, it is important to know, how much of the traffic could be cached
and what would the maximum attainable hit-rate (HR) and byte hit-rate
(BHR) be. To evaluate the gains in download time, the download time in
the absence of any caching was also measured.

These numbers are presented in table 7.2.

Trace HR | BHR | Time (sec)
USC 48 % | 21 % 2.425
NLANR | 18 % | 8 % 4.518
Other 49 % | 30 % 2.135

Table 7.2: Maximum hit-rates, byte hit-rates and download times

!This trace is from the SJ-proxy. It is not the same as the NLANR-trace in chapter 1
and table 1.1
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From the numbers in table 7.2 it is evident that the high-level proxy
(NLANR) does not see as many references to cached objects since these
requests have been satisfied by proxies closer to the client. Also because the
download time values were estimated from the actual service times of the
proxies from which the traces came, the high-level NLANR-proxy trace also
includes the time spent sending the information to the potentially distant
client. This makes the value higher than that of the other two traces, but
does not effect the results since the only the relative gain in download time
was measured.

Of course, the possible benefits of soft caching depend on how much
recodable objects are present in the trace. Table 7.3 presents the amount of
JPEGs and GIFs in the traces.

Trace % JPEGs of | % JPEGs of | % GIFs of | % GIFs of
requests bytes requests bytes
USC 10 % 16 % 56 % 32 %
NLANR 21 % 22 % 36 % 16 %
Other 16 % 23 % 56 % 29 %

Table 7.3: JPEGs in the traces

Even though the current soft caching implementation [18] uses only
JPEGs, the GIFs have been included in many simulations for a better un-
derstanding of the possible gains in situations where progressive formats are
in common use.

7.2 Simulations

The goals of the simulations were to both compare the performances of a
normal and a soft caching systems as well as to find good parameters for a
soft caching system, e.g. number of recoding levels. Different sized caches
were used to study how much the effects of the other parameters are affected
by the size of the cache.

To observe the performance of soft caching in both proxy and client
caches, also very small caches were used. The smallest were on the order of
5 MB which is the default disk cache of the Netscape Navigator.

Unfortunately, because of the small amount of memory? in the machines
available for the simulations, not all combinations of cache sizes and parame-
ters could be run. These memory limitations mostly affected the simulations
of large size caches.

In order to be consistent with the behavior of the Squid-proxy, very
large objects were not cached. In Squid this threshold is configurable by

2Only 64 MB of RAM
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the operator, and is 4 MB by default. This same value was used for the
simulations.

By caching extremely large objects it is possible to boost the byte hit
rate if said large objects are referenced several times. Because caching an ex-
tremely large, rarely referenced object would evict a large number of smaller,
potentially much more useful objects, not caching large objects has become
standard practice.

7.2.1 Replacement Policy

Four different replacement policies were studied. These were:
1. Least Recently Used.
2. Size.

3. Second Chance.

N

. Optimal Soft Replacement Policy.

The first two are as described in chapter 6. The normal system was only
used with these two. LRU and Size were also used in the soft cache using the
modifications from chapter 6. Second chance was used in the simulations of
the soft cache to complement the main replacement policy as described in
chapter 6.

The optimal soft replacement policy was used without soft access es-
timation as a hard replacement policy and with soft access estimation as
a recoding cache. The access probability of an object was estimated by
its reference count. Because the reference count is reset when an object is
removed, this estimator does not give the true access probabilities of the
objects. The bandwidth estimations were done on a per object basis instead
of the more efficient per server basis.

Even though better estimators could be used, their implementation re-
quires complex data structures and a significant amount of memory. This
choice of estimators is the simplest and least costly to implement and is
therefore a good candidate for a production-scale implementation. This is
why it was chosen as the implementation of this replacement policy.

The bandwidth was estimated from the data available in the log file. The
log files were all produced by the Squid-proxy and contained the object size
in bytes and the time elapsed in fulfilling the request in milliseconds. The
bandwidth was taken directly from these values and the resulting estimates
were therefore in bytes per millisecond. For the traces used, these values
ranged between 2.5 and 4.7 bytes per millisecond.
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7.2.2 Recode Model

Two recoding models were used depending on which objects were being
considered as recodable. These models were:

1. JPEG-model.
2. Linear.

The first model was used for JPEG-images. It follows the results from
table 5.3 on page 32 which represent the real gains obtained by recoding
JPEGs. Because GIFs were also considered as recodable in many simula-
tions, a linear model was used to estimate the gains.

The linear model is intended to simulate the recoding effects of a popular
future object format for which exact recoding would be possible.

7.2.3 Recoding Levels

Progressive JPEG as implemented by the IJG-library has 10 recoding lev-
els. Interlaced GIF has only 4 layers and a progressive PNG has 8 layers.
Naturally, the cache could follow the structure of each object but as seen
from the recoding gains of JPEGs (in table 5.3), some layers contain only a
small amount of data.

It could be advantageous for the recoding entity to treat every object
internally as having a certain number of layers, a sort of a logical structure
built on the true physical structure of the object. When the object would
be recoded, the decision made on the logical structure would be translated
to the real number of layers to strip.

In the simulations, three values of recoding levels were used. These were
3, 6, and 10 levels. These were mapped to the actual JPEG-recoding gains.

7.2.4 User Model

Users need to be simulated on two different factors. The first determines
how much an object can be recoded before the user deems it unacceptable,
the second relates to the capabilities of the software employed by the user.

In the simulations, the user was assumed to accept all objects, regardless
of how many times they had been recoded. This would be a typical behavior
of a dial-up user who would not want to waste time on fetching visually
unimportant data.

The second factor in the user model was the ability to make requests
to partial objects. To be consistent with modern browsers, the users were
able to request only whole objects. This has important consequences for the
optimal soft replacement policy, because in this setup, access probabilities
for individual layers are unavailable; only accesses to whole objects can be
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counted. Therefore the soft accesses were simulated in the manner described
in section 6.2.4.

The choice of accepting all recoded objects may yield a slightly higher
performance for the soft caching system. This benefit is however countered
by the inability to make partial requests, forcing the retrieval of the whole
object from the server when an object is referenced the first time, even when
in reality the user would only require a small part of it.

