
Clause Redundancy and Preprocessing in
Maximum Satisfiability?

Extended version with full proofs

Hannes Ihalainen, Jeremias Berg[0000−0001−7660−8061], and
Matti Järvisalo[0000−0003−2572−063X]

HIIT, Department of Computer Science, University of Helsinki, Finland
{firstname.lastname}@helsinki.fi

Abstract. The study of clause redundancy in Boolean satisfiability (SAT)
has proven significant in various terms, from fundamental insights into
preprocessing and inprocessing to the development of practical proof
checkers and new types of strong proof systems. We study liftings of
the recently-proposed notion of propagation redundancy—based on a
semantic implication relationship between formulas—in the context of
maximum satisfiability (MaxSAT), where of interest are reasoning tech-
niques that preserve optimal cost (in contrast to preserving satisfiability
in the realm of SAT). We establish that the strongest MaxSAT-lifting of
propagation redundancy allows for changing in a controlled way the set
of minimal correction sets in MaxSAT. This ability is key in succinctly
expressing MaxSAT reasoning techniques and allows for obtaining cor-
rectness proofs in a uniform way for MaxSAT reasoning techniques very
generally. Bridging theory to practice, we also provide a new MaxSAT
preprocessor incorporating such extended techniques, and show through
experiments its wide applicability in improving the performance of mod-
ern MaxSAT solvers.

Keywords: maximum satisfiability · clause redundancy · propagation
redundancy · preprocessing

1 Introduction

Building heavily on the success of Boolean satisfiability (SAT) solving [13], maxi-
mum satisfiability (MaxSAT) as the optimization extension of SAT constitutes a
viable approach to solving real-world NP-hard optimization problems [35, 6]. In
the context of SAT, the study of fundamental aspects of clause redundancy [29,
28, 20, 31, 21, 32, 23] has proven central for developing novel types of preprocess-
ing and inprocessing-style solving techniques [29, 24] as well as in enabling effi-
cient proof checkers [19, 18, 15, 16, 41, 42, 7] via succinct representation of most
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practical SAT solving techniques. Furthermore, clause redundancy notions have
been shown to give rise to very powerful proof systems, going far beyond res-
olution [22, 23, 30]. In contrast to viewing clause redundancy through the lens
of logical entailment, the redundancy criteria developed in this line of work are
based on a semantic implication relationship between formulas, making them de-
sirably efficient to decide and at the same time are guaranteed to merely preserve
satisfiability rather than logical equivalence.

The focus of this work is the study of clause redundancy in the context of
MaxSAT through lifting recently-proposed variants of the notion of propagation
redundancy [23] based on a semantic implication relationship between formulas
from the realm of SAT. The study of such liftings is motivated from several
perspectives. Firstly, earlier it has been shown that a natural MaxSAT-lifting
called SRAT [10] of the redundancy notion of the notion of resolution asym-
metric tautologies (RAT) [29] allows for establishing the general correctness of
MaxSAT-liftings of typical preprocessing techniques in SAT solving [14], allevi-
ating the need for correctness proofs for individual preprocessing techniques [8].
However, the need for preserving the optimal cost in MaxSAT—as a natural
counterpart for preserving satisfiability in SAT—allows for developing MaxSAT-
centric preprocessing and solving techniques which cannot be expressed through
SRAT [11, 3]. Capturing more generally such cost-aware techniques requires de-
veloping more expressive notions of clause redundancy. Secondly, due to the
fundamental connections between solutions and so-called minimal corrections
sets (MCSes) of MaxSAT instances [25, 8], analyzing the effect of clauses that
are redundant in terms of expressive notions of redundancy on the MCSes of
MaxSAT instances can provide further understanding on the relationship be-
tween the different notions and their fundamental impact on the solutions of
MaxSAT instances. Furthermore, in analogy with SAT, more expressive redun-
dancy notions may prove fruitful for developing further practical preprocessing
and solving techniques for MaxSAT.

Our main contributions are the following. We propose natural liftings of the
three recently-proposed variants PR, LPR and SPR of propagation redundancy
in the context of SAT to MaxSAT. We provide a complete characterization of the
relative expressiveness of the lifted notions CPR, CLPR and CSPR (C standing
for cost for short) and of their impact on the set of MCSes in MaxSAT instances.
In particular, while removing or adding clauses redundant in terms of CSPR and
CLPR (the latter shown to be equivalent with SRAT) do not influence the set
of MCSes underlying MaxSAT instances, CPR can in fact have an influence on
MCSes. In terms of solutions, this result implies that CSPR or CLPR clauses
can not remove minimal (in terms of sum-of-weights of falsified soft clauses)
solutions of MaxSAT instances, while CPR clauses can.

