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Abstract—The efficient distribution of stored information has become a
major concern in the Internet which has increasingly become a vehicle for
the transport of stored video. Because of the highly heterogeneous access
to the Internet, researchers and engineers have argued for layered encoded
video. In this paper we investigate delivering layered encoded video using
caches. Based on the stochastic knapsack theory we develop a model for the
layered video caching problem. We propose heuristics to determine which
videos and which layers in the videos should be cached in order to maxi-
mize the revenue from the streaming service. We evaluate the performance
of our heuristics through extensive numerical experiments. We find that
for typical scenarios, the revenue increases nearly logarithmically with the
cache size and linearly with the link bandwidth that connects the cache to
the origin servers. We also consider service models with request queuing
and negotiations about the delivered stream quality and find that both ex-
tensions provide only small revenue increases.

Keywords—Proxy Caching, Streaming Layered Video, Utility Heuristics,
Stochastic Knapsack

I. INTRODUCTION

In recent years, the efficient distribution of stored information
has become a major concern in the Internet. In the late 1990s
numerous companies – including Cisco, Microsoft, Netscape,
Inktomi, and Network Appliance – began to sell Web caching
products, enabling ISPs to deliver Web documents faster and to
reduce the amount of traffic sent to and from other ISPs. More
recently the Internet has witnessed the emergence of content dis-
tribution network companies, such as Akamai and Sandpiper,
which work directly with content providers to cache and repli-
cate the providers’ content close to the end users. In parallel
to all of this caching and content distribution activity, the Inter-
net has increasingly become a vehicle for the transport of stored
video. Many of the Web caching and content distribution com-
panies have recently announced new products for the efficient
distribution of stored video.

Access to the Internet is, of course, highly heterogeneous, and
includes 28Kbps modem connections, 64Kbps ISDN connec-
tions, shared-bandwidth cable modem connections, xDSL con-
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nections with downstream rates in the 100Kbps – 6Mbps range,
and high-speed switched Ethernet connections at 10 Mbps. Re-
searchers and engineers have therefore argued that layered en-
coded video is appropriate for the Internet. When a video is
layered encoded, the number of layers that are sent to the end
user is a function of the user’s downstream bandwidth.

An important research issue is how to efficiently distribute
stored layered video from servers (including Web servers) to
end users. As with Web content, it clearly makes sense to in-
sert intermediate caches between the servers and clients. This
will allow users to access much of the stored video content from
nearby servers, rather than accessing the video from a poten-
tially distant server. In recent years, the area of web caching has
received a great deal of attention from the research community
[1], [2]. However, as has been observed by a number of studies
[3], [4], [5], [6], there are fundamental differences between the
caching of conventional web objects (such as HTML pages and
images) and the caching of streaming media objects (such as au-
dio and video). First, streaming media objects require orders of
magnitude more storage space than conventional web objects.
This may ����� decrease the chances of streaming media objects
being cached by conventional caching mechanisms, and ���	�
� in-
crease the storage requirement at proxy caches. The emergence
of streaming media caching therefore motivates more complex
caching mechanisms. Secondly, in contrast to the (ideally) in-
stantaneous retrieval of conventional web objects, streaming
media objects are not delivered at once. Instead, streaming me-
dia objects are streamed over long durations, and thus consume
bandwidth over extended periods of time. Also, the bandwidth
consumed is typically large, especially for video. For these rea-
sons the caching mechanisms developed for conventional web
objects can not directly be applied to streaming media objects.
Instead, novel caching mechanisms that take the special prop-
erties of streaming media objects into consideration need to be
developed.

Given the presence of a caching and/or content distribution
network infrastructure, and of layered video in origin servers,
a fundamental problem is to determine which videos and which
layers in the videos should be cached. Intuitively, we will want



to cache the more popular videos, and will want to give prefer-
ence to the lower base layers rather than to the higher enhance-
ment layers.

In this paper we present a methodology for selecting which
videos and which layers should be stored at a finite-capacity
cache. The methodology could be used, for example, by a ca-
ble or ADSL access company with a cache at the root of the
distribution tree. Specifically, we suppose that the cache has
limited storage capacity and a limited bandwidth connection to
the Internet at large. For example, the ISP might have a terabyte
cache with a 45 Mbps connection to its parent ISP. Thus, the
video caching problem has two constrained resources, the cache
size and the transmission rate of the access link between the ISP
and its parent ISP. Our methodology is based on a stochastic
knapsack model (which we briefly review in Appendix I) of the
2–resource problem. We suppose that the cache operator has a
good estimate of the popularities of the the video layers. The
problem, in essence, is to determine which videos and which
layers within the video should be cached so that customer de-
mand can best be met.

Our main contributions are two-fold. First, we formulate a
stochastic knapsack model for the caching and streaming of lay-
ered encoded video. With the developed model we can effi-
ciently calculate the expected blocking probability of a stream-
ing request and the long run revenue rate as a function of the
cached video layers. Secondly, we study the problem of caching
video layers so as to maximize the revenue subject to given link
bandwidth and cache space constraints. We develop and evalu-
ate efficient and accurate heuristics that, given an estimate of the
stream popularities, select the video layers that should be cached
in order to maximize the revenue rate. Our extensive numerical
investigations indicate that for typical scenarios the revenue rate
increases logarithmically with the cache space and linearly with
the link bandwidth connecting the cache to the origin servers.
Thus, when there is a shortage of both resources (cache space
and link bandwidth) it is beneficial to increase the cache space
before increasing the link bandwidth.

To make our model tractable we make the following simplify-
ing assumptions. We assume that only complete layers of video
objects are cached in the proxy, i.e., we do not consider the
caching of partial segments of a layer. We assume that the per-
formance of the cache is constrained by its storage capacity (i.e.,
cache space); we do not consider the access bandwidth of the
proxy storage (e.g., disc access speed) as a bottleneck. We fur-
thermore assume that the bandwidth bottleneck is the link con-
necting the cache to the origin servers; we assume that clients
choose the appropriate number of encoding layers for their In-
ternet access speed (such that the client’s local access network
is not bottleneck).

This paper is organized as follows. In Section II we present
our layered video streaming model. In Section III we present
our utility heuristics and evaluate their performance. Section IV
extends our caching model by adding the possibility to negotiate
the delivered stream quality. Section V considers a queueing
scheme for managing client requests. Section VI considers the
usefulness of partial caching. Section VII presents an overview
of related work and Section VIII concludes the paper.

Fig. 1. Architecture for caching and streaming of layered encoded video.

II. MODEL OF LAYERED VIDEO STREAMING WITH PROXY

Fig. 1 illustrates our architecture for continuous media
streaming with proxy servers. We first give a rough overview of
our streaming architecture and then discuss each component in
detail. All available continuous media objects are stored on the
origin servers. Popular streams are cached in proxy servers. The
clients direct their streaming requests to the appropriate proxy
server. If the requested stream is cached in the proxy, it is di-
rectly streamed over the local access network to the client. If
the requested stream is not cached in the proxy, it is streamed
from the origin server over the wide area network (modeled as a
bottleneck link of capacity � ) to the proxy. The proxy forwards
the stream to the client.