7.2.5 Refreshment Policy

The refreshment policy defines how recoding affects the object’s access time
in a system where replacements are based on object access times, such as
LRU. Two models were studied:

1. Set access time to current time.
2. Use a linear model.

The first model always sets the access time of a recoded object to current
time. This makes the recoded object the most valued object in the cache,
but is also least costly to implement because the proxy must in any case
keep track of time, and therefore the current time is available without any
extra calculations.

The second, linear, model uses the following formula to set the new access
time:

new_access_time = R(current_time — old_access_time) (7.1)

where R is defined as

(1 new_recoding_level

)

maximum_recoding_level

This assigns less importance to heavily recoded objects and therefore
such objects are removed faster.

7.3 Modifications to Squid

The freely available Squid-proxy [35] has been modified to do soft caching.
This modified proxy has been in use for a little over a year at the Signal
and Image Processing Institute (SIPI) at the University of Southern Cali-
fornia (USC), Los Angeles.

More details on the implementation and its performance can be found
in [7,18]. Overall, the performance is good and recoded images have not
been found to be disturbing.

In [18] the authors conduct an experiment where they compare the per-
formance of the normal Squid with their modified version. Under a reason-
able load, the performance is found to be as good as normal Squid’s and no
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ill effects are caused by recoding. Under an excessively high load, the pro-
cessing time taken by recoders is found to cause a significant performance
hit.

7.4 Summary

This chapter has presented the proxy traces used in the simulations in this
thesis. The choices for the parameters used in the simulations were detailed
and discussed. Some of the choices made are sub-optimal but were cho-
sen deliberately so in order to account for the difficulties inherent in the
implementation of the optimal choices.



Chapter 8

Results

The simulations were conducted using the traces and parameters described
in chapter 7. Because the available computers had only a small RAM-
memory, 64 megabytes, not all simulations could be run. Because the mem-
ory requirements of the simulator grow as either the cache size or the number
of object grows, this made simulating large caches impractical.

Similarly affected were simulations in which the number of objects in the
cache is higher. These were mostly simulations with the Size-replacement
policy which keeps small objects in favor of large ones and therefore the av-
erage number of objects in the cache at any given time is higher. Simulations
which were not run because of these limitations, are indicated.

This chapter presents the results obtained from the different simulation
runs. For more information about the simulator itself, see appendix B.
Results are also analyzed in this chapter and the next chapter will discuss
them in more detail. In the following the refreshment policy and the number
of recoding levels will be investigated first, followed by the replacement
policies.

Because both client and proxy caches were considered, the results have
been divided into two groups. The first one presents small caches and the
second one large caches. The threshold between large and small was set
depending on the trace, but was never larger than 50 MB. Table 8.1 sum-
marizes the cache sizes and how they were classified.

Trace Small Caches Large Caches
USC 5, 10, 20, 25 50, 100, 200, 400
NLANR | 5,10, 25, 50 | 100, 200, 400, 600, 800
Other 5, 10, 25, 50 600, 800

Table 8.1: Large and small cache sizes

47
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8.1 Refreshment Policy

The refreshment policy governs how a recoded object is treated after it has
been recoded. For normal replacement policies, such as LRU, which do not
understand the layered structure of the recoded object, it is necessary to
tweak some of the variables associated with the replacement decision.

Only the case of LRU was studied and the two policies were as defined in
section 7.2.5. Different possible estimators for object size (for Size-policy)
or soft-access estimates were not simulated.

The effects on all three performance metrics were studied separately and
are presented in the following. In the tables, column I refers to the first
choice and column 2 refers to the second choice from section 7.2.5, i.e. set
access time to current time and use the linear model, respectively.

The results in this section represent the performance over the whole
range of recoding levels studied.

8.1.1 Hit-rate

The results for small caches are presented in table 8.2 and large caches are
presented in table 8.3.

Trace 1 2
USC 1|35
NLANR |16 | O

| Total | 17 [ 35 |

Table 8.2: Refreshment policy, Small caches (HR)

Trace 1] 2
USC 0|8
NLANR | 4| 4
Other 0| 8

| Total [ 420 ]

Table 8.3: Refreshment policy, Large caches (HR)

The results in tables 8.2 and 8.3 show that if the cache can expect a
high locality of reference in the traffic, then it is better to use the linear
refreshment model. If there is less locality of reference, then the simpler
strategy outperforms the linear model.

The logic behind this lies in the ways these two models treat the objects.
Setting the access time to current time makes the object the most recently



CHAPTER 8. RESULTS 49

“used” in the cache and thus prolongs the object’s lifetime. Because of the
low maximum hit-rate in the NLANR-trace, most objects are referenced only
once. Therefore, by hanging onto objects, the cache sometimes stumbles on
the right one and by keeping it, increases the hit-rate.

In larger caches, some effects of this are still visible, but the larger cache
size makes it easier to keep the correct set of documents, thus the more
sophisticated method gains in performance.

8.1.2 Byte Hit-rate

The effects of the refreshment policy on byte hit-rate in small caches are
presented in table 8.4 and large caches are presented in table 8.5.

Trace 1 2
USC 10 | 26
NLANR | 12 | 4

| Total | 22 ] 30 |

Table 8.4: Refreshment policy, Small caches (BHR)

Trace 1| 2
USsC 0| 8
NLANR | 2| 6
Other 0] 8

| Total |2 ]22]

Table 8.5: Refreshment policy, Large caches (BHR)

Again, the same effect as was seen with hit-rate-results appears. Even
though the NLANR-trace benefits more from the linear model than with
hit-rate, the same situation prevails. As before, larger caches benefit more
from the linear model than from the simpler “set to current time”-model.

8.1.3 Download Time

The effects of the refreshment model on the download time are shown in
table 8.6 for small caches and in table 8.7 for large caches.

As with hit-rate and byte hit-rate, the high-level proxy does not ben-
efit from the linear model. The results are almost identical to the results
obtained for hit-rate.
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Trace 1 2
USC 3 |33
NLANR |16 | O

| Total |19 [ 33 |

Table 8.6: Refreshment policy, Small caches (Time)

Trace 1] 2
USC 0|8
NLANR | 4 | 4
Other 0| 8

| Total [ 420 ]

Table 8.7: Refreshment policy, Large caches (Time)

8.2 Recoding Levels

Three different choices for the number of recoding levels for recodable objects
were simulated. These were 3, 6 and 10 levels. Due to early results showing,
that recoding with only 3 levels is less effective than using more levels, the
later simulations were run with only 6 and 10 levels.