The—theoretically greater—effect that CPR clauses have on the solutions of
MaxSAT instances is key for succinctly expressing further MaxSAT reasoning
techniques via CPR and allows for obtaining correctness proofs in a uniform way
for MaxSAT reasoning techniques very generally; we give concrete examples of
how CPR captures techniques not in the reach of SRAT. Bridging to practical
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preprocessing in MaxSAT, we also provide a new MaxSAT preprocessor ex-
tended with such techniques. Finally, we provide large-scale empirical evidence
on the positive impact of the preprocessor on the runtimes of various modern
MaxSAT solvers, covering both complete and incomplete approaches, suggesting
that extensive preprocessing going beyond the scope of SRAT appears beneficial
to integrate for speeding up modern MaxSAT solvers.

2 Preliminaries

SAT. For a Boolean variable x there are two literals, the positive x and the
negative ¬x, with ¬¬l = l for a literal l. A clause C is a set (disjunction) of
literals and a CNF formula F a set (conjunction) of clauses. We assume that all
clauses are non-tautological, i.e., do not contain both a literal and its negation.
The set var(C) = {x | x ∈ C or ¬x ∈ C} consists of the variables of the
literals in C. The set of variables and literals, respectively, of a formula are
var(F ) =

⋃
C∈F var(C) and lit(F ) =

⋃
C∈F C, respectively. For a set L of

literals, the set ¬L = {¬l | l ∈ L} consists of the negations of the literals in L.
A (truth) assignment τ is a set of literals for which x /∈ τ or ¬x /∈ τ for any

variable x. For a literal l we denote l ∈ τ by τ(l) = 1 and ¬l ∈ τ by τ(l) = 0 or
τ(¬l) = 1 as convenient, and say that τ assigns l the value 1 and 0, respectively.
The set var(τ) = {x | x ∈ τ or ¬x ∈ τ} is the range of τ , i.e., it consists of the
variables τ assigns a value for. For a set L of literals and an assignment τ , the
assignment τL = (τ \ ¬L) ∪ L is obtained from τ by setting τL(l) = 1 for all
l ∈ L and τL(l) = τ(l) for all l /∈ L assigned by τ . For a literal l, τl stands for
τ{l}. An assignment τ satisfies a clause C (τ(C) = 1) if τ ∩C 6= ∅ or equivalently
if τ(l) = 1 for some l ∈ C, and a CNF formula F (τ(F ) = 1) if it satisfies each
clause C ∈ F . A CNF formula is satisfiable if there is an assignment that satisfies
it, and otherwise unsatisfiable. The empty formula > is satisfied by any truth
assignment and the empty clause ⊥ is unsatisfiable. The Boolean satisfiability
problem (SAT) asks to decide whether a given CNF formula F is satisfiable.

Given two CNF formulas F1 and F2, F1 entails F2 (F1 |= F2) if any as-
signment τ that satisfies F1 and only assigns variables of F1 (i.e. for which
var(τ) ⊂ var(F1)) can be extended into an assignment τ2 ⊃ τ that satisfies F2.
The formulas are equisatisfiable if F1 is satisfiable iff F2 is. An assignment τ is
complete for a CNF formula F if var(F ) ⊂ var(τ), and otherwise partial for F .
The restriction F

∣∣
τ

of F wrt a partial assignment τ is a CNF formula obtained
by (i) removing from F all clauses that are satisfied by τ and (ii) removing from
the remaining clauses of F literals l for which τ(l) = 0. Applying unit propaga-
tion on F refers to iteratively restricting F by τ = {l} for a unit clause (clause
with a single literal) (l) ∈ F until the resulting (unique) formula, denoted by
UP(F ), contains no unit clauses or some clause in F becomes empty. We say that
unit propagation on F derives a conflict if UP(F ) contains the empty clause. The
formula F1 implies F2 under unit propagation (F1 `1 F2) if, for each C ∈ F2,
unit propagation derives a conflict in F1 ∧ {(¬l) | l ∈ C}. Note that F1 `1 F2

implies F1 |= F2, but not vice versa in general.
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Maximum Satisfiability. An instance F = (FH ,FS , w) of (weighted partial)
maximum satisfiability (MaxSAT for short) consists of two CNF formulas, the
hard clauses FH and the soft clauses FS , and a weight function w : FS → N that
assigns a positive weight to each soft clause.

Without loss of generality, we assume that every soft clause C ∈ FS is unit1.
The set of blocking literals B(F) = {l | (¬l) ∈ FS} consists of the literals
l the negation of which occurs in FS . The weight function w is extended to
blocking literals by w(l) = w((¬l)). Without loss of generality, we also assume
that l ∈ lit(FH) for all l ∈ B(F)2. Instead of using the definition of MaxSAT
in terms of hard and soft clauses, we will from now on view a MaxSAT instance
F = (FH ,B(F), w) as a set FH of hard clauses, a set B(F) of blocking literals
and a weight function w : B(F)→ N.