A. Layered Video

The continuous media objects available on the origin servers
are prerecorded audio and video objects, such as CD–quality
music clips, short video clips (e.g., news clips, trailers or mu-
sic videos) or full–length movies or on–line lectures. Our focus
in this study is on video objects that have been encoded using
layered (hierarchical) encoding techniques [7], [8], [9], [10].
With hierarchical encoding each video object is encoded into
a base layer and one or more enhancement layers. The base
layer contains the most essential basic quality information. The
enhancement layers provide quality enhancements. A particu-
lar enhancement layer can only be decoded if all lower quality
layers are available. Therefore, an enhancement layer is useless
for the client if the corresponding lower quality layers are not
available.

Layered video allows service providers to offer flexible
streaming services to clients with vastly different reception
bandwidths and decoding capabilities. Typically, wireless
clients and clients with modem–speed wireline Internet access
will request only the base layer stream. Clients with high–
speed ADSL or cable modem access, on the other hand, may
wish to receive higher quality streams consisting of base layer
as well enhancement layers. Furthermore, layered video allows
for flexible pricing structures. A service provider may offer the
base layer stream at a basic rate and charge a premium for the
enhancement layers. In other words, clients are charged more



when receiving more layers (i.e., higher quality streams). Such
a pricing structure might prompt clients to request the cheaper
base layer–only stream of a news clip or talk show, say, while
requesting the more expensive high quality stream of an enter-
tainment movie.

To make the notion of layered video objects more precise,
suppose that there are � video objects. Let 
���������� �� ����������� , denote the length (in seconds) of video object � . Let� ����������� � ����������� , denote the number of video frames in
video object � . (For a typical fixed frame rate of 25 frames
per second, we have

� ����� �!
"������# 25 frames/sec.) We as-
sume that the video objects are encoded into $ layers. (Our
model extends to video objects that differ in the number of lay-
ers in a straightforward manner.) Video is typically encoded (1)
without rate control (i.e., open-loop), which results in constant
video quality but highly variable traffic (bit rate), or (2) with
rate control (i.e., closed-loop), which results in some variations
in the video quality but nearly constant bit rate traffic [11], [12].
Video traffic smoothing techniques, e.g., [13], are expected to
be widely employed for the streaming of stored (prerecorded)
video. (Note that all videos distributed through caches are pre-
recorded.) These smoothing techniques can (1) significantly re-
duce the traffic variability of open–loop encodings, or (2) fur-
ther smooth the traffic of closed–loop encodings. It is also ex-
pected that for layered encoding, rate control will typically be
employed for most (if not all) layers [7]. Thus, the encoding
layers distributed through caches are expected to have typically
a constant bitrate or a variable bitrate with small variations. Nev-
ertheless, we outline how to accommodate ����� constant bit rate
(CBR) video traffic, ���%��� variable bit rate (VBR) video traffic
with small to moderate variability, as well as ���	�	��� highly vari-
able VBR video traffic in our model. Let &('��*)��+��� denote the
size (in bit) of the video frame ,��-,�� � ��������� � ����� , of layer)���).� � ���������/$ , of video object �0�1��� � ����������� . For CBR
traffic the frame sizes are constant, i.e., & ' �*)��/���2�3&4�*)��/��� for
all ,5� � ��������� � ����� . For the case of CBR traffic, let 687+�����
denote the constant bit rate (in bit/sec) of layer ) of video object� . (With a typical fixed frame rate of 25 frames per second, we
have 6 7 �9&4��)+�+����# 25 frames/sec.) For VBR traffic the frame
sizes &:'���)+�+��� vary over time , . For the case of VBR traffic
with small or moderate variability, let 687+����� denote the (addi-
tive) effective bandwidth [14], [15], [16], [17], [18] of layer )
of video object � . The additive effective bandwidth 6 7 ����� can
be obtained in a straight forward manner from the frame sizes&:'���)+�+�����;,"� � ������� � ����� , a limit < on the probability of loss
(i.e., buffer overflow, or equivalently delay bound violation) at
the bottleneck link (e.g., typically <5� �8=?>A@

), and the size of
the buffer in front of the bottleneck link. The additive effec-
tive bandwidth does not depend on the other streams sharing the
bottleneck link. The additive effective bandwidth approach is
typically accurate for traffic with small to moderate variability
(and large link buffers). For highly variable traffic (and/or small
link buffers) the additive effective bandwidth approach may be
overly conservative (and result in overprovisioning of link band-
width). In Appendix II we give a method for efficiently accom-
modating highly variable VBR traffic in our model. We define aB
–quality stream as a stream consisting of layers

� ��CD��������� B . LetE � B �+��� denote the revenue accrued from providing a
B
–quality

stream of object � .

B. Proxy Server

The proxy server is located close to the clients. It is con-
nected to the origin servers via a wide area network (e.g., the
Internet). We model the bandwidth available for streaming con-
tinuous media from the origin servers to the proxy server as a
bottleneck link of fixed capacity � (bit/sec). The proxy is con-
nected to the clients via a local access network. The local access
network could be a LAN running over Ethernet, or a residential
access network using xDSL or HFC technologies. We assume
that each client selects the stream quality (i.e., the number of
encoding layers) according to the speed that can be accommo-
dated by its Internet access network. In other words, each client
makes sure that its Internet access speed is sufficient to support
the requested stream quality (such that the local access network
is not a bottleneck). We model the proxy server as having a stor-
age capacity of F (bytes). We assume that the proxy’s storage
bandwidth (for reading from storage) is not a bottleneck. We
note that the proxy storage is typically a disk array with limited
storage bandwidth due to the limited disk bandwidths and seek
and rotational overheads. Our focus in this study, however, is on
gaining a fundamental understanding of the impact of the two
basic streaming resources (bottleneck bandwidth � and cache
space F ) on the proxy performance. We refer the interested
reader to [5], [19], [20] for a detailed discussion of the disk ar-
ray limitations as well as discussions on replication and striping
techniques to mitigate these limitations.

We consider a caching scenario where the cache contents are
updated periodically, say every few hours, daily, or weekly. The
periodic cache updates are based on estimates of the request pat-
tern of the proxy’s client community. A service provider may
estimate the request pattern from observations over the last cou-
ple of hours, days, or weeks. The periodic cache update policy
is motivated by two important findings about the typical client
request pattern for streaming media [4]: (1) Objects that are re-
quested by more than one client are typically requested by many
clients and thus account for a large fraction of the streaming
traffic. (2) Many objects (roughly 84% in the workloads studied
in [4]) are requested only once, i.e., are so–called one–timers.
Given the large size of the video objects and the need to utilize
the cache space efficiently, a sensible caching strategy avoids
one–timers and instead tries to fill the cache with objects that
are requested multiple times. The periodic cache update policy
strives to achieve this by basing caching decisions on the request
pattern observed over the recent past.

Suppose that the requests for video streams arrive according
to a Poisson process with rate G (requests/sec). Let HI� B �/��� de-
note the popularity of the

B
–quality stream of object � , that

is, HI� B �/��� is the probability that a request is for the
B
–quality

stream of object � . These popularities could be estimated from
the observed requests using an exponential weighted moving av-
erage. As a proper probability mass distribution the HI� B �+��� ’s
satisfy JLKM;NIO JQPR NIO HS� B �+����� �

. Also, note that the arrival
rate of requests for the

B
–quality stream of object � is given byGTHI� B �/��� .

Our focus in this study is on caching strategies that cache
complete layers of video objects in the proxy. Our goal is to



cache object layers so as to maximize the revenue accrued from
the streaming service. When updating the cache our heuristics
give layers of very popular objects priority over layers of moder-
ately popular objects. Moreover, lower quality layers are given
priority over higher quality layers (as these require the lower
quality layers for decoding at the clients).