In the following, columns in the tables indicate the number of recoding
levels used in the experiment. The numbers reflect the number of times that
choice was better than one of the other two possibilities. Therefore, for each
simulation run, the best performing choice of levels got 2 points and the
second best only 1 point.

8.2.1 Hit-rate

Results for small caches with 3 and 2 recoding level possibilities are presented
in tables 8.8 and 8.9, respectively. Large caches are shown in tables 8.10
and 8.11.

Trace | 3 | 6 | 10
USC 14 | 41 | 76

Table 8.8: Recoding levels, Small caches, 3 options (HR)

The results clearly show that having more recoding levels is better than
having fewer recoding levels. Except for the NLANR-trace, higher number
of recoding levels yields better performance more often than lower number
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Trace 6 | 10
NLANR | 12 | 20

Table 8.9: Recoding levels, Small caches, 2 options (HR)

Trace 3 6 | 10
USC 2 |18 | 28
NLANR | 22 | 22 | 19

| Total |24 ] 40 | 47 |

Table 8.10: Recoding levels, Large caches, 3 options (HR)

Trace 6 | 10
USC 2 | 14
NLANR | 9 | 5
Other 4 | 4

| Total [15] 23 |

Table 8.11: Recoding levels, Large caches, 2 options (HR)

of levels. It is also clearly visible that having 10 levels is better than having
only 6.

Even though simulations on the NLANR-trace do not show a clear per-
formance advantage to a higher number of recoding levels, the results do
not give an advantage to a system with a small number of recoding levels.

A high number of recoding levels means that the cache will hold onto the
object longer, but because this results in a performance increase, the recoded
objects are useful and therefore recoding and storing recoded objects is not
a waste of resources.

8.2.2 Byte Hit-rate

The results on the effects of recoding levels on different cache sizes and
different number of recoding level options are in tables 8.12-8.15.

Trace | 3 6 | 10
USC 11 | 48 | 73

Table 8.12: Recoding levels, Small caches, 3 options (BHR)

Again, the results are similar to the ones obtained with hit-rate. Even
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Trace 6|10
NLANR | 9 | 23

Table 8.13: Recoding levels, Small caches, 2 options (BHR)

Trace 3 6 | 10
USC 0 |18 | 27
NLANR | 16 | 20 | 30

| Total | 16 | 38 | 57 |

Table 8.14: Recoding levels, Large caches, 3 options (BHR)

Trace 6 | 10
USC 5 | 11
NLANR | 2 | 12
Other 3|5

| Total [10] 28 |

Table 8.15: Recoding levels, Large caches, 2 options (BHR)

the high-level NLANR-trace shows a clear advantage for simulations with a
larger number of recoding levels.

Holding onto recodable objects (JPEGs and GIFs) can yield high gains
in byte hit-rate since a hit on an image (or a similar object) gives a boost on
byte hit-rate because these objects are generally larger than HTML-pages.

This advantage stems also from the small number of unique bytes present
in the traces. Because the maximum byte hit-rates are quite small (from
10 % to 30 %), hanging onto objects already in the cache likely results in
higher byte hit-rate.

8.2.3 Download Time

Tables 8.16—8.18 show the results from the experiments on the effects of the
number of recoding levels on the average download time.

Trace | 3 6 | 10
USC 22 1 42 | 68

Table 8.16: Recoding levels, Small caches, 3 options (Time)

Once more, the results from these experiments confirm the findings from
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Trace 6 | 10
NLANR | 22 | 10

Table 8.17: Recoding levels, Small caches, 2 options (Time)

Trace 3 6 | 10
USC 4 |16 | 28
NLANR |21 |12 | 24

| Total |25 ] 28 [ 52 |

Table 8.18: Recoding levels, Large caches, 3 options (Time)

Trace 6 | 10
USC 6 |10
NLANR | 10 | 4
Other 3|5

| Total [19] 19 |

Table 8.19: Recoding levels, Large caches, 2 options (Time)

the experiments on hit-rate and byte hit-rate. In other words, more levels
is better than fewer levels.

For the NLANR-trace the results are less clear, but this is in part due
to the low locality of reference observed in this trace, and in part due to the
trace including also the time it took to send the information to the client.
This is naturally included in the other two traces, but in these the clients
are network-wise very close to the proxy and therefore the delays in getting
the data from the proxy to the client are negligible compared to the delays
on the global Web.

In the NLANR-trace, the clients are all the clients in the hierarchy served
by this proxy, spread over a wide area which results in large variation of
transmission speeds towards the clients.

8.3 Replacement Policy

The replacement policies were simulated using different combinations of re-
freshment policies and numbers of recoding levels. The results presented in
this section show the soft replacement strategies only with the set of pa-
rameters that was found to yield the best performance in the experiments
on refreshment policy and recoding levels. The choice that is shown in the
following corresponds to the linear refreshment model and 10 recoding levels.
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In some cases, this choice was not the best of choices for the soft re-
placement strategy, but was always among the top performers. This was
especially true for the NLANR-trace for which the choice of refreshment
policy and recoding levels is not as straightforward as for the other two.
Regardless, the same choice was used to plot all of the following graphs.

In the graphs, the different replacement policies are indicated as shown
in table 8.20.

Label Policy

LRU Normal LRU, no recoding

LRU-SC LRU, second chance recoding, see sec. 6.1.3
LRU-SOFT | LRU, always recoding

SIZE Size, no recoding

SIZE-SC Size, second chance recoding

SIZE-SOFT | Size, always recoding

OPT-HARD | Optimal Soft Policy, no estimation of soft
access

OPT-SOFT | Optimal Soft Policy, soft access estimated,
see sec. 6.2.4

Table 8.20: Replacement policies

Only comparisons between replacements with the same base algorithms
were done, i.e. LRU-based were never compared with Size-based algorithms.
This was done in order to be able to evaluate the gains due to soft caching
and eliminate the effects of the underlying replacement algorithm.