Any complete assignment τ over var(FH) that satisfies FH is a solution to
F . The cost COST(F , τ) =

∑
l∈B(F) τ(l)w(l) of a solution τ is the sum of weights

of blocking literals it assigns to 13. The cost of a complete assignment τ that
does not satisfy FH is defined as ∞. The cost of a partial assignment τ over
var(FH) is defined as the cost of smallest-cost assignments that are extensions
of τ . A solution τo is optimal if COST(F , τo) ≤ COST(F , τ) holds for all solutions
τ of F . The cost of the optimal solutions of a MaxSAT instance is denoted by
COST(F), with COST(F) = ∞ iff FH is unsatisfiable. In MaxSAT the task is to
find an optimal solution to a given MaxSAT instance.

Example 1. Let F = (FH ,B(F), w) be a MaxSAT instance with FH = {(x ∨
b1), (¬x ∨ b2), (y ∨ b3 ∨ b4), (z ∨ ¬y ∨ b4), (¬z)}, B(F) = {b1, b2, b3, b4} hav-
ing w(b1) = w(b4) = 1, w(b2) = 2 and w(b3) = 8. The assignment τ =
{b1, b4,¬b2,¬b3,¬x,¬z, y} is an example of an optimal solution of F and has
COST(F , τ) = COST(F) = 2.

With a slight abuse of notation, we denote by F ∧ C = (FH ∪ {C},B(F ∧
C), w) the MaxSAT instance obtained by adding a clause C to an instance
F = (FH ,B(F), w). Adding clauses may introduce new blocking literals but
not change the weights of already existing ones, i.e., B(F) ⊂ B(F ∧ C) and
wF (l) = wF∧C(l) for all l ∈ B(F).

Correction Sets. For a MaxSAT instance F , a subset cs ⊂ B(F) is a minimal
correction set (MCS) of F if (i) FH ∧

∧
l∈B(F)\cs(¬l) is satisfiable and (ii) FH ∧∧

l∈B(F)\css(¬l) is unsatisfiable for every css ( cs. In words, cs is an MCS if it
is a subset-minimal set of blocking literals that is included in some solution τ of
F .4 We denote the set of MCSes of F by mcs(F).

1 A soft clause C can be replaced by the hard clause C∨x and soft clause (¬x), where
x is a variable not in var(FH ∧ FS), without affecting the costs of solutions.

2 Otherwise the instance can be simplified by unit propagating ¬l without changing
the costs of solutions. As a consequence, any complete assignment for FH will be
complete for FH ∧ FS as well.

3 This is equivalent to the sum of weights of soft clauses not satisfied by τ .
4 This is equivalent to a subset-minimal set of soft clauses falsified by τ .
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There is a tight connection between the MCSes and solutions of MaxSAT
instances. Given an optimal solution τo of a MaxSAT instance F , the set τo ∩
B(F) is an MCS of F . In the other direction, for any cs ∈ mcs(F), there is a (not
necessary optimal) solution τ cs such that cs = B(F) ∩ τ cs and COST(F , τ cs) =∑
l∈cs w(l).

Example 2. Consider the instance F from Example 1. The set {b1, b4} ∈ mcs(F)
is an MCS of F that corresponds to the optimal solution τ described in Ex-
ample 1. The set {b2, b3} ∈ mcs(F) is another example of an MCS that in-
stead corresponds to the solution τ2 = {b2, b3,¬b1,¬b4, x,¬z,¬y} for which
COST(F , τ) = 10.

3 Propagation Redundancy in MaxSAT

We extend recent work [23] on characterizing redundant clauses using semantic
implication in the context of SAT to MaxSAT. In particular, we provide natu-
ral counterparts for several recently-proposed strong notions of redundancy in
SAT to the context of MaxSAT and analyze the relationships between them.
Proofs of theorems and propositions missing from the main text can be found
in Appendix A.

In the context of SAT, the most general notion of clause redundancy is seem-
ingly simple: a clause C is redundant for a formula F if it does not affect its
satisfiability, i.e., clause C is redundant wrt a CNF formula F if F and F ∧{C}
are equisatisfiable [29, 20]. This allows for the set of satisfying assignments to
change, and does not require preserving logical equivalence; we are only inter-
ested in satisfiability.

A natural counterpart for this general view in MaxSAT is that the cost of
optimal solutions (rather than the set of optimal solutions) should be preserved.

Definition 1. A clause C is redundant wrt a MaxSAT instance F if COST(F) =
COST(F ∧ C).

This coincides with the counterpart in SAT whenever B(F) = ∅, since then
the cost of a MaxSAT instance F is either 0 (if FH is satisfiable) or ∞ (if FH
is unsatisfiable). Unless explicitly specified, we will use the term “redundant” to
refer to Definition 1.

Following [23], we say that a clause C blocks the assignment ¬C (and all
assignments τ for which ¬C ⊂ τ). As shown in the context of SAT [23], a clause
C is redundant (in the equisatisfiability sense) for a CNF formula F if C does not
block all of its satisfying assignments. The counterpart that arises in the context
of MaxSAT from Definition 1 is that the cost of at least one of the solutions not
blocked by C is no greater than the cost of ¬C.