To keep track of the cached object layers we introduce a vec-
tor of cache indicators c �U��V O �/V�WT����������V K � , with

=YX V M X $
for �Z� � ����������� . The indicator V M is set to � if layers 1
through � of object � are cached. Note that V M � = indicates
that no layer of object � is cached. With the cache indicator
notation the cache space occupied by the cached object layers is
given by

[ � c �1� K\M;NIO ]	^\ 7 NIO
_a` M;b\ ' NIO &:'���)��/����� (1)

C. Stream Delivery

The client directs its request for a
B
–quality stream of a video

object � to its proxy server (for instance by using the Real Time
Streaming Protocol (RTSP) [21]). If all the requested layers are
cached in the proxy ( V Mdc B ), the requested layers are streamed
from the proxy over the local access network to the client. If
layers are missing in the proxy �*V Mfe B � , the proxy attempts
to establish a connection to the appropriate origin server for the
streaming of the missing layers V Mhg � ��������� B over the bottle-
neck link. The proxy relays these layers to the client in addi-
tion to the layers streamed from the cache. In the remainder
of this section we focus on the cases of CBR layers and VBR
layers with small or moderate variability, which are modeled
using the additive effective bandwidth approach. (For the case
of highly variable VBR layers, we refer the reader to Appendix
II.) If there is sufficient bandwidth available on the bottleneck
link, the connection is established and the stream occupies the
link bandwidth J R 7 Ni]	^kjSO 6 7 ����� over the lifetime of the stream.
(The layers

� ���������/V M are streamed from the proxy directly to
the client.) We assume that the client watches the entire stream
without interruptions, thus the bandwidth J R 7 Ni]	^kjSO 6�7+����� is oc-
cupied for 
������ seconds. In the case there is not sufficient
bandwidth available on the bottleneck link, we consider the re-
quest as blocked. (In Section IV we study a refined model where
clients may settle for a lower quality stream in case their original
request is blocked.)

Formally, let l c � B �/��� denote the blocking probability of the
request for a

B
–quality stream of object � , given the cache con-

figuration c. Clearly, there is no blocking when all requested
layers are cached, that is, l c � B �+���L� =

for V M c B
. If

the request requires the streaming of layers over the bottleneck
link ( V Mme B ), blocking occurs with a non–zero probabilityl c � B �+��� . We calculate the blocking probabilities l c � B �+��� us-
ing results from the analysis of multiservice loss models [22].
An overview of the relevant loss modeling is provided in Ap-
pendix I. In summary, we model the bottleneck link as a stochas-
tic knapsack of capacity � . Requests for

B
–quality streams

(
B � � ���������/$ ) of object �0�a�n� � ����������� are modeled as

a distinct class of requests, thus there is a total of �o$ distinct
classes of requests. The load offered by requests for

B
–quality

streams of object � is GTHI� B �/����
"����� . The blocking probabili-
ties l c � B �/��� for the request classes can be calculated using the
recursive Kaufman–Roberts algorithm [22, p. 23] with a time
complexity of p �%�q�o$�� . The expected blocking probability of
a client’s request is given by

lY� c �1� K\M;NIO P\R NIO HI� B �+����l c � B �/�����
The service provider should strive to keep the expected blocking
probability acceptably small, say, less than 5%. The through-
put of requests for

B
–quality streams of object � , that is, the

long run rate at which these requests are granted and serviced isGTHI� B �/����� �sr l c � B �+���+� . The long run rate of revenue accrued
from the serviced

B
–quality streams of object � is the revenue

per served request,
E � B �/��� , multiplied by the throughput. Thus,

the long run total rate of revenue of the streaming service isE � c �1�tG K\M;NIO P\R NIO E � B �+���uHS� B �+����� �-r l c � B �+���+��� (2)

Our goal is to cache object layers so as to maximize the total
revenue rate.

III. OPTIMAL CACHING

In this section we study optimal caching strategies. Suppose
that the stream popularities (HI� B �/��� ) and the stream character-
istics (layer rates 6 7 ����� and lengths 
"����� ) are given. The ques-
tion we address is how to best utilize the streaming resources
— bottleneck bandwidth � and cache space F — in order to
maximize the revenue. Our focus in this study is on optimal
caching strategies, that is, we focus on the question: which ob-
jects and which layers thereof should be cached in order to max-
imize the revenue? Formally, we study the optimization prob-
lem v�wyx c E � c � subject to

[ � c � X F . Throughout this study
we assume the complete sharing admission policy for the bot-
tleneck link, that is, a connection is always admitted when there
is sufficient bandwidth. We note that complete sharing is not
necessarily the optimal admission policy. In fact, the optimal
admission policy may block a request (even when there is suffi-
cient bandwidth) to save bandwidth for more profitable requests
arriving later. We refer the interested reader to [22, Ch. 4] for a
detailed discussion on optimal admission policies. Our focus in
this study is on the impact of the caching policy on the revenue;
we assume complete sharing as a baseline admission policy that
is simple to describe and administer.

The maximization of the long run revenue rate
E � c � over all

possible caching strategies (i.e., cache configurations c) is a dif-
ficult stochastic optimization problem, that — to the best of our
knowledge— is analytically intractable. To illustrate the prob-
lem consider a scenario where all video layers have the same
rate 6 and length 
 , i.e., 6 7 �����z�{6 and 
"�����z�|
 for all)s� � ����������$ , and all �}� � ����������� . In this scenario all ob-
ject layers have the size 6:
 . Thus, we can cache up to F"~���68
s�
object layers (which we assume to be an integer for simplicity).
Suppose that during the observation period used to estimate the
stream popularities, the proxy has recorded requests for � dis-
tinct objects from its client community. Thus, there are a to-
tal of �o$ object layers to choose from when filling the cache



TABLE I
UTILITY DEFINITIONS.

Popularity utility �A7�� M � J PR N 7 HI� B �+���
Revenue utility � 7u� M � JtPR N 7 E � B �+���uHS� B �+���
Revenue density utility �A7�� M � JQPR N 7�� ` R � M.b�� ` R � M;b�
� ` M.b�� ` M;b

(with “hot” new releases there might even be more objects to
consider). Typically, the cache can accommodate only a small
subset of the available object layers, i.e., F"~���6:
a�2�}�o$ . For

an exhaustive search there are � �o$F"~���6:
a�5� possibilities to fill

the cache completely; a prohibitively large search space even for
small �o$ .

Recall that with layered encoded video a particular enhance-
ment layer can only be decoded if all lower quality layers are
available. Therefore, a reasonable restriction of the search space
is to consider a particular enhancement layer for caching only if
all lower quality layers of the corresponding object are cached.
Even the “reasonable” search space, however, is prohibitively
large for moderate �o$ ; with � = 50, $ = 2, F"~���6:
a� = 20,
for instance, there are C�� ��CT��# �8= O+@ possibilities to fill the cache
completely.

Because the maximization problem v w(x c
E � c � subject to[ � c � X F is analytically intractable and exhaustive searches

over c are prohibitive for realistic problems, we propose heuris-
tics for finding the optimal cache composition c.