The exception to this rule was the optimal soft replacement policy, in
both its non-recoding and recoding versions. The “hard” version establishes
a baseline which shows how much of the gain in using the recoding version
is due to using a different replacement strategy. The “soft” version which
simulated soft accesses then shows how much of the gain is due to soft
caching.

The optimal policy was compared against both the LRU-based and Size-
based algorithms to see how well it stacks up against normal replacement
policies.

Plots on hit-rate and byte hit-rate show the performance relative to their
respective maximum values for each trace as shown in table 7.2 on page 41.
The download time plots show the average download time in the simulation
relative to the download time for the no-caching scenario as per table 7.2.

8.3.1 USC-trace, Small caches

Figures 8.1- 8.3 show the performance plots for the USC trace on small
caches and the LRU-based replacement policies.
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In each of the plots, the soft variants of the replacement policies, i.e.
second chance and full recoding for normal LRU and simulated soft access
for the optimal policy, outperform the normal policies, often with by a large
margin. This is especially true for the optimal replacement policy and its
simulated soft variant.

This large gain might be in part due to the manner in which the access
probabilities are estimated. Because the reference count is zeroed every time
an object is removed, the estimates are not fully accurate. Furthermore, the
small cache size means that unless an object is referenced very frequently
it will have a low access probability estimate even if it is among the most
popular objects. Therefore the normal policy suffers a performance hit which
is seen on the plots.

The simulated soft access does affect the reference count (by adding 0.1
for each recoding) and therefore changes the access probabilities somewhat.
However, the gains on hit-rate are between 25 % and 65 % and on byte hit-
rate between 30 % and 65 % and this gain is due to recoding performed on
the objects. This becomes obvious when looking at the relative performances
of the normal LRU and the non-recoding version of the optimal replacement
policy. In all cases, the performance of the hard optimal policy is inferior to
that of the LRU, yet the optimal policy with simulated soft accesses clearly
beats LRU in all of the situations.

For the soft LRU, the gains are smaller, around 15 % for hit-rate and
around 20 % for byte hit-rate. These gains are, however, almost constant
regardless of the cache size and therefore any implementation of a similarly
sized cache would benefit from them.

The gains in download time are smaller, but in every case, the recoding
version performs better than the non-recoding version. Significant reduc-
tions in download time are much harder to bring about because when an
object is referenced the first time, it must be fetched from the origin server,
no matter what replacement policy is implemented in the cache.

The only exception to this rule would be true soft access, because in this
case the user can explicitly requests only a part of the object thus decreasing
the time needed to transmit the required bytes from the server. Due to the
nature of the log files, true soft access statistics were not available and all
accesses were assumed to be hard.

The soft variants of LRU do not offer significant savings on download
time, but the optimal policy with recoding gives around 6-7 % savings on
the average download time.

The plots of the Size-based replacement policies are shown in figures 8.4—
8.6.

The results are in general similar to the ones obtained with LRU-based
replacement policies. Soft variants of the Size-policy have a performance far
superior to that of the baseline algorithm.

The gains for the soft variants of the normal Size-policy in hit-rate range
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between 13 % and 34 % and in byte hit-range the gains are situated between
66 % and 147 %! Clearly, soft caching has a definite advantage over normal
caching.

The soft optimal strategy is on par with the recoding Size-policy and
on byte hit-rate has a slight advantage. The hard version of the optimal
strategy is worse than the baseline Size-algorithm except on byte hit-rate
where it slightly outperforms the second chance recoding.

In download time, the gains are smaller than in hit-rate or byte hit-rate,
but now the soft variants of the Size-policy outperform the baseline version
by a clear margin, unlike in the LRU-case (figure 8.3). The gains are in the
order of 6-7 %, the same as for the optimal soft replacement policy.
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Figure 8.1: USC-trace, Small caches, HR (LRU)
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Figure 8.6: USC-trace, Small caches, Time (Size)

8.3.2 USC-trace, Large caches

The plots of the large caches using LRU-policies are shown in figures 8.7-8.9.

Overall, the results are similar to the results obtained on the smaller
cache sizes. Due to the larger cache size and the subsequent ability of the
cache to hold most or even all of the cacheable traffic, the differences among
the replacement policies have become almost negligible.

The largest gain on hit-rate is the 13 % advantage of the soft optimal
policy over stock-LRU for the smallest cache size. About one third of this
is attributable to the improved replacement policy, but the rest is brought
about by recoding. As the cache size grows, all replacement policies tend to
the maximum attainable hit-rate.

The same is true for byte hit-rate as well, but the largest gain is only
around 7 %, again for the smallest, 50 MB cache. Large caches make it
also next to impossible to reduce the download time which is clearly demon-
strated by figure 8.9. The largest difference in download times is 3 % for
the smallest cache, all other situations resulting in almost no gain at all.

For the Size-based replacement policies, depicted in figures 8.10-8.12,
the results follow those of the LRU-based policies.

Hit-rates for all policies are close to the maximum, and the differences
are small. On byte hit-rate, the differences among replacement policies come
into a clearer view. The soft optimal replacement policy has a 55 % better
performance than the normal Size-policy for the 50 MB cache, and this
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difference, albeit becoming smaller as the cache size grows, remains rather
large for other cache sizes. The only exception is the 400 MB cache, which
is clearly sufficient to hold all of the cacheable traffic for this trace.

Overall, the results for both small and large caches on the USC-trace
indicate that the more there is recoding, the better the performance. The
optimal replacement policy with simulated soft access is always better than
the same policy in its hard version. Likewise, policy with full recoding is
always better than second chance which in turn is always better than the
normal, non-recoding version. This holds true for both the LRU-based and
Size-based experiments.

Looking at the big picture, the best policy is the soft optimal policy
but in some cases the full recoding version of the base policy has a slight
advantage.
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Figure 8.12: USC-trace, Large caches, Time (Size)

8.3.3 NLANR-trace, Small caches

Figures 8.13-8.15 present the plots from experiments on small caches using
the NLANR-trace with LRU as the base policy.

The effects of the low locality of reference inherent in this high-level trace
are clearly visible. Although overall performance is not bad, the differences
among the replacement policies are practically speaking non-existent.