Proposition 1. A clause C is redundant wrt a MaxSAT instance F if and
only if there is an assignment τ for which COST(F ∧ C, τ) = COST(F , τ) ≤
COST(F ,¬C).
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The equality COST(F ∧ C, τ) = COST(F , τ) of Proposition 1 is necessary, as
witnessed by the following example.

Example 3. Consider the MaxSAT instance F detailed in Example 1, the clause
C = (b5) with b5 ∈ B(F ∧ C) and the assignment τ = {b5}. Then 2 =
COST(F , τ) ≤ COST(F ,¬C) = 2 but C is not redundant since COST(F ∧ C) =
2 + wF∧C(b5) > 2 = COST(F).

Proposition 1 provides a sufficient condition for a clause C being redundant.
Further requirements on the assignment τ can be imposed without loss of gen-
erality.

Theorem 1. A non-empty clause C is redundant wrt a MaxSAT instance F =
(FH ,B(F), w) if and only if there is an assignment τ such that
(i) τ(C) = 1, (ii) FH

∣∣
¬C |= FH

∣∣
τ

and
(iii) COST(F ∧ C, τ) = COST(F , τ) ≤ COST(F ,¬C).

As we will see later, a reason for including two additional conditions in The-
orem 1 is to allow defining different restrictions of redundancy notions, some of
which allow for efficiently identifying redundant clauses.

Example 4. Consider the instance F = (FH ,B(F), w) detailed in Example 1, a
clause C = (¬x∨ b5) for a b5 ∈ B(F ∧C) and an assignment τ = {¬x, b1}. Then:
τ(C) = 1, {(b2), (y ∨ b3 ∨ b4), (z ∨¬y ∨ b4), (¬z)} = FH

∣∣
¬C |= FH

∣∣
τ

= {(y ∨ b3 ∨
b4), (z∨¬y∨b4), (¬z)}, and 2 = COST(F∧C, τ) = COST(F , τ) ≤ COST(F ,¬C) = 3.
We conclude that C is redundant.

In the context of SAT, imposing restrictions on the entailment operator and
the set of assignments has been shown to give rise to several interesting re-
dundancy notions which hold promise of practical applicability. These include
three variants (LPR, SPR, and PR) of so-called (literal/set) propagation redun-
dancy [23]. For completness we restate the definitions of these three notions.
A clause C is LPR wrt a CNF formula F if there is a literal l ∈ C for which
F
∣∣
¬C `1 F

∣∣
(¬C)l

, SPR if the same holds for a subset L ⊂ C, and PR if there

exists an assignment τ that satisfies C and for which F
∣∣
¬C `1 F

∣∣
τ
. With the

help of Theorem 1, we obtain counterparts for these notions in the context of
MaxSAT.

Definition 2. With respect to an instance F = (FH ,B(F), w), a clause C is

– cost literal propagation redundant (CLPR) (on l) there is a literal
l ∈ C for which either (i) ⊥ ∈ UP(FH

∣∣
¬C) or (ii) l /∈ B(F∧C) and FH

∣∣
¬C `1

FH
∣∣
(¬C)l

;

– cost set propagation redundant (CSPR) (on L) if there is a set L ⊂
C \ B(F ∧ C) of literals for which FH

∣∣
¬C `1 FH

∣∣
(¬C)L

; and

– cost propagation redundant (CPR) if there is an assignment τ such that
(i) τ(C) = 1, (ii) FH

∣∣
¬C `1 FH

∣∣
τ

and
(iii) COST(F ∧ C, τ) = COST(F , τ) ≤ COST(F ,¬C).
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Example 5. Consider again F = (FH ,B(F), w) from Example 1. The clause
D = (b1 ∨ b2) is CLPR wrt F since ⊥ ∈ UP(FH

∣∣
¬D) as {(x), (¬x)} ⊂ FH

∣∣
¬D.

As for the redundant clause C and assignment τ detailed in Example 3, we have
that C is CPR, since FH

∣∣
τ
⊂ FH

∣∣
¬C which implies FH

∣∣
¬C `1 FH

∣∣
τ
.

We begin the analysis of the relationship between these redundancy no-
tions by showing that CSPR (and by extension CLPR) clauses also satisfy the
MaxSAT-centric condition (iii) of Theorem 1. Assume that C is CSPR wrt a
instance F = (FH ,B(F), w) on the set L.

Lemma 1. Let τ ⊃ ¬C be a solution of F . Then, COST(F , τ) ≥ COST(F , τL).

The following corollary of Lemma 1 establishes that CSPR and CLPR clauses
are redundant according to Definition 1.

Corollary 1. COST(F ∧ C, (¬C)L) = COST(F , (¬C)L) ≤ COST(F ,¬C).