A. Utility Heuristics

The basic idea of our utility heuristics is to assign each of
the �o$ object layers a cache utility ��7u� M ��)�� � ����������$-�1�|�� ����������� . The object layers are then cached in decreasing order
of utility, that is, first we cache the object layer with the highest
utility, then the object layer with the next highest utility, and
so on. If at some point (as the cache fills up) the object layer
with the next highest utility does not fit into the remaining cache
space, we skip this object layer and try to cache the object layer
with the next highest utility. Once a layer of an object has been
skipped, all other layers of this object are ignored as we continue
“packing” the cache. We propose a number of definitions of the
utility � 7�� M of an object layer; see Table I for an overview.

The popularity utility is based exclusively on the stream pop-
ularities; it is defined by ��7u� M ��HS��)��/��� g HS��) g � �+��� g #�#�# gHI�*$-�/��� . This definition is based on the decoding constraint
of layered encoded video, that is, an object layer ) is required
(i.e., has utility) for providing ) –quality streams (consisting of
layers 1 through ) ), �*) g � � –quality streams, ����� , and $ –quality
streams. Note that ��7u� M is the probability that a request involves
the streaming of layer ) of object � . Also, note that by defini-
tion � 7u� MUc � 7 jIO � M for )�� � ���������/$ r�� . This, in conjunction
with our packing strategy ensures that a particular enhancement
layer is cached only if all corresponding lower quality layers are
cached.

B. Evaluation of Heuristics

In this section we present some numerical results from ex-
periments to evaluate various aspects of the heuristics algo-
rithms. We ran two different types of experiments. The bulk
of the experiments was carried out analytically, by calculating
the revenue according to equation (2) and calculating the block-
ing probabilities as described in Appendix I. All of the results
presented in this section are obtained in this fashion. We refer
to these experiments as analytical experiments.

We also implemented a cache simulator, in order to study the
queuing of requests and partial caching. These results are pre-
sented in Sections IV, V, and VI. We refer to these experiments
as simulation experiments.

We assume that there are � = 1000 different videos, each en-
coded into $ = 2 constant bit rate layers. The characteristics of
each video are defined by the rate for each layer and its length.
The rate for each layer is drawn randomly from a uniform distri-
bution between 0.1 and 3 Mbps, while the length of the video is
drawn from an exponential distribution with an average length
of �
 = 3600 seconds.

In all of our experiments client requests arrive according to
a Poisson process. The average request arrival rate is G���Q~��*�"#;�
2�s� ��= � � requests per second. The client can request
either a base layer only or a complete video (consisting of base
layer and enhancement layer). The request type and the video
requested are drawn randomly from a Zipf distribution with a
parameter of ��� � � = . The revenue for each video layer is uni-
formly distributed between 1 to 10 to reflect a flexible pricing
structure.

The results of interest will be the revenue per hour and the
blocking probabilities. To obtain the results with 99% confi-
dence intervals, we run the experiments with different random
seeds and we require a minimum of 10000 runs before calcu-
lating the confidence intervals. In each run we randomly assign
the popularities of videos from the Zipf distribution, the rates
and the lengths of the video layers. The results are calculated as
the average value of the revenue per hour from all the runs until
the confidence intervals are reached.

We first tested the performance of our heuristics in small
problems in order to be able to compare the heuristics against
the “reasonable” exhaustive search. For the small problems we
set ��� �8= with each video having two constant bit rate layers.
We varied the link bandwidth � between 3 and 15 Mbit/s and
the cache capacity between 3 and 7 Gbytes. The cache could
therefore store on the average between 3.5 and 7.6 layers out of
the total 20 layers, or between 23.1 and 41.7% of the total video
data.

The results of the small problems are shown in Table II. In
Table II we show the average error obtained with each heuristic
compared to the “reasonable” exhaustive search for four differ-
ent cache configurations. The Small Link and Large Link refer
to link capacities of 3 Mbit/s and 15 Mbit/s, respectively, and
Small Cache and Large Cache refer to 3 Gbyte and 7 Gbyte
caches, respectively.

As we can see, our heuristics achieve performance very close
to the optimum in most cases. Only when both the link and the
cache are small is there any marked difference in performance.
This is largely due to the small link capacity, only 3 Mbit/s,



TABLE II
AVERAGE ERROR OF HEURISTICS IN SMALL PROBLEMS

Small Link Large Link
Utility heuristic Small Cache Large Cache Small Cache Large Cache
Popularity 1.6% 2.4% 0.006% 0%
Revenue 2.8% 0.4% 0.1% 0%
Revenue density 0.3% 0.3% 0.1% 0%
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Fig. 2. Revenue as function of link capacity for 3 different cache sizes

which allows us to stream only one video on the average. As
both the link and cache grow in size, we can achieve essentially
the same performance as the optimal caching strategy.

To test the performance of our heuristics in real-world size
problems, we ran the heuristics for 1000 videos. We varied
the cache size between 12 and 560 Gbytes. The cache could
therefore hold on the average between 13.9 and 625 layers,
or between 0.9 and 41.7% of the total video data. Given the
average length of a video 
i����� , the average rate of a video6 ����� , and the client request rate G , we would need on the aver-
age 
 ����� 6 ����� G Mbit/s of bandwidth to stream all the requested
videos. We varied the link capacity between 10 and 150 Mbit/s,
or between 1 and 15% of the total bandwidth required.

Because running the exhaustive search was not feasible for
problems this large, we approximated the best possible perfor-
mance by calculating the revenue when the blocking probability
was zero. This means that all client requests are always satisfied
and it provides us with an upper limit on the achievable revenue.
In reality, this upper limit is not reachable unless the link and
cache capacities are sufficiently large to ensure that no client
requests are ever blocked. In our tests the smallest observed
blocking probabilities were around 0.005%.

In Fig. 2 we show the revenue relative to the no blocking case
obtained with 3 different cache sizes as a function of the link
capacity. We can see that the revenue density heuristic performs
the best overall and that the performance difference is biggest
when the link capacity is small. As the link capacity increases,
the performance difference disappears. We also see that the pop-
ularity heuristic has the worst overall performance.

In Fig. 3 we show the revenue obtained with 2 different link
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Fig. 3. Revenue as function of cache size for 2 different link capacities

capacities as a function of the cache size. Here the difference
between revenue density heuristic and the others is clearer. For
example, with a 1% link and a 20% cache (10 Mbit/s link and
a cache of 250 Gbytes in our case), revenue density heuris-
tic achieves 87% of the upper limit while the revenue heuristic
achieves only 79%. Again, as in Fig. 2, when we have enough
link and cache capacity, the difference between the heuristics
disappears. To illustrate the tight confidence intervals we ob-
served, we plot the revenue density heuristic in the 1% link case
with the 99% confidence intervals.

Overall, we can conclude that the revenue density utility
heuristic has the best performance of the three heuristics studied.
This is especially true in situations where we have a shortage of
one of the resources, link capacity or cache size. This implies
that the revenue density heuristic predicts the usefulness of a
layer more accurately than the other two heuristics.

In Fig. 4 we show the revenue obtained with the revenue den-
sity heuristic as a function of both link capacity and cache size.
We observe that if we have a shortage of both resources, we
should first increase the cache before increasing the link ca-
pacity. We see that when the cache size is around 20% of the
total video data (250 Gbytes in our case), further increases in
the cache size provides only small gains in revenue. At this
point, increasing the link capacity provides larger gains in rev-
enue. This behavior can also be observed in Figs. 2 and 3 where
we can see that the revenue increases roughly linearly with the
link capacity and roughly logarithmically with the cache size.

