ON SMALL RAMSEY NUMBERS IN GRAPHS

JANNE KORHONEN janne.h.korhonen@helsinki.fi

ABSTRACT. We give exact values for certain small 2-colour Ramsey numbers in graphs. In particular, we prove that R(3,3) = 6 and R(4,4) = 18.

In the following, if $\mathcal{G} = (V, E)$ is a graph and $U \subseteq V$, we denote by $\mathcal{G}[U]$ the subgraph induced by U. For set X, we denote by $[X]^k$ the collection of all subsets of X with k elements.

We will now prove some well-known results about certain small Ramsey numbers. The following treatment of the matter along with the theorems and proofs is quite standard; the results are originally from Greenwood and Gleason [1], except for theorem 2, which is quite elementary and had appeared as an exercise in the William Lowell Putnam Mathematical Competition held in March 1953. We use notation from Radziszowski [2].

Definition 1. For $k, l \geq 2$, denote by R(k, l) the smallest number N such that for all graphs $\mathcal{G} = (V, E)$ with at least N vertices, \mathcal{G} contains either a k-clique or an independent set with l vertices. The values R(k, l) are called 2-colour Ramsey numbers in graphs.

Now, we want to find out the exact values of R(k, l) for certain small values of k and l. We start with an easy case.

Theorem 2. R(3,3) = 6.

Proof. First, observe that the 5-cycle C_5 does not contain a 3-clique or an independent set with 3 vertices. Thus, R(3,3) > 5.

Now assume that $\mathcal{G} = (V, E)$ is a graph with |V| = 6. Let $u \in V$ be an arbitrary vertex. There are two possible scenarios:

- (1) The set $N = \{v \in V \mid \{u, v\} \in E\}$ has at least three elements. In this case, either the set N is independent and the theorem holds, or we have two adjacent vertices $v_1, v_2 \in N$, in which case $\{u, v_1, v_2\}$ is a clique and the theorem also holds.
- (2) The set $\{v \in V \mid \{u, v\} \in E\}$ has at most two elements. Then by case (1), there is a clique or a independent set of size 3 in the complement graph of \mathcal{G} and thus also in \mathcal{G} .

In any case, we have that $R(3,3) \leq 6$.

To get tight bounds for R(4, 4), we need to see some more trouble. As a starting point, we observe that R(m, 2) = R(2, m) = m for all $m \ge 2$, because a graph with m vertices is either K_m or has two non-adjacent vertices, and on the other hand, K_{m-1} serves as the proof for the lower bound.

This text was originally part of a course report for the course Deterministic Distributed Algorithms (http://www.cs.helsinki.fi/u/josuomel/dda-2010/) at the University of Helsinki. This has been separated as an independent text as it is the part of the report that might actually be of interest for someone else.

Lemma 3. For all $k, l \geq 3$, we have that

$$R(k, l) \le R(k - 1, l) + R(k, l - 1).$$

Proof. Let $k, l \ge 3$. Let $\mathcal{G} = (V, E)$ be a graph with n = R(k - 1, l) + R(k, l - 1) vertices. We show now that there is either a k-clique or an independent set with l vertices in \mathcal{G} .

Fix $u \in V$. Now we define

$$V_{+}(u) = \{ v \in V \mid \{u, v\} \in E \}$$
$$V_{-}(u) = \{ v \in V \mid \{u, v\} \notin E \}.$$

Observe that $\{u\}, V_+(u)$ and $V_-(u)$ are disjoint and their union is V. Thus,

(1)
$$|V_{+}(u)| + |V_{-}(u)| = R(k-1,l) + R(k,l-1) - 1.$$

This means that we must have $|V_+(u)| \ge R(k-1,l)$ or $|V_-(u)| \ge R(k,l-1)$, because otherwise inequality 1 would not hold. Thus, we now have two possible cases:

- (1) We have $|V_+(u)| \ge R(k-1,l)$, and therefore $\mathcal{G}[V_+(u)]$ either has a (k-1)clique or an independent set with l vertices. In the latter case, we are done; otherwise, there is $K \subseteq V_+(u)$ such that K is a (k-1)-clique. By the definition of $V_+(u)$, the set $\{u\} \cup K$ is a k-clique.
- (2) We have $|V_{-}(u)| \ge R(k, l-1)$. Again, we either have a k-clique in $\mathcal{G}[V_{-}(u)]$, in which case the theorem holds, or then there is an independent set $I \subseteq V_{-}(u)$ with |I| = l - 1. In the latter case $\{u\} \cup I$ is an independent set with l vertices.

In some cases, the result of lemma 3 can be improved slightly.

Lemma 4. For all $k, l \ge 3$, if R(k-1, l) = 2p and R(k, l-1) = 2q, then

$$R(k,l) \le R(k-1,l) + R(k,l-1) - 1.$$

Proof. Let $k, l \geq 3$ such that R(k-1, l) = 2p and R(k, l-1) = 2q. Let $\mathcal{G} = (V, E)$ be a graph with n = R(k-1, l) + R(k, l-1) - 1 = 2p + 2q - 1 vertices. Again, we want to show that there is either a k-clique or an independent set with l vertices in \mathcal{G} .

Observe that if there is a vertex $u \in V$ such that $|V_+(u)| \geq R(k-1,l)$ or $|V_-(u)| \geq R(k-1)$, then we can use same arguments as in the proof of lemma 3 to see that there is a k-clique or an independent set with l vertices in \mathcal{G} . Thus, it is sufficient to show that such u exists.

