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Abstract. We give exact values for certain small 2-colour Ramsey numbers
in graphs. In particular, we prove that R(3, 3) = 6 and R(4, 4) = 18.

In the following, if G = (V, E) is a graph and U ⊆ V , we denote by G[U ] the
subgraph induced by U . For set X, we denote by [X]k the collection of all subsets
of X with k elements.

We will now prove some well-known results about certain small Ramsey numbers.
The following treatment of the matter along with the theorems and proofs is quite
standard; the results are originally from Greenwood and Gleason [1], except for
theorem 2, which is quite elementary and had appeared as an exercise in the William
Lowell Putnam Mathematical Competition held in March 1953. We use notation
from Radziszowski [2].

Definition 1. For k, l ≥ 2, denote by R(k, l) the smallest number N such that
for all graphs G = (V, E) with at least N vertices, G contains either a k-clique or
an independent set with l vertices. The values R(k, l) are called 2-colour Ramsey
numbers in graphs.

Now, we want to find out the exact values of R(k, l) for certain small values of k
and l. We start with an easy case.

Theorem 2. R(3, 3) = 6.

Proof. First, observe that the 5-cycle C5 does not contain a 3-clique or an indepen-
dent set with 3 vertices. Thus, R(3, 3) > 5.

Now assume that G = (V, E) is a graph with |V | = 6. Let u ∈ V be an arbitrary
vertex. There are two possible scenarios:

(1) The set N = {v ∈ V | {u, v} ∈ E} has at least three elements. In this case,
either the set N is independent and the theorem holds, or we have two
adjacent vertices v1, v2 ∈ N , in which case {u, v1, v2} is a clique and the
theorem also holds.

(2) The set {v ∈ V | {u, v} ∈ E} has at most two elements. Then by case (1),
there is a clique or a independent set of size 3 in the complement graph of
G and thus also in G.

In any case, we have that R(3, 3) ≤ 6. �

To get tight bounds for R(4, 4), we need to see some more trouble. As a starting
point, we observe that R(m, 2) = R(2, m) = m for all m ≥ 2, because a graph with
m vertices is either Km or has two non-adjacent vertices, and on the other hand,
Km−1 serves as the proof for the lower bound.

This text was originally part of a course report for the course Deterministic Distributed
Algorithms (http://www.cs.helsinki.fi/u/josuomel/dda-2010/) at the University of Helsinki.
This has been separated as an independent text as it is the part of the report that might actually
be of interest for someone else.
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Lemma 3. For all k, l ≥ 3, we have that

R(k, l) ≤ R(k − 1, l) + R(k, l − 1).

Proof. Let k, l ≥ 3. Let G = (V, E) be a graph with n = R(k − 1, l) + R(k, l − 1)
vertices. We show now that there is either a k-clique or an independent set with l
vertices in G.

Fix u ∈ V . Now we define

V+(u) = {v ∈ V | {u, v} ∈ E}
V−(u) = {v ∈ V | {u, v} /∈ E}.

Observe that {u}, V+(u) and V−(u) are disjoint and their union is V . Thus,

(1) |V+(u)|+ |V−(u)| = R(k − 1, l) + R(k, l − 1)− 1.

This means that we must have |V+(u)| ≥ R(k−1, l) or |V−(u)| ≥ R(k, l−1), because
otherwise inequality 1 would not hold. Thus, we now have two possible cases:

(1) We have |V+(u)| ≥ R(k − 1, l), and therefore G[V+(u)] either has a (k − 1)-
clique or an independent set with l vertices. In the latter case, we are done;
otherwise, there is K ⊆ V+(u) such that K is a (k − 1)-clique. By the
definition of V+(u), the set {u} ∪K is a k-clique.

(2) We have |V−(u)| ≥ R(k, l− 1). Again, we either have a k-clique in G[V−(u)],
in which case the theorem holds, or then there is an independent set
I ⊆ V−(u) with |I| = l − 1. In the latter case {u} ∪ I is an independent set
with l vertices.

�

In some cases, the result of lemma 3 can be improved slightly.

Lemma 4. For all k, l ≥ 3, if R(k − 1, l) = 2p and R(k, l − 1) = 2q, then

R(k, l) ≤ R(k − 1, l) + R(k, l − 1)− 1.

Proof. Let k, l ≥ 3 such that R(k − 1, l) = 2p and R(k, l − 1) = 2q. Let G = (V, E)
be a graph with n = R(k − 1, l) + R(k, l − 1)− 1 = 2p + 2q − 1 vertices. Again, we
want to show that there is either a k-clique or an independent set with l vertices in
G.