The fact that CPR clauses are redundant follows trivially from the fact that
FH
∣∣
¬C `1 FH

∣∣
τ

implies FH
∣∣
¬C |= FH

∣∣
τ
. However, given a solution ω that does

not satisfy a CPR clause C, the next example demonstrates that the assignment
ωτ need not have a cost lower than ω. Stated in another way, the example
demonstrates that an observation similar to Lemma 1 does not hold for CPR
clauses in general.

Example 6. Consider a MaxSAT instance F = (FH ,B(F), w) having FH =
{(x ∨ b1), (¬x, b2)}, B(F) = {b1, b2} and w(b1) = w(b2) = 1. The clause C =
(x) is CPR wrt F , the assignment τ = {x, b2} satisfies the three conditions of
Definition 2. Now δ = {¬x, b1} is a solution of F that does not satisfy C for
which δτ = {x, b1, b2} and 1 = COST(F , δ) < 2 = COST(F , δτ ).

Similarly as in the context of SAT, verifying that a clause is CSPR (and
by extension CLPR) can be done efficiently. However, in contrast to SAT, we
conjecture that verifying that a clause is CPR can not in the general case be
done efficiently, even if the assignment τ is given. While we will not go into
detail on the complexity of identifying CPR clauses, the following proposition
gives some support for our conjecture.

Proposition 2. Let F be an instance and k ∈ N. There is another instance
FM , a clause C, and an assignment τ such that C is CPR wrt FM if and only
if COST(F) ≥ k.

As deciding if COST(F) ≥ k is NP-complete in the general case, Proposition 2
suggests that it may not be possible to decide in polynomial time if an assignment
τ satisfies the three conditions of Definition 2 unless P=NP. This is in contrast to
SAT, where verifying propagation redundancy can be done in polynomial time
if the assignment τ is given, but is NP-complete if not [24].

The following observations establish a more precise relationship between the
redundancy notions. For the following, let RED(F) denote the set of clauses that
are redundant wrt a MaxSAT instance F according to Definition 1. Analogously,
the sets CPR(F), CSPR(F) and CLPR(F) consist of the clauses that are CPR,
CSPR and CLPR wrt F , respectively.
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Observation 1 CLPR(F) ⊂ CSPR(F) ⊂ CPR(F) ⊂ RED(F) holds for any
MaxSAT instance F .

Observation 2 There are MaxSAT instances F1,F2 and F3 for which
CLPR(F1) ( CSPR(F1), CSPR(F2) ( CPR(F2) and CPR(F3) ( RED(F3).

The proofs of Observations 1 and 2 follow directly from known results in
the context of SAT [23] by noting that any CNF formula can be viewed as an
instance of MaxSAT without blocking literals.

For a MaxSAT-centric observation on the relationship between the redun-
dancy notions, we note that the concept of redundancy and CPR coincide for
any MaxSAT instance that has solutions.

Observation 3 CPR(F) = RED(F) holds for any MaxSAT instance F with
COST(F) <∞.

We note that a result similar to Observation 3 could be formulated in the context
of SAT. The SAT-counterpart would state that the concept of redundancy (in the
equisatisfiability sense) coincides with the concept of propagation redundancy
for SAT solving (defined e.g. in [23]) for satisfiable CNF formulas. However,
assuming that a CNF formula is satisfiable is very restrictive in the context
of SAT. In contrast, it is natural to assume that a MaxSAT instance admits
solutions.

We end this section with a simple observation: adding a redundant clause C
to a MaxSAT instance F preserves not only optimal cost, but optimal solutions
of F ∧ C are also optimal solutions of F . However, the converse need not hold;
an instance F might have optimal solutions that do not satisfy C.

Example 7. Consider an instance F = (FH ,B(F), w) with FH = {(b1 ∨ b2)},
B(F) = {b1, b2} and w(b1) = w(b2) = 1. The clause C = (¬b1) is CPR wrt
F . In order to see this, let τ = {¬b1, b2}. Then τ satisfies C (condition (i) of
Definition 2). Furthermore, τ satisfies FH , implying FH

∣∣
¬C `1 FH

∣∣
τ

(condition
(ii)). Finally, we have that 1 = COST(F , τ) = COST(F ∧C, τ) ≤ COST(F ,¬C) = 1
(condition (iii)). The assignment δ = {b1,¬b2} is an example of an optimal
solution of F that is not a solution of F ∧ C.

4 Propagation Redundancy and MCSes

In this section, we analyze the effect of adding redundant clauses on the MCSes
of MaxSAT instances. As the main result, we show that adding CSPR (and by
extension CLPR) clauses to a MaxSAT instance F preserves all MCSes while
adding CPR clauses does not in general. Stated in terms of solutions, this means
that adding CSPR clauses to F preserves not only all optimal solutions, but
all solutions τ for which (τ ∩ B(F)) ∈ mcs(F), while adding CPR clauses only
preserves at least one optimal solution.