In Fig. 5 we show the expected blocking probability for the
revenue density heuristic. Note that the plot shows

��r l5� c �
and smallest expected blocking probability is therefore obtained
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Fig. 4. Revenue as function of cache size and link capacity
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when the curve is close to 1. This plot reflects the typical block-
ing probabilities we obtained in all of our experiments, includ-
ing the experiments in Sections IV, V, and VI.

We also studied the effects of varying the parameter � in the
Zipf-distribution and varying the client request rate, G . Previous
studies in Web caching and server access dynamics have found
that � can vary from 0.6 in Web proxies [23] up to 1.4 in pop-
ular Web servers [24]. We studied four different values of � ,
namely 0.6, 0.8, 1.0, and 1.3. In Fig. 6 we show the revenue ob-
tained with each of the four parameter values for three different
link capacities as a function of the cache size (using the revenue
density heuristic). We can see that the curves corresponding to
one value of � are close together and that there is a significant
difference in groups of curves belonging to different values of � .
This implies that a decrease in � (videos become more equally
popular) requires significant increases in link capacity and cache
size to keep the revenue at the same level. On the other hand,
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Fig. 6. Effect of Zipf-parameter ¢ on revenue

should � increase (small number of videos become very pop-
ular), we can achieve the same revenue with considerably less
resources.

In Fig. 7 we show the effects of varying the client request rate.
We plot curves for a low request rate ( G = 3.6 requests/sec), a
medium request rate ( G = 10.8 requests/sec), and a high request
rate ( G = 18 requests/sec) for two different link capacities (using
the revenue density heuristic). The curves for “Low G at 6%
link” and “Medium G at 10% link” fall on top of each other. We
can clearly see that the client request rate has much less effect
on the revenue than the Zipf-parameter. In some cases, it is
possible to counter the changes in request rate by increasing the
link capacity or cache size. For example, if the request rate goes
from Low to Medium, increasing the link capacity from 6% to
10% (60 Mbit/s to 100 Mbit/s in this case) keeps the relative
revenue the same.

In conclusion, all three of our heuristics perform well un-
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der many different link and cache size combinations. The rev-
enue density heuristic achieves the best performance under con-
strained conditions.

IV. NEGOTIATION ABOUT STREAM QUALITY

In this section we study a negotiation scheme where in case
the client’s original request is blocked, the service provider tries
to offer a lower quality stream of the requested object. The client
may then settle for this lower quality stream. The question we
address is: how much additional revenue is incurred with this
“negotiation.” As we shall demonstrate, this intuitively quite
appealing approach adds very little to the revenue in most situ-
ations. For simplicity we focus in this section on video objects
that are encoded into $ = 2 layers: a base layer and one en-
hancement layer. (Our arguments extend to the case of more
encoding layers in a straightforward manner.) Suppose that a
client requests a 2–quality stream (consisting of base layer and
enhancement layer) of object � . Suppose that the cache config-
uration is given by c. Clearly, the original request can only be
blocked if not all requested layers are cached, that is, if V M e C .
If the client’s original request for a 2–quality stream of object� is blocked the service provider tries to offer a 1–quality (i.e.,
base layer) stream of the object. The service provider is able to
make this offer if the base layer stream is not blocked.

Note that the negotiations increase the arrival rates of requests
for base layer streams. This is because the blocked 2–quality
stream requests “reappear” as base layer stream requests. With
negotiations the arrival rates of base layer stream requests de-
pend on the blocking probabilities of 2–quality stream requests,
that is, the system becomes a generalized stochastic knapsack
[22, Ch. 3]. Calculating the blocking probabilities of the gener-
alized stochastic knapsack, however, is quite unwieldy. There-
fore we approximate the blocking probabilities of the stream-
ing system with negotiations. In typical streaming systems the
blocking probabilities are small, typically less than 5 %. The in-
crease in the arrival rates of base layer stream requests is there-
fore relatively small. We approximate the blocking probabili-
ties of the system with negotiations by the blocking probabil-
ities of the system without negotiations. The probability that
the client’s original request for a 2–quality stream of object �
is blocked is approximately l c �%C��+��� . The probability that the
corresponding base layer stream is not blocked is approximately�kr l c � � �/��� . Suppose that the client accepts the quality degra-
dation with probability £I¤�¥
¥y����� . If the client does not accept
the offer the negotiation terminates. Thus, given that the ne-
gotiation is entered, it ends in a success (i.e., service provider
and client settle for a base layer stream) with probability � ��rl c � � �+���+��£I¤�¥
¥:����� . The long run rate (successful negotiations
per hour) at which negotiations settle for a base layer stream of
object � is GTHI�%C��/���+l c �*CD�+����� �¦r l c � � �+���+��£ ¤�¥
¥ ����� . Sup-
pose that each successful negotiation resulting in the delivery of
a base layer stream of object � incurs a revenue of

E�§�¨
© � � �/���
(which may be different from

E � � �/��� as the service provider
may offer the base layer at a discount in the negotiation). Thus,
the long run total rate of revenue incurred from successful nego-
tiations isE §�¨
© � c ���tG K\M;NIO E §�¨
© � � �+���uHS�*C��/���+l c �%C��/���� �ªr l c � � �+���+�+£ ¤�¥
¥ �������
The long run total rate of revenue of the streaming service with



negotiations is
E � c � g Ea§�¨
© � c � , where

E � c � , the revenue rate
incurred from serving first–choice requests, is given by (2).

A. Numerical Results

We experimented with adding the renegotiation revenue to
our tests. We first tested the quality of the approximation used in
calculating the blocking probability of the system with renegoti-
ation against the results obtained from our cache simulator. We
varied the link capacities between 10 to 120 Mbps. Our results
show a close approximation of the analytical experiments to the
simulation experiments with an average error of 0.4–0.5% for
the 12 Gbyte cache and 0.7–1.1% for the 560 Gbyte cache. The
results presented here are from the analytical experiments.

Fig. 8 shows how much extra revenue renegotiation could
bring relative to the baseline revenue

E � c � (using the revenue
density heuristic). The revenue in Fig. 8 is based on the assump-
tion that the client will always accept the lower quality version if
one is available, i.e., £ ¤/¥
¥ �����ª� � for �«� � ����������� . We also
assumed that

E §�¨
© � � �/��� � E � � �+��� for �¬� � ����������� , i.e.,
the revenue from the renegotiated stream is the same as if the
client had requested the lower quality stream in the first place.
These two assumptions give us the maximum possible gain from
renegotiation.

As we can see from Fig. 8, the largest gains from renegotia-
tion are achieved when the cache size is extremely small, only
1–2% of the total amount of data. The renegotiation gains are al-
most insensitive to link capacity with the exception of very small
link capacities where the gains are slightly smaller. The maxi-
mum gain we observed is around 20% and the gain drops sharply
as the cache size increases. The maximum gain would decrease
as the client acceptance probability £ ¤/¥
¥ decreases. Also, if the
cache size and link capacity are large, the potential gain from
renegotiation is typically well below 1%. We can therefore con-
clude that renegotiation, although intuitively appealing, does not
provide any significant increase in revenue in most situations
(although it might help to avoid a situation where customers that
get blocked repeatedly stop using the streaming service, which
could result in a potentially significant loss of revenue). We note
that renegotiation is only applicable to blocked requests and one
of the goals of a cache operator would be to keep the expected
blocking probability as low as possible.