Observe that if there is a vertex u ∈ V such that |V+(u)| ≥ R(k − 1, l) or
|V−(u)| ≥ R(k − 1), then we can use same arguments as in the proof of lemma 3 to
see that there is a k-clique or an independent set with l vertices in G. Thus, it is
sufficient to show that such u exists.

The problematic case now that it might be that for all v ∈ V , |V+(v)| =
R(k − 1, l)− 1 = 2p− 1 and |V−(v)| = R(k, l− 1)− 1 = 2q − 1. Assume that this is
in fact the case. In particular, then each vertex has degree 2p− 1, and thus there
are (2p− 1)(2p + 2q − 1)/2 edges in G. However, (2p− 1)(2p + 2q − 1)/2 is not an
integer, so this is not possible. �

Lemma 5. R(4, 4) ≤ 18.

Proof. We have previously seen that

R(4, 2) = 4,

R(2, 4) = 4, and
R(3, 3) = 6.
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Figure 1. Graph G.

Using lemmas 3 and 4, we get that

R(3, 4) ≤ R(2, 4) + R(3, 3)− 1 = 9,

R(4, 3) ≤ R(3, 3) + R(4, 2)− 1 = 9, and
R(4, 4) ≤ R(3, 4) + R(4, 3) = 18.

�

Lemma 6. R(4, 4) > 17.

Proof. We start by defining set

S17 = {x2 | x ∈ Z17} \ {0} = {1, 2, 4, 8, 9, 13, 15, 16}.

Now let G = (Z17, E), where

E = {{x, y} ∈ [Z17]2 | x− y ∈ S17}.

(See figure 1.) Observe that since in the field Z17 it holds that −1 = 16 = 42, if
x− y = a2 for some a, then y− x = (−1)(x− y) = (4a)2, and thus G is well-defined.

Now suppose that K ⊆ Z17 is a 4-clique in G. We may in fact assume that 0 ∈ K,
because otherwise we get such a clique by subtracting the smallest element in K
from all the elements of K. Thus, suppose that K = {0, a, b, c}; by definition of G,
it holds that H = {a, b, c, a− b, a− c, b− c} ⊆ S17. Since Z17 is a field, a−1 exists.
We define B = ba−1 and C = ca−1; these are distinct numbers and different from 1,
since a, b and c are distinct. Because a−1 = (n2)−1 for some n ∈ Z17, by multiplying
all elements of H by a−1, we get that

{1, B, C, 1−B, 1− C, B − C} ⊆ S17.

On the other hand, suppose that I ⊆ Z17 is an independent set in G with
4 elements. Again, we may assume that I = {0, a, b, c}. We have now that
J = {a, b, c, a− b, a− c, b− c} ⊆ Z17 \ (S17∪{0}). It can be easily verified by testing
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all possible cases that if x, y ∈ Z17 \ (S17 ∪ {0}), then xy ∈ S17. Thus multiplying
all the elements of J by a−1 we see that

{1, B, C, 1−B, 1− C, B − C} ⊆ S17,

where again B = ba−1 and C = ca−1.
We have seen that if there is a 4-clique or an independent set with 4 vertices in

G, then there are distinct number B, C ∈ S17 \ {1} such that
{1, B, C, 1−B, 1− C, B − C} ⊆ S17.

We have that
1− 2 = 16 ∈ S17

1− 4 = 14 /∈ S17

1− 8 = 10 /∈ S17

1− 9 = 9 ∈ S17

1− 13 = 5 /∈ S17

1− 15 = 3 /∈ S17

1− 16 = 1 ∈ S17,

and thus B, C ∈ {2, 9, 16}. However,
B = 9, C = 2 ⇒ B − C = 7 /∈ S17

B = 2, C = 9 ⇒ B − C = 10 /∈ S17

B = 16, C = 2 ⇒ B − C = 15 /∈ S17

B = 2, C = 16 ⇒ B − C = 3 /∈ S17

B = 16, C = 9 ⇒ B − C = 7 /∈ S17

B = 9, C = 16 ⇒ B − C = 10 /∈ S17.

It follows that set {1, B, C, 1−B, 1−C, B−C} cannot be a subset of S17. Thus, ex-
istence of 4-clique or an independent set with 4 vertices would lead to a contradiction
and is therefore not possible.

Since G is a graph with no 4-clique or independent set of 4 vertices, we have that
R(4, 4) > 17. �

Combining the previous lemmas we get the following theorem.

Theorem 7. R(4, 4) = 18. �
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