Effect of CLPR Clauses on MCSes. MaxSAT-liftings of four specific SAT
solving techniques (including bounded variable elimination and self-subsuming



Title Suppressed Due to Excessive Length 9

resolution) were earlier proposed in [8]. Notably, the correctness of the lift-
ings was shown individually for each of the techniques by arguing individu-
ally that applying one of the liftings does not change the set of MCSes of any
MaxSAT instance. Towards a more generic understanding of optimal cost pre-
serving MaxSAT preprocessing, in [10] the notion of solution resolution asym-
metric tautologies (SRAT) was proposed as a MaxSAT-lifting of the concept of
resolution asymmetric tautologies (RAT). In short, a clause C is a SRAT clause
for a MaxSAT instance F = (FH ,B(F), w) if there is a literal l ∈ C \ B(F ∧C)
such that FH `1 ((C ∨D) \ {¬l}) for every D ∈ FH for which ¬l ∈ D.

In analogy with RAT [29], SRAT was shown in [10] to allow for a general
proof of correctness for natural MaxSAT-liftings of a wide range of SAT prepro-
cessing techniques, covering among other the four techniques for which individual
correctness proofs were provided in [8]. The generality follows essentially from
the fact that the addition and removal of SRAT clauses preserves MCSes. The
same observations apply to CLPR, as CLPR and SRAT are equivalent.

Proposition 3. A clause C is CLPR wrt F iff it is SRAT wrt F .

The proof of Proposition 3 follows directly from corresponding results in the
context of SAT [23]. Informally speaking, a clause C is SRAT on a literal l iff it
is RAT [29] on l and l /∈ B(F). Similarly, a clause C is CLPR on a literal l iff it is
LPR as defined in [23] on l and l /∈ B(F). Proposition 3 together with previous
results from [10] implies that the MCSes of MaxSAT instances are preserved
under removing and adding CLPR clauses.

Corollary 2. If C is CLPR wrt F , then mcs(F) = mcs(F ∧ C).

Effect of CPR Clauses on MCSes. We turn our attention to the effect of
CPR clauses on the MCSes of MaxSAT instances. Our analysis makes use of
the previously-proposed MaxSAT-centric preprocessing rule known as subsumed
label elimination (SLE) [11, 33]5.

Definition 3. (Subsumed Label Elimination [11, 33]) Consider a MaxSAT in-
stance F = (FH ,B(F), w) and a blocking literal l ∈ B(F) for which ¬l /∈
lit(FH). Assume that there is another blocking literal ls ∈ B(F) for which
(1) ¬ls /∈ lit(FH), (2) {C ∈ FH | l ∈ C} ⊂ {C ∈ FH | ls ∈ C} and
(3) w(l) ≥ w(ls). The subsumed label elimination (SLE) rule allows adding (¬l)
to FH .

A specific proof of correctness of SLE was given in [11]. The following proposition
provides an alternative proof based on CPR.

Proposition 4 (Proof of correctness for SLE). Let F be a MaxSAT in-
stance and assume that the blocking literals l, ls ∈ B(F) satisfy the three condi-
tions of Definition 3. Then, the clause C = (¬l) is CPR wrt F .

5 Rephrased here using our notation.
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Proof. We show that τ = {¬l, ls} satisfies the three conditions of Definition 2.
First τ satisfies C (condition (i)). Conditions (1) and (2) of Definition 3 imply
FH
∣∣
τ
⊂ FH

∣∣
¬C which in turn implies FH

∣∣
¬C `1 FH

∣∣
τ

(condition (ii)).
As for condition (iii), the requirement COST(F ∧ C, τ) = COST(F , τ) follows

from B(F ∧ C) = B(F). Let δ ⊃ ¬C be a complete assignment of FH for which
COST(F , δ) = COST(F ,¬C). If COST(F , δ) = ∞ then COST(F , τ) ≤ COST(F ,¬C)
follows trivially. Otherwise δ \¬C satisfies FH

∣∣
¬C so by FH

∣∣
¬C `1 FH

∣∣
τ

it satis-

fies FH
∣∣
τ

as well. Thus δR = ((δ\¬C)\{¬l | l ∈ τ})∪τ = (δ\{l,¬l,¬ls})∪{¬l, ls}
is an extension of τ that satisfies FH and for which COST(F , τ) ≤ COST(F , δR) ≤
COST(F , δ) by condition (3) of Definition 3. Thereby τ satisfies the conditions of
Definition 2 so C is CPR wrt F . ut

Example 8. The blocking literals b3, b4 ∈ B(F) of the instance F detailed in
Example 1 satisfy the conditions of Definition 3. By Proposition 4 the clause
(¬b3) is CPR wrt F .

In [11] it was shown that SLE does not preserve MCSes in general. By Corol-
lary 2, this implies that SLE can not be viewed as the addition of CLPR clauses.
Furthermore, by Proposition 4 we obtain the following.

