ON SMALL RAMSEY NUMBERS IN GRAPHS

JANNE KORHONEN
janne.h.korhonen@helsinki.fi

Abstract

We give exact values for certain small 2-colour Ramsey numbers in graphs. In particular, we prove that $R(3,3)=6$ and $R(4,4)=18$.

In the following, if $\mathcal{G}=(V, E)$ is a graph and $U \subseteq V$, we denote by $\mathcal{G}[U]$ the subgraph induced by U. For set X, we denote by $[X]^{k}$ the collection of all subsets of X with k elements.

We will now prove some well-known results about certain small Ramsey numbers. The following treatment of the matter along with the theorems and proofs is quite standard; the results are originally from Greenwood and Gleason [1] , except for theorem 2, which is quite elementary and had appeared as an exercise in the William Lowell Putnam Mathematical Competition held in March 1953. We use notation from Radziszowski [2].

Definition 1. For $k, l \geq 2$, denote by $R(k, l)$ the smallest number N such that for all graphs $\mathcal{G}=(V, E)$ with at least N vertices, \mathcal{G} contains either a k-clique or an independent set with l vertices. The values $R(k, l)$ are called 2 -colour Ramsey numbers in graphs.

Now, we want to find out the exact values of $R(k, l)$ for certain small values of k and l. We start with an easy case.

Theorem 2. $R(3,3)=6$.
Proof. First, observe that the 5 -cycle C_{5} does not contain a 3 -clique or an independent set with 3 vertices. Thus, $R(3,3)>5$.

Now assume that $\mathcal{G}=(V, E)$ is a graph with $|V|=6$. Let $u \in V$ be an arbitrary vertex. There are two possible scenarios:
(1) The set $N=\{v \in V \mid\{u, v\} \in E\}$ has at least three elements. In this case, either the set N is independent and the theorem holds, or we have two adjacent vertices $v_{1}, v_{2} \in N$, in which case $\left\{u, v_{1}, v_{2}\right\}$ is a clique and the theorem also holds.
(2) The set $\{v \in V \mid\{u, v\} \in E\}$ has at most two elements. Then by case (1), there is a clique or a independent set of size 3 in the complement graph of \mathcal{G} and thus also in \mathcal{G}.
In any case, we have that $R(3,3) \leq 6$.
To get tight bounds for $R(4,4)$, we need to see some more trouble. As a starting point, we observe that $R(m, 2)=R(2, m)=m$ for all $m \geq 2$, because a graph with m vertices is either K_{m} or has two non-adjacent vertices, and on the other hand, K_{m-1} serves as the proof for the lower bound.

[^0]Lemma 3. For all $k, l \geq 3$, we have that

$$
R(k, l) \leq R(k-1, l)+R(k, l-1) .
$$

Proof. Let $k, l \geq 3$. Let $\mathcal{G}=(V, E)$ be a graph with $n=R(k-1, l)+R(k, l-1)$ vertices. We show now that there is either a k-clique or an independent set with l vertices in \mathcal{G}.

Fix $u \in V$. Now we define

$$
\begin{aligned}
& V_{+}(u)=\{v \in V \mid\{u, v\} \in E\} \\
& V_{-}(u)=\{v \in V \mid\{u, v\} \notin E\} .
\end{aligned}
$$

Observe that $\{u\}, V_{+}(u)$ and $V_{-}(u)$ are disjoint and their union is V. Thus,

$$
\begin{equation*}
\left|V_{+}(u)\right|+\left|V_{-}(u)\right|=R(k-1, l)+R(k, l-1)-1 . \tag{1}
\end{equation*}
$$

This means that we must have $\left|V_{+}(u)\right| \geq R(k-1, l)$ or $\left|V_{-}(u)\right| \geq R(k, l-1)$, because otherwise inequality 1 would not hold. Thus, we now have two possible cases:
(1) We have $\left|V_{+}(u)\right| \geq R(k-1, l)$, and therefore $\mathcal{G}\left[V_{+}(u)\right]$ either has a $(k-1)$ clique or an independent set with l vertices. In the latter case, we are done; otherwise, there is $K \subseteq V_{+}(u)$ such that K is a $(k-1)$-clique. By the definition of $V_{+}(u)$, the set $\{u\} \cup K$ is a k-clique.
(2) We have $\left|V_{-}(u)\right| \geq R(k, l-1)$. Again, we either have a k-clique in $\mathcal{G}\left[V_{-}(u)\right]$, in which case the theorem holds, or then there is an independent set $I \subseteq V_{-}(u)$ with $|I|=l-1$. In the latter case $\{u\} \cup I$ is an independent set with l vertices.

In some cases, the result of lemma 3 can be improved slightly.
Lemma 4. For all $k, l \geq 3$, if $R(k-1, l)=2 p$ and $R(k, l-1)=2 q$, then

$$
R(k, l) \leq R(k-1, l)+R(k, l-1)-1 .
$$

Proof. Let $k, l \geq 3$ such that $R(k-1, l)=2 p$ and $R(k, l-1)=2 q$. Let $\mathcal{G}=(V, E)$ be a graph with $n=R(k-1, l)+R(k, l-1)-1=2 p+2 q-1$ vertices. Again, we want to show that there is either a k-clique or an independent set with l vertices in \mathcal{G}.

Observe that if there is a vertex $u \in V$ such that $\left|V_{+}(u)\right| \geq R(k-1, l)$ or $\left|V_{-}(u)\right| \geq R(k-1)$, then we can use same arguments as in the proof of lemma 3 to see that there is a k-clique or an independent set with l vertices in \mathcal{G}. Thus, it is sufficient to show that such u exists.

