Distributed Systems Project, Spring 2011

Second assignment: Vector clocks and causal multicast

In this assignment, you need to write two small programs that implement the
vector clock algorithm and causal multicast and demonstrate that your programs
works correctly in at least small setups.

Tasks

1. Write a program in the language of your choosing that implements the
vector clock algorithm. The program must be able to read a configuration
file which describes how many clients to start. Each client reads an input
file and acts according to the instructions in the file (see format below). At
the end of execution, each client must print out its vector.

2. Write a program in the language of your choosing that implements a
causal multicast. The program takes the same inputs as the vector clock
program and multicasts messages to all clients. At the end, each client
prints out its vector.

Specifications

Command line interface:

program configuration_file line input file

where configuration_f1ile is the name of the configuration file and 1ine is
the line of this client (see below), and input_f1ile is the name of the input file
(see below).

The configuration file has an undetermined number of lines, each in the
following format:

host port

where host is either the hostname or the IP address of the client and port is
the port on which it is listening at that address. Your client program takes as
argument one integer, which is the number of the line in the configuration that
indicates what port this client should use. The client can ignore the hostname for
its own line, but needs to use the other lines to know who are the other clients in
the system. There is no upper limit to the number of lines in the configuration
file. If the argument given to the program is negative or larger than the number
of lines, your program is allowed to crash immediately.

NOTE: It’s easiest to have all the clients run on the same machine.

The input file for the vector clock program has an undetermined number of lines,
each in the following format:

Ci X Cj

where Ci and c;j are positive integers and X is either M or L (capital letter). Line
“ci M ¢j” means that client ci sends a message to client cj. Line “ci M n”
means that client c; advances its local clock by n, but does not send any
messages. Note that both kinds of lines look the same and the letter determines
whether to send a message or advance the local clock.

NOTE: When a client is reading through the input file and notices that it is
supposed to receive a message, it must block until it has received the message.

The final output for the vector clock program has the following format:

Vi V2 V3 .. Vp

where Vv is the value of the vector clock for process i held by the client. There
should be one entry for each client in the configuration file and if the client does
not know anything about that client, the value should be zero.

NOTE: Because we use partly automated tools for checking the output, your
output must match exactly the format above. Do not add any other text or lines.
Failure to comply will lead to a reduced grade.

The input file for the causal multicast program has an undetermined number of
lines, each in the following format:

c1 [| c2 | €3 | o1

where C; is the number of the client who sends the multicast message. One line
can contain several concurrent multicasts which are separated by |. The number
of concurrent multicasts is not defined in advance. You can implement a
multicast as a series of unicast messages.

NOTE: As the client processes the input file, it must block to wait for each
incoming multicast message. In case the line has several concurrent multicasts,
make sure the programs do not end in a deadlock.

The causal multicast program should output the following:
* Every time a message is ready to be delivered, output the number of the
client who sent that message
* Atthe end, output the vector held by the client

Guidelines

You are free to choose any programming language, but we recommend using a
higher level language, e.g., Ruby or Python, even if you have to learn the language
from scratch during the assignment.

Use the vector clock algorithm defined in the Tanenbaum book. In short, each
message contains the vector of the sending client and the receiving client will do
the standard Lamport clock update between each element of the received vector
and its own vector.

The actual contents of the messages are irrelevant, so you can even send empty
messages as long as the vector is included. No interoperability between groups is
required so you are free to choose the format in which you send the vector.

Deliverables

Program source code with documentation and a successful demonstration on
February 22nd during the normal course session.

Timeline
The assignment is due on February 15t at 10:00. No extensions will be given.

Return
Return your code by email to Liang.Wang@cs.helsinki.fi. Please indicate clearly
all the group members in every source code file.