Corollary 3. There is a MaxSAT instance F and a clause C that is CPR wrt
F for which mcs(F) 6= mcs(F ∧ C).

Effect of CSPR Clauses on MCSes. Having established that CLPR clauses
preserve MCSes while CPR clauses do not, we complete the analysis by demon-
strating that CSPR clauses preserve MCSes.

Theorem 2. Let F be a MaxSAT instance and C a CSPR clause of F . Then
mcs(F) = mcs(F ∧ C).

Theorem 2 follows from the following lemmas and propositions. In the fol-
lowing, let C be a clause that is CSPR wrt a MaxSAT instance F on a set
L ⊂ C \ B(F ∧ C).

Lemma 2. Let cs ⊂ B(F). If FH ∧
∧
l∈B(F)\cs(¬l) is satisfiable, then

(FH ∧ C) ∧
∧
l∈B(F∧C)\cs(¬l) is satisfiable.

Lemma 2 helps in establishing one direction of Theorem 2.

Proposition 5. mcs(F) ⊂ mcs(F ∧ C).

Proof. Let cs ∈ mcs(F). Then FH ∧
∧
l∈B(F)\cs(¬l) is satisfiable, which by

Lemma 2 implies that (FH ∧ C) ∧
∧
l∈B(F∧C)\cs(¬l) is satisfiable.

To show that (FH∧C)∧
∧
l∈B(F∧C)\css(¬l) is unsatisfiable for any css ( cs ⊂

B(F), we note that any assignment satisfying (FH∧C)∧
∧
l∈B(F∧C)\css(¬l) would

also satisfy FH ∧
∧
l∈B(F)\css(¬l), contradicting cs ∈ mcs(F). ut

The following lemma is useful for showing inclusion in the other direction.
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Lemma 3. Let cs ∈ mcs(F ∧ C). Then cs ⊂ B(F).

Lemma 3 allows for completing the proof of Theorem 2.

Proposition 6. mcs(F ∧ C) ⊂ mcs(F).

Proof. Let cs ∈ mcs(F ∧ C), which by Lemma 3 implies cs ⊂ B(F). Let τ
be a solution that satisfies (FH ∧ C) ∧

∧
l∈B(F∧C)\cs(¬l). Then τ satisfies FH ∧∧

l∈B(F)\cs(¬l). For contradiction, assume that FH∧
∧
l∈B(F)\css(¬l) is satisfiable

for some css ( cs. Then by Lemma 2, (FH ∧C)∧
∧
l∈B(F∧C)\css(¬l) is satisfiable

as well, contradicting cs ∈ mcs(F ∧ C). Thereby cs ∈ mcs(F). ut
Theorem 2 implies that SLE can not be viewed as the addition of CSPR

clauses. In light of this, an interesting remark is that—in contrast to CPR clauses
in general (recall Example 6)—the assignment τ used in the proof of Proposi-
tion 4 can be used to convert any assignment that does not satisfy the CPR
clause detailed in Definition 3 into one that does, without increasing its cost.

Observation 4 Let F be a MaxSAT instance and assume that the blocking lit-
erals l, ls ∈ B(F) satisfy the three conditions of Definition 3. Let τ = {¬l, ls}
and consider any solution δ ⊃ ¬C of F that does not satisfy the CPR clause
C = (¬l). Then δτ is a solution of F ∧ C for which COST(F , δτ ) ≤ COST(F , δ).

5 CPR-based Preprocessing for MaxSAT

Mapping the theoretical observations into practical preprocessing, in this section
we discuss through examples how CPR clauses can be used as a unified theoret-
ical basis for capturing a wide variety of known MaxSAT reasoning rules, and
how they could potentially help in the development of novel MaxSAT reasoning
techniques.

Our first example is the so-called hardening rule [3, 17, 26, 8]. In terms of our
notation, given a solution τ to a MaxSAT instance F = (FH ,B(F), w) and a
blocking literal l ∈ B(F) for which w(l) > COST(F , τ), the hardening rule allows
adding the clause C = (¬l) to FH .

The correctness of the hardening rule can be established with CPR clauses.
More specifically, as COST(F , τ) < w(l) it follows that τ(C) = 1 (condition (i)
of Definition 2). Since τ satisfies F , we have that FH

∣∣
τ

= > so FH
∣∣
¬C `1 FH

∣∣
τ

(condition (ii)). Finally, as COST(F , δ) ≥ w(l) > COST(F , τ) holds for all δ ⊃ ¬C
it follows that COST(F ,¬C) > COST(F , τ) = COST(F ∧ C, τ). As such, (¬l) is
CPR clause wrt F . If fact, instead of assuming w(l) > COST(F , τ) it suffices to
assume w(l) ≥ COST(F , τ) and τ(l) = 0.

The hardening rule can not be viewed as the addition of CSPR or CLPR
clauses because it does not in general preserve MCSes.