V. QUEUEING OF REQUESTS

In this section we study a request queueing scheme where in
case the client’s request is blocked, the service provider queues
the request. With the queueing strategies, we expect that the
queued requests make use of the resources released by currently
served requests. This has the potential of increasing the resource
utilization and thus, bringing additional revenue. The question
is how much additional revenue does it bring.

We use simulation experiments to answer this question. To
align the experiments with the real–world practice, we assume
that a client will cancel its request after waiting for some time,
referred to as the request timeout period. We model the timeout
period using an exponential distribution with an average of 5
minutes.

We assume that the queue is of a finite size and it can hold up
to 100 requests. An incoming request finding a full buffer will be

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50

0
5

10
15

0

0.2

0.4

0.6

0.8

1

Cache size (% total)Link capacity (% total)

In
cr

ea
se

d 
re

ve
nu

e 
fro

m
 re

ne
go

tia
tio

n

Fig. 8. Increased revenue from renegotiation
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Fig. 9. Increased revenue from queueing requests for varying link size. (The
average video length is fixed at 3600 seconds.)

blocked. We consider three different strategies for ordering the
requests in the queue, i.e., based on the order of request arrivals,
their required resources and the potential revenues.

Fig. 9 shows how much extra revenue queueing of requests
could bring relative to the baseline revenue

E � c � for the rev-
enue density heuristic. We observe from the figure, that the gain
from introducing the queue is very small. Higher gains can be
achieved by changing the request service strategies, for exam-
ple by serving the requests according to the potential revenue or
the amount of resources required. In general, request queuing is
most beneficial when the resources are scarce. For example, the
figure indicates that the gain for a 4% cache is larger than for a
40% cache. Similarly, the gain for a 4% cache initially increases
with increasing link capacity up to a 10% link. The gain drops
off with further increases in the link capacity.

Plotting the potential gain against the average length of the
videos at 15% link capacity, we observe that the gain also in-
creases as the video length increases. This is expected since
longer videos hold onto the available resources longer, and
hence resource becomes rare. Queuing allows a request to make
use of the resources as soon as they are available and hence in-
creases the utilization and revenue.
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Fig. 10. Increased revenue from queueing requests for varying video length.
(The link capacity is fixed at 15% of the total requested bandwidth.)

Overall, the results indicate that the queuing of requests has
a limited gain as compared to the additional complexity that it
introduces.

VI. IS PARTIAL CACHING USEFUL ?

Consider a streaming system where clients are only interested
in complete streams (consisting of all $ layers) and no revenue
is incurred for partial streams (consisting of less than $ layers).
The question we address is: in such a system is caching of partial
streams (e.g., base layers) beneficial? Interestingly, the answer
appears to be no.

We focus on the homogeneous two–layer case where the
video objects are encoded into $ = 2 layers: a base layer of
rate 6 O ����� and one enhancement layer of rate 6yW������ . For sim-
plicity we assume that (1) all videos have the same layer rates,
i.e., 6 O �����1��6:­ and 6 W ��������6:® for �!� � ����������� , and (2) all
videos have the same length 
 . We study a system where clients
request only complete streams (consisting of both base layer
and enhancement layer), i.e., HI� � �/���q� = for �¯� � ����������� .
For ease of notation we write HI����� for HS�*CD�+��� and note thatJ KM.NSO HI�����;� � . We order the video objects from most popu-
lar to least popular; thus, HI����� c HI��� g � �����9� � ����������� rY� .
In the considered system no revenue is incurred for streams con-
sisting of only the base layer, i.e.,

E � � �+���1� = . We assume that
all complete streams incur the same revenue, i.e.,

E �*C��/����� E
for �°� � ����������� .

We investigate a caching strategy that caches both base and
enhancement layer of very popular video objects. For mod-
erately popular objects only the base layer is cached (and the
enhancement layer is streamed upon request over the bottle-
neck link of capacity � ). For relatively unpopular objects
neither base nor enhancement layer is cached. Let

� O de-
note the number of completely cached objects. Clearly,

=oX� O X¯± F"~��/��68­ g 6:®��

s�	²´³µ� ��¶ ¤+·O . Let
� W denote the num-

ber of cached base layers. The
� O completely cached ob-

jects take up the cache space
� O ��6 ­ g 6 ® �

 . Hence,

=�X� W X¬± �*F r � O ��6 ­ g 6 ® ��
a�/~D��6 ­ 
a�
²�³¸� ��¶ ¤+·W . The investi-
gated caching strategy caches base and enhancement layer of
the
� O most popular objects, that is, objects

� ��������� � O . It caches

the base layers of the
� W next most popular objects, that is, of

objects
� Okg � ��������� � O1g � W .

The probability that a request is for a completely cached ob-
ject is £ O � J _k¹M;NIO HS����� . The probability that a request is
for an object for which only the base layer has been cached
is £IWº� J _k¹ j _I»M;N _ ¹ jSO HI����� . Note that the probability that a
request is for an object which has not been cached at all is£S¼a� �ªr £ O r £ W .

We model the bottleneck link connecting the cache to the
wide area network again as a stochastic knapsack [22]. The
bottleneck link is modeled as a knapsack of capacity � . We
refer to streams of completely cached video objects as class 1
streams. Class 1 streams consume no bandwidth on the bottle-
neck link, that is, ½ O � = . The arrival rate of class 1 streams
is G O �¾G?£ O . Streams of video objects for which only the base
layer is cached are referred to as class 2 streams. Class 2 streams
consume the bandwidth ½ W �«68® . The arrival rate for class 2
streams is G¿W"�ÀG¿£IW . Streams of video objects which have not
been cached at all are referred to as class 3 streams. Class 3
streams consume the bandwidth ½ ¼ �Á6 ­ g 6 ® and have an ar-
rival rate of G¿¼5�ÂG¿£S¼ . All streams have a fixed holding time
 .

Our objective is to maximize the total long run revenue rate,
or equivalently, the long run throughput of requests (i.e., the
long run rate at which requests are granted and serviced). To-
wards this end let 
2Ã�Ä denote the long run throughput of classÅ

requests. Also, let 
2Ã denote the long run total throughput of
requests. Clearly, 
2Ã|�o
2Ã O�g 
2Ã W g 
2Ã ¼ . Let l Ä denote
the probability that a request for a stream of class

Å
is blocked.

Obviously, l O � = since class 1 streams do not consume any
bandwidth. Thus, 
2Ã°�tGIÆ £ O�g £SWT� �ªr lsW8� g £ ¼ � �ªr l ¼ �	Ç .
A. Numerical Results

We used our cache simulator to study partial caching. All
the results in this section are obtained from the simulator. We
used the same experiment setup (layer rates, video lengths, and
Zipf-parameter) as for evaluating the performance of the utility
heuristics in Section III-B. In fact, we can consider the partial
caching case as a special case of the utility heuristics. Note that
for the partial caching case the utilities of the base and enhance-
ment layer of a given video are the same and thus base layer and
enhancement layer are cached together.

In our experiments we question the usefulness of partial
caching where a portion of the cache is reserved for caching
base layers only. Doing so allows us to cache (at least the base
layers of) a larger number of videos for the same cache size. An
intuitive question to follow is whether trunk reservation is ben-
eficial. With trunk reservation a portion of the link bandwidth,
say � W �tÈ�É of � ,

=�X È Xd�8=T= , is reserved for streaming the
enhancement layers of the class 2 videos which have base layers
in the cache. We naturally expect that a combination of these
two strategies may give us the best throughput.