All three LRU-variants have identical performance in all three metrics,
except for some random fluctuations.

The optimal replacement policy does not perform as well as the standard
policies. This is also caused by the low locality of reference. Because of
the small caches sizes and because most objects get referenced only once,
the replacement criterion is essentially the inverse of the bandwidth to the
server. This criterion would try to keep documents from servers behind a
slow connection without considering any other factors, an intuitively illogical
criterion.

It is also evident that the recoding version of the optimal policy is worse
than the non-recoding version. This is caused in part again by the low lo-
cality of reference but also in part by the way soft accesses were estimated.
Because this trace had the smallest average bandwidth (2.5 bytes per mil-
lisecond) the 0.1 which is added to recoded objects to simulate soft access
has much more effect than in the USC-trace where the average bandwidth
was 4.7 bytes per millisecond.
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Therefore, since the recoded objects have their access probabilities in-
creased, they become more important, even though the low hit-rate does
not justify this behavior.

The results with the Size-policy and small caches are shown in fig-
ures 8.16-8.18.

Here recoding has more of an advantage. The gains in hit-rate are be-
tween 7 % and 28 % and between 23 % and 116 % in byte hit-rate. These
gains are due to the recoding of large objects. Because Size-policy keeps
small objects and throws away large objects, a recoding cache with Size-
policy would recode these larger objects. The results suggest that, in this
case, this is a good thing.

The performance of both of the versions of the optimal policy is no match
for the Size-policy for the reasons discussed above.
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Figure 8.18: NLANR-trace, Small caches, Time (Size)

8.3.4 NLANR-trace, Large caches

Figures 8.19-8.21 show the results from the experiments with LRU-based
policies on large caches.

As with the smaller cache sizes, the LRU-variants perform almost equally
well. The only difference is the full recoding policy which has a slight gain
on the largest cache sizes (600 and 800 MB). Even though the hit-rate is
still 5 % shy of the maximum, the byte hit-rate is at maximum and therefore
not much real-world gain could be expected for even larger caches.

The optimal policies suffer again from the effects of the low locality of
reference and the estimated soft accesses. Their strongest suit is download
time where it catches up to LRU.

As with the USC-trace, the differences in performance become extremely
small as the cache size grows.

The Size-based policies for these cache sizes are shown in figures 8.22—
8.24.

The results agree with those obtained from the experiments on small
caches with this trace. The differences among the LRU-policies are greater
and always to the advantage of more recoding in favor of less or no recoding.
It is interesting to note, that while the recoding version of LRU achieved
100 % of the maximum byte hit-rate, the recoding variant of the Size-policy
can get up to only 80 % of the maximum. This is directly related to the
Size-policy’s keeping of small objects and throwing away of large objects,
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therefore the large gains in byte hit-rate associated with these types of ob-
jects become unattainable.

It is also interesting to note, that although the optimal policy is designed
for minimizing the average download time, all of the Size-policies have a
slightly shorter download time in this experiment.

Overall, the results on the NLANR-trace are somewhat disappointing.
Because of the low locality of reference, the differences between replacement
policies almost disappear. This is because recoding does not change the
fundamental approach of the replacement algorithm. If the base algorithm is
LRU, the recoding algorithm will also be LRU. While recoding does increase
the lifetime of some objects, in this world where objects are mostly referenced
only once, this approach can do only little to improve performance.
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Figure 8.19: NLANR-trace, Large caches, HR (LRU)
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NLANR - Large caches, HR (Size)
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Figure 8.22: NLANR-trace, Large caches, HR (Size)
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8.3.5 Other-trace, Small caches

The results from the experiments with the LRU-policies and small caches
on the Other-trace are shown in figures 8.25-8.27.

The results bear a strong resemblance to those obtained on the USC-
trace with small caches. The recoding versions of the policies are better than
the non-recoding versions, although for the LRU-variants, the differences are
small.

For the optimal policies, the soft version beats the hard one clearly on
hit-rate and download time, the difference on byte hit-rate being somewhat
smaller. On byte hit-rate, the problems with the access probability estima-
tion can also be seen, as the optimal policies have a performance slightly
lower than that of the LRU-variants. This was not the case with the USC-
trace, even though it is similar to this trace on the maximum attainable
performance.

The reason behind this difference is, that although the maximum perfor-
mance is roughly the same, the much larger size of this trace puts the hits
potentially much further apart from each other than in the USC-trace. In
a small cache this means that the object is hit less times while in the cache
and therefore the reference count will not reflect the true access probability.

On the download time, however, the soft optimal policy is a clear winner.
Although the gain is only around 3.5 %, this gain is constant with respect
to cache size.
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The experiments on the Size-policies and small caches are plotted in
figures 8.28-8.30.

Once more, recoding policies have a clear advantage over the standard
policies. Full recoding LRU shows gains of between 27 % and 80 % on hit-
rate and between 92 % and 266 % on byte hit-rate! On download time, the
gains are smaller, around 4 % but constant over different cache sizes.

The soft optimal replacement policy is on almost all situations the best
performing policy. It has an enormous 366 % percent performance gain over
basic LRU on byte hit-rate in the smallest cache, although one half of this
is due to the replacement algorithm and only one half due to recoding.
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Other — Small caches, HR (Size)
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8.3.6 Other-trace, Large caches

Because of memory shortage, only some of the planned runs were possible
to run on the Other-trace with large caches. Most notably, the soft optimal
policy (OPT-SOFT) could not be run in any of the configurations because
there was not enough available memory to hold information about all the
objects the policy would have required. For the same reason, none of the
Size-based policies could be run.

The results for the experiments that could be run, i.e. all the other four
LRU-based replacement policies, are shown in figures 8.31-8.33.

The results are similar to those obtained on the USC-trace on large
caches. Recoding has a definite advantage over the standard LRU with a
around 6 % gain on hit-rate and around 5 % gain on byte hit-rate. These
gains are independent of cache size.

The hard version of the optimal policy beats LRU by about 9 % on both
hit-rate and byte hit-rate. The results from all the previous experiments
suggest, that the soft optimal policy which estimates the soft accesses would
perform even better than the hard version.