The problematic case now that it might be that for all $v \in V$, $|V_+(v)| = R(k-1,l) - 1 = 2p - 1$ and $|V_-(v)| = R(k,l-1) - 1 = 2q - 1$. Assume that this is in fact the case. In particular, then each vertex has degree 2p - 1, and thus there are (2p-1)(2p+2q-1)/2 edges in \mathcal{G} . However, (2p-1)(2p+2q-1)/2 is not an integer, so this is not possible.

Lemma 5. $R(4,4) \le 18$.

Proof. We have previously seen that

$$R(4,2) = 4,$$

 $R(2,4) = 4,$ and
 $R(3,3) = 6.$

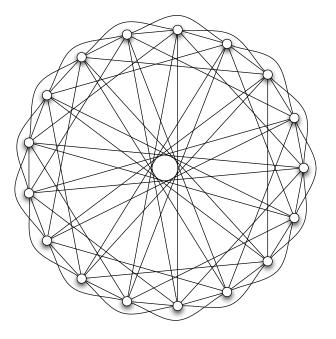


FIGURE 1. Graph \mathcal{G} .

Using lemmas 3 and 4, we get that

$$\begin{aligned} R(3,4) &\leq R(2,4) + R(3,3) - 1 = 9, \\ R(4,3) &\leq R(3,3) + R(4,2) - 1 = 9, \text{ and} \\ R(4,4) &\leq R(3,4) + R(4,3) = 18. \end{aligned}$$

Lemma 6. R(4,4) > 17.

Proof. We start by defining set

$$S_{17} = \{x^2 \mid x \in \mathbb{Z}_{17}\} \setminus \{0\} = \{1, 2, 4, 8, 9, 13, 15, 16\}.$$

Now let $\mathcal{G} = (\mathbb{Z}_{17}, E)$, where

$$E = \{\{x, y\} \in [\mathbb{Z}_{17}]^2 \mid x - y \in S_{17}\}.$$

(See figure 1.) Observe that since in the field \mathbb{Z}_{17} it holds that $-1 = 16 = 4^2$, if $x - y = a^2$ for some a, then $y - x = (-1)(x - y) = (4a)^2$, and thus \mathcal{G} is well-defined.

Now suppose that $K \subseteq \mathbb{Z}_{17}$ is a 4-clique in \mathcal{G} . We may in fact assume that $0 \in K$, because otherwise we get such a clique by subtracting the smallest element in K from all the elements of K. Thus, suppose that $K = \{0, a, b, c\}$; by definition of \mathcal{G} , it holds that $H = \{a, b, c, a - b, a - c, b - c\} \subseteq S_{17}$. Since \mathbb{Z}_{17} is a field, a^{-1} exists. We define $B = ba^{-1}$ and $C = ca^{-1}$; these are distinct numbers and different from 1, since a, b and c are distinct. Because $a^{-1} = (n^2)^{-1}$ for some $n \in \mathbb{Z}_{17}$, by multiplying all elements of H by a^{-1} , we get that

$$\{1, B, C, 1 - B, 1 - C, B - C\} \subseteq S_{17}.$$

On the other hand, suppose that $I \subseteq \mathbb{Z}_{17}$ is an independent set in \mathcal{G} with 4 elements. Again, we may assume that $I = \{0, a, b, c\}$. We have now that $J = \{a, b, c, a - b, a - c, b - c\} \subseteq \mathbb{Z}_{17} \setminus (S_{17} \cup \{0\})$. It can be easily verified by testing

all possible cases that if $x, y \in Z_{17} \setminus (S_{17} \cup \{0\})$, then $xy \in S_{17}$. Thus multiplying all the elements of J by a^{-1} we see that

$$\{1, B, C, 1 - B, 1 - C, B - C\} \subseteq S_{17},$$

where again $B = ba^{-1}$ and $C = ca^{-1}$.

ł

We have seen that if there is a 4-clique or an independent set with 4 vertices in \mathcal{G} , then there are distinct number $B, C \in S_{17} \setminus \{1\}$ such that

$$1, B, C, 1 - B, 1 - C, B - C \} \subseteq S_{17}$$

We have that

```
\begin{split} 1-2 &= 16 \in S_{17} \\ 1-4 &= 14 \notin S_{17} \\ 1-8 &= 10 \notin S_{17} \\ 1-9 &= 9 \in S_{17} \\ 1-13 &= 5 \notin S_{17} \\ 1-15 &= 3 \notin S_{17} \\ 1-16 &= 1 \in S_{17}, \end{split}
```

and thus $B, C \in \{2, 9, 16\}$. However,

$$B = 9, C = 2 \implies B - C = 7 \notin S_{17}$$

$$B = 2, C = 9 \implies B - C = 10 \notin S_{17}$$

$$B = 16, C = 2 \implies B - C = 15 \notin S_{17}$$

$$B = 2, C = 16 \implies B - C = 3 \notin S_{17}$$

$$B = 16, C = 9 \implies B - C = 7 \notin S_{17}$$

$$B = 9, C = 16 \implies B - C = 10 \notin S_{17}$$

It follows that set $\{1, B, C, 1 - B, 1 - C, B - C\}$ cannot be a subset of S_{17} . Thus, existence of 4-clique or an independent set with 4 vertices would lead to a contradiction and is therefore not possible.

Since \mathcal{G} is a graph with no 4-clique or independent set of 4 vertices, we have that R(4,4) > 17.

Combining the previous lemmas we get the following theorem.

Theorem 7. R(4,4) = 18.

References

- R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math 7 (1955), no. 1.
- S.P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics 1 (1994), last updated 2009.