Figures 11 and 12 show the normalized throughput as a func-
tion of the percentage of cache space used for caching complete
videos (the remaining fraction of the cache is used for caching
base layers). Figure 11 shows the throughput for different levels
of link reservation for enhancement layer streaming and differ-
ent cache sizes. Fig. 12 shows the throughput for different levels
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Fig. 11. Normalized throughput for partial caching and trunk reservation with
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of link reservation and different Zipf parameters of the request
distribution. A link reservation of 0% implies a complete shar-
ing of the link bandwidth between class 2 and class 3 streams.
This case can be analyzed using the stochastic knapsack formu-
lation, see Section II-C, which gives us the blocking probabil-
ities laW and l ¼ and hence the throughput. On the other hand,
the link reservation of 100% implies a total blocking of class 3
streams. The link is solely used for streaming enhancement lay-
ers for class 2 streams which have base layers cached. As we
have only one traffic class, this case can be analyzed using the
Erlang–B formula with the number of trunks being ��~:6(® . For
the other cases with the link reservations between 0 to 100%, we
use simulations to obtain the throughput.

The results confirm our intuition that once we reserve some
fraction of the link for enhancement layer streaming it is bene-
ficial to reserve some fraction of the cache for base layers (and
vice versa). We observe from Fig. 11 for the 4% cache, for in-
stance, that the “50% of � ” and “100% of � ” link reservation
curves give the highest throughput when reserving roughly 22%
of the cache for complete videos (i.e., when 78% of the cache

are allocated to base layers). However, we observe from Fig. 11
(Fig. 12) that, for a given cache size (Zipf parameter of the re-
quest distribution), the maximum throughput is always obtained
at the right edge of the plot, that is, when the entire cache is re-
served for caching complete videos (and no link reservation is
employed). In this case, there are no class 2 streams and thus,
the link is used exclusively for streaming the class 3 streams.
The results presented here, as well as our more detailed investi-
gations [25], indicate that partial caching is not beneficial.

VII. RELATED WORK

In this paper we have developed and evaluated an analytical
model for the caching and streaming of multi–layered encoded
video. This topic has received only little attention so far. Rejaie
et al. propose a proxy caching mechanism [6] in conjunction
with a congestion control mechanism [26], [27] for layered–
encoded video and evaluate their mechanisms through simula-
tions. (Feamster et al. [28] develop a refinement of the con-
gestion control mechanism by considering generalized additive–
increase–multiplicative–decrease algorithms. Zink et al. [29]
develop a variation of the congestion control mechanism which
strives to keep the streaming to the cache TCP friendly and ob-
tain the fair share of the streaming bandwidth at the same time.)
The basic idea of the caching mechanism of Rejaie et al. is to
cache segments of layers according to the objects’ popularities
and the dynamics of the congestion control mechanism. The
more popular an object (and the less congestion), the more com-
plete are the individual layers cached and the more layers are
cached (partially). When streaming an object to a client, the
layer segments that are not cached at the proxy are obtained
from the origin server. Our work is complementary to the lay-
ered video caching work [6] of Rejaie et al. in that we focus on a
simplified system (only complete layers are cached) to make the
system model mathematically tractable and to gain a fundamen-
tal understanding of the impact of the two key resources (cache
space and link bandwidth).

The streaming of layered encoded video (without caching at
proxies) has been studied in a variety of contexts. Optimal
streaming strategies for the encoding layers are proposed in [30],
[31], [32], [33]. Several studies have investigated the streaming
of layered encoded video in the context of multicast distribution
[34], [35], [36], [37], [38].

Several studies have investigated the caching of single–layer
encoded video. Wang et al. [39] propose a video staging scheme
where the part of the single–layer VBR encoded video stream,
that exceeds a certain cut–off rate (i.e., the bursts of a VBR
stream) is cached at the proxy while the lower (now smoother)
part of the video stream is stored at the origin server. Sen et
al. [40] propose to cache a prefix (i.e., the initial frames) of
video streams at the proxy and to employ work–ahead smooth-
ing while streaming the object from the proxy to the client. The
cached prefix hides the potentially large initial start–up delay of
the work–ahead transmission schedule from the client. Similar
ideas are explored by Ma and Du [41] and Rexford et al. [42]
where the proxy cache is used as staging space that enables the
delivery of smoothed video over the local access network (from
the proxy to the clients). Rexford and Towsley [43] extend this
idea to smoothing video in a multi–hop delivery scenario; they



stage the stream at several intermediate gateways along the ori-
gin server to client path. Miao and Ortega [44] propose mech-
anisms that cache some video frames (i.e., perform selective
caching) depending on the network congestion with the goal
to maximize the video quality. In [45] they develop selective
caching mechanisms for the video streaming over ����� networks
with QoS support, and ���%��� best–effort networks. In [46] Ma
and Du study related ideas, where certain segments (chunks) of
the video streams are cached. Verscheure et al. [47] combine
the caching of parts of videos with the scheduling of batches of
requests at the streaming server. Tewari et al. [48] propose a Re-
source Based Caching (RBC) scheme for video objects encoded
into one CBR layer. They consider caching certain segments
(runs) of the video stream and model the cache as a two resource
(storage space and bandwidth) constrained (deterministic) knap-
sack. They study replacement policies that take the sizes of the
object segments as well as their CBR bandwidth into account.
The replacement policies are evaluated through simulations. In
a related work, Ma and Du [49] formulate a family of segment
caching policies as a (deterministic) knapsack problem and pro-
pose heuristics to solve it. The dynamic caching of segments of
a video stream is also analyzed by Andrews and Munagala [50].

We finally note that the storage management aspects of
video proxy servers have been studied by Brubeck and Rowe
[51]. They developed the concept of multiple cooperating video
servers housing different parts of a video stream. Jiang and El-
magarmid [52] study a comprehensive design for a web–based
video database, which incorporates semantic video content char-
acterization and user profiling.

VIII. CONCLUSION

In this paper we have formulated an analytical stochastic
knapsack model for the layered video caching problem. We have
proposed three different heuristics for determining which layers
of which videos to cache. Through extensive numerical exper-
iments we have found that all our heuristics perform well and
that the best performance is obtained with the revenue density
heuristic. Our heuristics are useful for cache operators in both
provisioning the caching system as well as deciding on-line the
gain from caching a given layer of a given video. To the best
of our knowledge, this is the first study to consider an analytical
model of this 2–resource problem.

We also considered two intuitive extensions, renegotiation
and queueing of requests, but found that they provide little ex-
tra gain to the cache operator. As a special case we considered
a situation where clients only request complete video streams.
Our results indicate that in this special case, best performance is
obtained if videos are cached completely.