Overall, the results of the Other-trace are similar to the ones obtained
on the USC-trace. Recoding replacement policies have clear advantage over
the normal policies, and the optimal policy yields even higher gains. These
results are most likely explained by the nature of the traces. Both traces
are from proxies close to the users, in both cases the proxy was either a
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replacement for browser cache or the first proxy after browser cache. This
means that there is a high locality of reference inherent in the trace and
therefore caching pays off. Especially in the small caches where memory
is at premium, the memory saving effects of soft caching can reap great
rewards
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8.4 Summary

The results from the experiments were presented in this chapter.

First, the results on the refreshment policy and recoding level showed
the best strategies, linear refreshment and a large number of recoding levels.
The experiments on the replacement policy showed that recoding policies
have a better performance and that the optimal replacement policy yields
in most cases the best performance.

Overall, soft caching and recoding was found to yield clearly higher per-
formance and in some cases even remarkable gains are possible. The results
will be discussed in more detail in the next chapter.
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Discussion

The results on the previous chapter show a clear advantage to systems using
soft caching over standard systems. This was found to be the case for almost
all situations explored. This chapter will analyze some of the results in more
detail as well as provide directions for future work.

9.1 Locality of Reference

When comparing the results on the NLANR-trace with the other two, it is
obvious that the more there is locality of reference in the traffic seen by the
cache, the larger the possible gains. With the NLANR-trace, the differences
among the LRU-based policies were almost non-existent. With the Size-
based policies, recoding has an advantage. This advantage is due to the soft
cache’s recoding of large objects. This way, they stay in the cache and since
there is evidently a later hit on some of them, the overall performance is
increased.

This advantage is made greater by keeping the recoded objects and re-
coding them also later when the situation arises. This is demonstrated by
the performance gap between the full recoding policy and the second chance
policy, which recodes a recoded object only when it has been hit since the
last recoding. With a low locality of reference, this might not often be the
case, and the object gets its second hit much later.

The other two traces which possess a much higher locality of reference,
show more benefits for soft caching. This is especially true for the small,
memory constrained caches where recoding frees up valuable space, but also
in the larger caches, the advantages are undeniable. Again, the Size-based
policies show a much bigger advantage due the the reasons discussed above,
but the LRU-based policies show also non-negligible gains.

An important discovery is also the consistency of the gains. This means
that soft caching and recoding give an advantage, regardless of the cache
size. When the cache is large enough to hold all of the cacheable traffic, this

79
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difference disappears from a practical standpoint, but in all other situations,
soft caching has the upper hand.

9.2 Small Caches and Recoding

In the smaller caches, the advantages of recoding are at the largest. This is
because a small cache can hold only a small fraction of the cacheable traffic
and since recoding helps to reduce object size. This means that the cache
can hold more objects.

As discussed in chapter 4, a typical scenario where a small, memory
constrained cache is used, is at the client. Although it is possible to change
the default cache size of the browser, it is not at all certain that the majority
of users would be able to do this. And even if that were the case, most people
would probably set the cache size to a few tens of megabytes at maximum.

The results from the previous chapter show, that for a small cache, it
would be advantageous to use soft caching and a Size-based replacement
policy.

The USC- and Other-trace come from proxies near the users, and it
would seem, in contrast with the NLANR-trace, that caches nearer to users
see a significantly higher locality of reference in the traffic. It is safe to
assume, that a cache at an active user’s browser would see similar traffic to
the ones in the USC- and Other-traces.

9.3 Optimal Replacement Policy

The optimal soft replacement policy was found to yield mixed results. On
the NLANR-trace, with a low locality of reference, the estimator used for the
access probability (reference count) is not accurate enough. This is because
is is reset every time an object is released from the cache. However, keeping
reference counts for all objects ever seen by a cache would simply consume
too much memory.

As the cache size grows, the estimator becomes better and the results
improve. If the traffic seen by a very small cache had only a low locality of
reference, it might be useful to include other parameters, such as the last
reference time, to the access probability estimator.

In the other two traces the higher locality of reference results in a better
estimate of the relative popularities of the objects. Therefore, the perfor-
mance of the optimal replacement policy improves greatly.

To make the optimal policy to make recoding decisions, the incoming
traffic must consist of soft accesses. If this is not the case, the policy degrades
into a normal, hard replacement policy. Because no modern browser allows
user to set soft access preferences, all accesses in logfiles are hard accesses.
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In the simulations this problem was circumvented by simulating the soft
accesses by adjusting the reference count of the object. The choices made
to simulate the soft accesses are discussed below.

9.4 Choice of Parameters

In a soft caching system there is a certain number of choices that must be
made regarding the internal behavior of the system. These choices concern
the number of recoding levels and how to treat recoded objects.

Every layered object type has a certain number of layers. Naturally,
the cache could follow the internal structure of each object, but this would
complicate the treatment of objects since each object type would have to be
treated differently. This would create a need for additional processing time
at the cache, which in a busy cache could be too much to ask.

If the cache treats each object as having a logical structure, each object is
treated in the exact same way, thus speeding up the decision-making process.
The actual mapping from the logical structure to the real physical layout
of the object can be made in a separate process handling the details of the
recoding. This is the approach of the current soft caching implementation.

It was found to be more advantageous to have more layers in the logical
structure than less layers. However, if an object has a certain number of
layers, like 4 in interlaced GIF, it is very hard to treat such objects as
logically having more layers than they really do. This needs to be taken
into consideration when choosing the logical structure for objects.

Normal, hard replacement policies cannot handle recoded objects be-
cause they treat objects as immutable. Therefore they need modifications
in order to avoid undesirable effects when handling recoded objects. In
LRU-based policies, the objects access time has to be modified, because
otherwise the same object would get chosen for removal again and again. A
strategy that uses the number of layers still left in the object was found to
have a better performance than a strategy that simply sets the access time
to current time.

This is because the latter strategy prolongs the object’s lifetime in the
cache more, and if the object is not referenced again, it is taking up space
uselessly in the cache. The linear strategy does not favor heavily recoded
objects that much, and therefore if the object is not referenced, it gets
removed faster.

As far as the Size-policies and the optimal replacement policy are con-
cerned, only one type of modification was studied. The performance of
both of the modifications was found to be good, yet, the effects of different
modifications should be studied in more detail.