The problematic case now that it might be that for all $v \in V,\left|V_{+}(v)\right|=$ $R(k-1, l)-1=2 p-1$ and $\left|V_{-}(v)\right|=R(k, l-1)-1=2 q-1$. Assume that this is in fact the case. In particular, then each vertex has degree $2 p-1$, and thus there are $(2 p-1)(2 p+2 q-1) / 2$ edges in \mathcal{G}. However, $(2 p-1)(2 p+2 q-1) / 2$ is not an integer, so this is not possible.

Lemma 5. $R(4,4) \leq 18$.
Proof. We have previously seen that

$$
\begin{aligned}
& R(4,2)=4, \\
& R(2,4)=4, \text { and } \\
& R(3,3)=6 .
\end{aligned}
$$

Figure 1. Graph \mathcal{G}.

Using lemmas 3 and 4 we get that

$$
\begin{aligned}
& R(3,4) \leq R(2,4)+R(3,3)-1=9 \\
& R(4,3) \leq R(3,3)+R(4,2)-1=9, \text { and } \\
& R(4,4) \leq R(3,4)+R(4,3)=18
\end{aligned}
$$

Lemma 6. $R(4,4)>17$.
Proof. We start by defining set

$$
S_{17}=\left\{x^{2} \mid x \in \mathbb{Z}_{17}\right\} \backslash\{0\}=\{1,2,4,8,9,13,15,16\}
$$

Now let $\mathcal{G}=\left(\mathbb{Z}_{17}, E\right)$, where

$$
E=\left\{\{x, y\} \in\left[\mathbb{Z}_{17}\right]^{2} \mid x-y \in S_{17}\right\}
$$

(See figure 1]) Observe that since in the field \mathbb{Z}_{17} it holds that $-1=16=4^{2}$, if $x-y=a^{2}$ for some a, then $y-x=(-1)(x-y)=(4 a)^{2}$, and thus \mathcal{G} is well-defined.

Now suppose that $K \subseteq \mathbb{Z}_{17}$ is a 4 -clique in \mathcal{G}. We may in fact assume that $0 \in K$, because otherwise we get such a clique by subtracting the smallest element in K from all the elements of K. Thus, suppose that $K=\{0, a, b, c\}$; by definition of \mathcal{G}, it holds that $H=\{a, b, c, a-b, a-c, b-c\} \subseteq S_{17}$. Since \mathbb{Z}_{17} is a field, a^{-1} exists. We define $B=b a^{-1}$ and $C=c a^{-1}$; these are distinct numbers and different from 1, since a, b and c are distinct. Because $a^{-1}=\left(n^{2}\right)^{-1}$ for some $n \in \mathbb{Z}_{17}$, by multiplying all elements of H by a^{-1}, we get that

$$
\{1, B, C, 1-B, 1-C, B-C\} \subseteq S_{17}
$$

On the other hand, suppose that $I \subseteq \mathbb{Z}_{17}$ is an independent set in \mathcal{G} with 4 elements. Again, we may assume that $I=\{0, a, b, c\}$. We have now that $J=\{a, b, c, a-b, a-c, b-c\} \subseteq Z_{17} \backslash\left(S_{17} \cup\{0\}\right)$. It can be easily verified by testing
all possible cases that if $x, y \in Z_{17} \backslash\left(S_{17} \cup\{0\}\right)$, then $x y \in S_{17}$. Thus multiplying all the elements of J by a^{-1} we see that

$$
\{1, B, C, 1-B, 1-C, B-C\} \subseteq S_{17}
$$

where again $B=b a^{-1}$ and $C=c a^{-1}$.
We have seen that if there is a 4 -clique or an independent set with 4 vertices in \mathcal{G}, then there are distinct number $B, C \in S_{17} \backslash\{1\}$ such that

$$
\{1, B, C, 1-B, 1-C, B-C\} \subseteq S_{17}
$$

We have that

$$
\begin{aligned}
1-2 & =16 \in S_{17} \\
1-4 & =14 \notin S_{17} \\
1-8 & =10 \notin S_{17} \\
1-9 & =9 \in S_{17} \\
1-13 & =5 \notin S_{17} \\
1-15 & =3 \notin S_{17} \\
1-16 & =1 \in S_{17},
\end{aligned}
$$

and thus $B, C \in\{2,9,16\}$. However,

$$
\begin{array}{cc}
B=9, C=2 & \Rightarrow B-C=7 \notin S_{17} \\
B=2, C=9 & \Rightarrow B-C=10 \notin S_{17} \\
B=16, C=2 & \Rightarrow B-C=15 \notin S_{17} \\
B=2, C=16 & \Rightarrow B-C=3 \notin S_{17} \\
B=16, C=9 & \Rightarrow B-C=7 \notin S_{17} \\
B=9, C=16 & \Rightarrow B-C=10 \notin S_{17} .
\end{array}
$$

It follows that set $\{1, B, C, 1-B, 1-C, B-C\}$ cannot be a subset of S_{17}. Thus, existence of 4 -clique or an independent set with 4 vertices would lead to a contradiction and is therefore not possible.

Since \mathcal{G} is a graph with no 4 -clique or independent set of 4 vertices, we have that $R(4,4)>17$.

Combining the previous lemmas we get the following theorem.
Theorem 7. $R(4,4)=18$.

References

1. R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math 7 (1955), no. 1.
2. S.P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics 1 (1994), last updated 2009.

[^0]: This text was originally part of a course report for the course Deterministic Distributed Algorithms (http://www.cs.helsinki.fi/u/josuomel/dda-2010/) at the University of Helsinki. This has been separated as an independent text as it is the part of the report that might actually be of interest for someone else.