There are also a number of avenues for future research, such
as considering dynamically changing request patterns. Further-
more, there are a number of special scenarios where theoretical
results may be obtainable.
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APPENDIX

I. CALCULATION OF BLOCKING PROBABILITIES l c � B �/���
In this appendix we first give a brief general overview of the

stochastic knapsack model and then outline the calculation of
the blocking probabilities l c � B �+��� in our caching and stream-
ing model. In general, a stochastic knapsack consists of � re-
source units. Objects of Ï different classes arrive at the knap-
sack according to Ï independent Poisson processes. ClassÅ � Å � � ����������Ï , objects are characterized by their size ½�Ä ,
their Poisson arrival rate G Ä , and their mean holding time

� ~:Ð Ä .
In the most basic setting, the knapsack always admits an arriving
object if there is sufficient room, i.e., an arriving class

Å
object

is admitted if at least ½�Ä resource units are unoccupied. Once ad-
mitted, the object holds the ½�Ä resource units for a holding time
with mean

� ~:Ð Ä . At the end of the holding time, the ½ Ä resource
units are released. If an arriving object of size ½ Ä finds less than½�Ä resource units unoccupied, the object is blocked. The dynam-
ics of the stochastic knapsack have been modeled as a Markov
process and expressions for the equilibrium distribution of the
number of class–

Å
objects,

Å � � ���������/Ï , in the knapsack and
the blocking probability of class–

Å
objects have been derived

[22]. We conclude this brief general overview of the stochas-
tic knapsack by noting that these expressions depend on the ob-
jects’ holding time distributions only through their means. Thus,
the expressions also hold for the fixed (deterministic) stream
lifetimes considered in our caching and streaming model.

We now outline the calculation of the blocking probabilitiesl c � B �+��� using the stochastic knapsack theory. Note that we
have to go through the following calculation only for the non–
zero blocking probabilities, i.e., for V M e B . We model the
bottleneck link for continuous media streaming from the ori-
gin servers to the proxy server as a stochastic knapsack of ca-
pacity � . We model requests for

B
–quality streams of object� as a distinct class of requests. Let Ñ c �f�*½ c � B �+���+���-�¬�� �����������h� B � � ���������/$ , be the vector of the sizes of the re-

quests. Note that this vector has �o$ elements. Recall that a re-
quest for a

B
–quality stream of object � of which the V M –quality

stream is cached requires the bandwidth J R 7 Ni]	^kjSO 6�7+����� on the
bottleneck link; hence ½ c � B �+���-� J R 7 Ni] ^ jIO 6 7 ����� for V M3e B
and ½ c � B �+���Ò� =

for V M c B
. Without loss of generality

we assume that � and all ½ c � B �/��� ’s are positive integers. LetÓ �Ô��Õ1� B �+���+���ª�}� � �����������h� B � � ���������/$ , be the vector
of the numbers of ½ c � B �+��� –sized objects in the knapsack. TheÕ1� B �/��� ’s are non–negative integers. Let Ö c �o× Ó ³�Ñ c # Ó X ��Ø
be the state space of the stochastic knapsack, where Ñ c # Ó �J KM.NSO J PR NIO ½ c � B �/����Õ1� B �+��� . Furthermore, let Ö c � B �/��� be
the subset of states in which the knapsack (i.e., the bottleneck
link) admits an object of size ½ c � B �+��� (i.e., a stream of rateJ R 7 Ni]	^kjIO 6�7+����� ). We have Ö c � B �+���¦��× Ó!Ù Ö c ³4Ñ c # Ó X� r ½ c � B �+����Ø The blocking probabilities can be explicitly ex-
pressed asl c � B �+���1� ��rJ ÓsÚ(Û c ` R � M;bDÜ KM;NIO�Ü PR NIO ��Ý�� B �/���/��Þ ` R � M;b ~���Õ1� B �+���+��ßJ ÓsÚ(Û c Ü KM;NIOiÜ PR NSO ��ÝA� B �/���/� Þ ` R � M;b ~���Õ1� B �+���+��ß �
where Ý�� B �+���a�àGTHI� B �/����
"����� . Note that Ý�� B �+��� is the load



offered by requests for
B
–quality streams of object � . The

blocking probabilities can be efficiently calculated using the re-
cursive Kaufman–Roberts algorithm [22, p. 23]. The time com-
plexity of the algorithm is p �%�q�o$�� . The complexity is linear
in the bandwidth � of the bottleneck link and the number of ob-
jects � , which can be huge. The complexity is also linear in the
number of encoding layers $ , which is typically small (2 – 5).

II. BLOCKING PROBABILITY lY� c � FOR HIGHLY VARIABLE
VBR TRAFFIC

In this appendix we give a method to obtain the expected
blocking probability l5� c � and the long run total rate of revenueE � c � for the case of highly variable VBR layers, i.e., when the
additive effective bandwidth approach becomes overly conser-
vative. Our method relies on the extensive literature on refined
loss calculations at multiplexers, e.g., [53], [54], [55], [56], [57],
[58]. With these refined loss calculations we perform admission
control to enforce a limit < on the probability of loss (i.e., buffer
overflow) at the bottleneck link, where typically, <.� ��=¿>A@ . The
refined loss calculations give very accurate estimates of the loss
probability even for highly variable traffic. However, these re-
fined loss calculations are not “additive” in that the link band-
width (and buffer) resources required for a particular stream de-
pend not only in the statistics of this particular stream, but also
the statistics of all the other streams that share the bottleneck
link. Hence we can not directly employ the stochastic knapsack
analysis to obtain the blocking probability. Instead, we give the
following efficient and accurate simulation approach to obtain
the expected blocking probability lY� c � and revenue

E � c � as a
function of the cache configuration c. Suppose we are given
the stream popularities HS� B �+����� B � � ����������ákâS�«� � ����������� ,
the Poisson request arrival rate G (in requests per second), and
the stream life times 
"����� . To obtain the blocking probabil-
ity and revenue for a fixed cache configuration c, we conduct
a discrete event simulation of the streaming system at the call
level (i.e., we simulate the arrival of streaming requests and the
termination of streams; we do not simulate the transmission of
individual video frames or packets). In the simulation we keep
track of the numbers of ongoing streams N �º� � � B �+���+� for all
video objects �ã� � ����������� , and quality levels

B � � ����������$
(where a

B
–quality stream consists of layers

� ��������� B ). Given the
numbers of ongoing streams N and the cache configuration c we
obtain the vector k �À� Å � B �+���+��� B � � ���������/$2âä�!� � ����������� ,
where

Å � B �/��� indicates how many simultaneous transmissions
of layer

B
of video object � are currently ongoing over the bot-

tleneck link. Clearly,
Å � B �/����� = for

BåX V M , and
Å � B �+�����JtP7 N R � ��)+�+��� for

BYæ V M . When a new request for a
B
–quality

stream of video object � arrives we proceed as follows. If all the
requested layers are cached ( V M c B ) there is no blocking and
we update N (note that k remains unchanged). If layers are miss-
ing in the proxy ( V MÁe B ) we check whether the loss probabil-
ity on the bottleneck link would exceed the prespecified limit < ,
when the layers V M g � ��������� B of video object � are added to the
current link load k. Given the frame sizes & ' � B �+��� of the prere-
corded videos, this is straightforward by applying the techniques
in [53], [54], [55], [56], [57], [58]. If the loss probability limit< continues to be met with the additional layer(s), there is no
blocking. We increment the earned revenue by

E � B �/��� and up-

date N and k. Otherwise, i.e., if the loss probability limit would
be exceeded with the additional layer(s), we count a blocking
event and N, as well as k, remain unchanged. When a stream
terminates, we update N and k. Using, for instance, the method
of batch means [59] we obtain reliable estimates of the expected
blocking probability l5� c � and the long run total revenue rateE � c � .
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