The choice for the simulated soft accesses needs to be weighed carefully.
In the absence of real data on user preferences for different resolutions, an
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educated guess is called for. The choice used, to add 0.1 to the reference
count, does increase the priority of the object, but does not completely throw
off the normal probability estimates.

9.5 Savings on Download Time

The savings on average download time were not found to be very different
from one replacement policy to another. The main reason behind this, is
that the measured value includes the time needed to fetch an object from
the origin server when the object is referenced the first time. This time is
always spent, regardless of the replacement policy.

Another aspect of the download time is that the measured times reflect
the time it would take to download the object to the proxy from which the
trace originates. To this value should be added the time it would take to
transmit the object to the client.

Using the values of the average object size from tables 7.1, the download
times from the proxy to client on different link speeds for the USC-trace are
shown in table 9.1.

Speed (kbps) | Time (sec)
14.4 5.3
28.8 2.6
33.6 2.2
56.7 1.3
T1 0.05

Table 9.1: Download time of average object on different links

From table 7.2 on page 41, the download time for a no-cache situation is
2.4 seconds. Therefore, for speeds less than 33.6 kbps, caching can do very
little to help reduce the download time.

Even though in theory, no gains in download time seem possible, the
reality is different. Because the network can be congested, some packets can
be lost along the way. If the packets are going straight to the client behind a
slow connection, it takes a longer time to discover that a loss has occurred.

A cache on the other end of the dial-up link acts as a buffer for changes
in network since it can react faster to congestion-related losses. Then the
cache can send the object as a whole over the dial-up link, where congestion
does not cause a problem.

If the soft cache is situated at the client behind a dial-up link, a cache
should therefore be used on the other end of the link for the above reason.
As far as the soft cache in this setup is concerned, all advantages on hit-rate
and byte hit-rate will translate into gains on download time. This is because
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if an object is found in the local cache, it does not need to be transmitted
over the slow link, therefore resulting in large gains on download time.

9.6 JPEG

The advantages of the JPEG-format concerning recoding were presented in
chapter 5. The biggest advantage is that the standard defines a progres-
sive mode of encoding and that this mode is widely supported in modern
programs.

The way the information is packed into the progressive mode makes
it possible to recode images quite heavily while still retaining most of the
original quality.

Because of the way the widely used IJG-library implementation of pro-
gressive JPEG spreads the information into 10 layers, the implementor of a
soft caching system is left with a great latitude in choosing the right number
of layers to use inside the cache.

9.7 Future Work

Possible directions for future work in soft caching include:

e Better estimates for soft accesses.
Currently the value 0.1 used in simulating the soft accesses with the
optimal replacement policy is completely arbitrary and not based on
any hard facts. To get accurate data on possible parameter values,
a more complete implementation of a soft caching system is needed.
The current implementation treats only hard accesses.

e Implement soft access.
In connection with the previous point, browsers should be upgraded
to use soft access where applicable. The simplest way would be to
simply make a request to a part of the object if the object looks like
a progressive, recodable object.

e Study recoding of other objects.
Currently, only JPEGs are being recoded in the real implementation.
Most of the simulations were based on the assumption that also GIF's
are recodable. The most promising candidates for recoding are video
objects and other image formats, such as GIFs and PNGs.

e Modify a client to do soft caching.
Because of the large gains in small caches observed in the simulations,
recoding should be implemented at a client to take full advantage of
these possibilities. In addition, given the processor capacities installed
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in modern client machines, recoding would be a very light operation
on such machines.

9.8 Summary

The results from the simulations were explored deeper in this chapter. The
causes and effects of different parameters and network setups were consid-
ered.

The average download time was found to be much shorter than the time
it would take to transmit the average object over typical modem links. The
only advantage a cache can present in this situation is acting as a buffer
between the client and the network.



Chapter 10

Conclusion

This thesis has investigated soft caching. Soft caching differs from traditional
caching in that in a soft caching system objects can be recoded. Recoding is
an operation where information is removed from an object. If the object is a
layered object which can sustain information loss, e.g. a progressive JPEG-
image, the act of removing a layer of information is usually not visible to a
viewer.

Standard cache replacement algorithms must be modified in order to
make them take advantage of recoding and layered objects. These modi-
fications are simple and are aimed at adjusting the replacement criterion
(access time, size, etc.) to factor in the effects of recoding.

The JPEG-format is well suited for soft caching since it includes a pro-
gressive mode of encoding. The progressive mode has a great potential of
recoding savings, since a lot of the bits are dedicated to visually unimpor-
tant information. Also, progressive JPEG-images tend to be smaller in size
than the corresponding sequential JPEG-images.

Different cache replacement algorithms were studied in simulations using
actual traces from proxy caches. The algorithms studied were Least Recently
Used and Size. These were modified to accommodate soft caching and two
recoding strategies, second chance and full recoding, were used.

The results show that a cache implementing soft caching performs better
in most situations under all the three metrics, hit-rate, byte hit-rate and
average download time. Using the Size-policy, the potential for gains is
much greater because recoding helps keep large objects in the cache, objects
which would otherwise be removed.

Using second chance recoding, the performance was slightly better than
with the normal algorithm, but inferior to that of the full recoding algo-
rithm. A specialized soft caching algorithm designed to minimize the aver-
age download time was also studied and it was found to be among the top
performers.

The biggest relative gains were obtained in very small caches which cor-
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respond to typical client cache sizes. It would therefore be advantageous to
implement soft caching at the client in order to fully maximize the benefits
of caching.

Given that both of the normal replacement policies studied, LRU and
Size, present advantages in soft caching, even better results could be ob-
tained by combining these two with the optimal replacement policy. This
matter is, however, left for further study.
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Appendix A

Glossary

ATFF': Audio Interchange File Format

BHR: Byte hit-rate

CGI: Common Gateway Interface

DCT: Discrete Cosine Transform

DNS: Domain Name Service

DPCM: Differential Pulse Code Modulation
EZW: Embedded Zero-tree of Wavelet coefficients
FOLDOGC: Free On-Line Dictionary of Computing
FTP: File Transfer Protocol

GIF: Graphics Interchange Format

GVU: Graphics, Visualization & Usability Center
HR: Hit-rate

HTML: Hypertext Markup Language

HTTP: Hypertext Transfer Protocol

IP: Internet Protocol

ISP: Internet Service Provider

JPEG: Joint Photographic Expert Group

LRU: Least Recently Used

LZW: Lempel-Ziv Welch compression

MBone: [P Multicast Backbone

MIME: Multipurpose Internet Mail Extensions
MP3: MPEG Audio Layer 3

MPEG: Moving Picture Experts Group

NCSA: National Center for Supercomputing Applications
NLANR: National Laboratory for Applied Network Research
NSF: National Science Foundation

PC: Personal Computer

PDA: Personal Digital Assistant

PNG: Portable Network Graphics

SIPI: Signal and Image Processing Institute
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TCP: Transport Control Protocol
URL: Uniform Resource Locator
UDP: User Datagram Protocol

USC: University of Southern California
WWW: World Wide Web
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Appendix B

Simulator

The simulator used in the experiments in chapter 7 is written in Perl using
Perl’s object oriented facilities. It was developed under Solaris, but being
written in Perl, it can be run in any environment where Perl is available.
The simulations were conducted under Solaris, Linux and Windows NT.

The simulator implements a Squid-like cache where the cache is filled
up until a configurable high-water mark is reached. When this happens,
the cache is emptied until the space used is below a configurable low-water
mark. By default the high- and low-water marks are the same as in Squid,
i.e. 95 % and 90 %, respectively, but they can be modified by command line
options.

The simulator implements a wealth of different hard and soft caching
schemes to make it easy to study the effects of different parameters. Re-
placement and refreshment policies, number of recoding levels, user models,
etc. are fully configurable from an extensive set of options and new ones can
be easily added.

B.1 Cache Size

The cache size is fully configurable and determines the base value used with
the high- and low-water marks. These marks are also configurable as a
percentage of the base size. Given the way the cache operates, it should be
noted that the cache size should never reach the configured size, since it is
emptied when the amount of data in the cache hits the high-water mark.

B.2 Replacement Policies

The possible replacement policies are:

1. LRU
2. Size
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3. Optimal soft replacement policy
4. Combination of LRU and Size

All of these replacement policies exist in both normal, hard variants as
well as in recoding versions. For LRU and Size, there exists also the second
chance recoding version of the base algorithm. The last option, combination
of LRU and Size, is still under study and was therefore not used in the
experiments performed.

B.3 Refreshment Policies

As the choice for the adjustment of the object’s access time after recoding
in LRU-based policies, there are two choices:

1. Current time
2. Linear model

These models have been explained in section 7.2.5.

B.4 Recoding Levels

The number of recoding levels is fully configurable via this command line
option. It can be set to any number of levels desired.

B.5 User Model

As far as the access type is concerned, all user accesses are assumed hard
accesses. There is no option to configure soft access.

Three user models were programmed were targeted at the user’s prefer-
ences towards recoded images. These models were:

1. Accept everything
2. Reject recoded
3. Accept slightly recoded

The first user would always accept any object given, regardless of the
number of recodings performed on the object. The second user is a picky
one, refusing all recoded images. This refusal is made always when a recoded
image is presented, even if it has been recoded only once.

The last user represents the most realistic scenario. In this model, if an
object was recoded only a few times, it was accepted, and if the object had
been recoded more than a few times, it was rejected. The threshold for “a
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few” was set at a level where 60 % of the recoding levels, not bytes, were
still left in the image. For a 10-level JPEG, this would mean, that anything
with at least 6 layers left, would be accepted, less than 6 layers, and it would
be rejected.

B.6 Recoding Model

The two recoding models available are:
1. JPEG-like
2. Linear

These options are as described in section 7.2.2.

B.7 Recodable Objects

There are also three options for setting the recodable object types:
1. JPEG only
2. JPEG and GIF
3. Everything

The first two were used in the simulations. The last option is for simulat-
ing separate proxies, where a proxy would only see recodable traffic. Even
though the logfiles normally contain information about the object type, and
they could thereby be separated in advance, this option guarantees the de-
sired behavior because sometimes, the logfiles are lacking in information.

B.8 Flow of Execution

The simulator reads as input a logfile in the format produced by the Squid-
proxy. In this format, there are ten fields on each line, and these fields are
as shown in table B.1.

The simulator read the logfile line by line and decides what to do with
the object. The next line is read only when the processing has been finished
for the previous line.

When the line has been read, it is parsed and some sanity checks are
performed. These sanity checks are to verify that the request was completed
without errors in the real operation, and that the object size is below a
threshold. This threshold is hardcoded as the same as in Squid’s default, 4
megabytes. This threshold is used so that extremely large objects do not
hog the space in the cache.
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Field Content

Time stamp | Time when request was completed

Duration Duration of request in milliseconds

Client Client IP-address

Action What action the proxy took

Size Amount of data written to the client

Method What HTTP-method was used (GET, HEAD, POST,...)
URL URL requested

Ident Ident string (if enabled)

Hierarchy How the object was retrieved (direct, parent,. .. )
MIME-type | MIME-type as given by server

Table B.1: Squid logfile fields

After the request has been validated using the above checks, the exe-
cution continues. The simulator then decides what to do with the request.
This decision is shown in pseudo-code in figure B.1.

if (object in cache) {
/* Object in cache */
/* Check if (possibly recoded) object OK */
if (object accepted) {
/* Recoded object OK. Hit. */
Update statistics.
} else {
/* Recoded object not 0K. Miss. */
Retrieve missing bits.
Update statistics.
}
} else {
/* Object not in cache. Miss. */
Insert object into cache
Update statistics

if (cache size > high-water mark) {
Empty cache until cache size below low-water mark

}

Figure B.1: Pseudo-code of decision-making process

The decision-making process in figure B.1 is performed for each validated



APPENDIX B. SIMULATOR 97

request.

When all entries in the logfile have been processed, the simulator prints
out a summary of the input data, how many requests and bytes were present
as well as the statistics of the performance. These statistics include the
number of hits, hit-rate, how many bytes were found in cache, byte hit-rate,
average download time for a request, and what the average download time
would have been without the presence of caching.

These statistics are printed out with unique labels making it easy to
extract the results and compare the results from a large set of simulation
runs.