Example 9. Consider the MaxSAT instance F from Example 1 and a solution
τ = {b1, b2, b4,¬b3,¬z, x, y}. Since COST(F , τ) = 3 < 8 = w(b3), the clause (¬b3)
is CPR. However, mcs(F) 6= mcs(F ∧ C) since the set {b2, b3} ∈ mcs(F) is not
an MCS of F ∧ C as (FH ∧ C) ∧

∧
l∈B(F)\cs(¬l) = (FH ∧ (¬b3)) ∧ (¬b1) ∧ (¬b4)

is not satisfiable.
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Viewing the hardening rule through the lens of CPR clauses demonstrates
novel aspects of the MaxSAT-liftings of propagation redundancy. In particular,
instantiated in the context of SAT, an argument similar to the one we made for
hardening shows that given a CNF formula F , an assignment τ satisfying F , and
a literal l for which τ(l) = 0, the clause (¬l) is redundant (wrt equisatisfiability).
While formally correct, such a rule is not very useful for SAT solving. In contrast,
in the context of MaxSAT the hardening rule is employed in various modern
MaxSAT solvers and leads to non-trivial performance-improvements [1, 5].

As another example of capturing MaxSAT-centric reasoning with CPR, con-
sider the so-called TrimMaxSAT rule [39]. Given a MaxSAT instance F =
(FH ,B(F), w) and a literal l ∈ B(F) for which τ(l) = 1 for all solutions of
F , the TrimMaxSAT rule allows adding the clause C = (l) to FH . In this case
the assumptions imply that all solutions of F also satisfy C, i.e., that FH

∣∣
¬C is

unsatisfiable. As such, any assignment τ that satisfies C and FH will also satisfy
the three conditions of Definition 2 which demonstrates that C is CPR. It is,
however, not CSPR since the only literal in C is blocking.

As a third example of capturing (new) reasoning techniques with CPR, con-
sider an extension of the central variable elimination rule that allows (to some
extent) for eliminating blocking literals.

Definition 4. Consider a MaxSAT instance F and a blocking literal l ∈ B(F).
Let BBVE(F) be the instance obtained by (i) adding the clause C ∨D to F for
every pair (C ∨ l), (D ∨ ¬l) ∈ FH and (ii) removing all clauses (D ∨ ¬l) ∈ FH .
Then COST(F) = COST(BBVE(F)) and mcs(F) = mcs(BBVE(F)).

On the Limitations of CPR. Finally, we note that while CPR clauses sig-
nificantly generalize existing theory on reasoning and preprocessing rules for
MaxSAT, there are known reasoning techniques that can not (at least straight-
forwardly) be viewed through the lens of propagation redundancy. For a concrete
example, consider the so-called intrinsic atmost1 technique [26].

Definition 5. Consider a MaxSAT instance F and a set L ⊂ B(F) of blocking
literals. Assume that (i) |τ ∩ {¬l | l ∈ L}| ≤ 1 holds for any solution τ of F and
(ii) w(l) = 1 for each l ∈ L. Now form the instance AT-MOST-ONE(F , L) by
(i) removing each literal l ∈ L from B(F), and (ii) adding the clause {(¬l) | l ∈
L} ∪ {lL} to F , where lL is a fresh blocking literal with w(lL) = 1.

It has been established that any optimal solution of AT-MOST-ONE(F , L)
is an optimal solution of F [26]. However, as the next example demonstrates,
the preservation of optimal solutions is in general not due to the clauses added
being redundant, as applying the technique can affect optimal cost.

Example 10. Consider the MaxSAT instance F = (FH ,B(F), w) with FH =
{(li) | i = 1 . . . n}, B(F) = {l1 . . . ln} and w(l) = 1 for all l ∈ B(F). Then |τ ∩
¬B(F)| = 0 ≤ 1 holds for all solutions τ of F so the intrinsic-at-most-one tech-
nique can be used to obtain the instance F2 = AT-MOST-ONE(F ,B(F)) =
(F2

H ,B(F2), w2) with F2
H = FH ∪ {(¬l1 ∨ . . . ∨ ¬ln ∨ lL)}, B(F2) = {lL} and
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w2(lL) = 1. Now δ = {l | l ∈ B(F)} ∪ {lL} is an optimal solution to both F2

and F for which 1 = COST(F2, δ) < COST(F , δ) = n.

Example 10 implies that the intrinsic atmost1 technique can not be viewed as
the addition or removal of redundant clauses. Generalizing CPR to cover weight
changes could lead to further insights especially due to potential connections
with core-guided MaxSAT solving [2, 36–38].

6 MaxPre 2: More General Preprocesssing in Practice

Connecting to practice, we extended the MaxSAT preprocessor MaxPre [33] ver-
sion 1 with support for techniques captured by propagation redundancy. The re-
sulting MaxPre version 2, as outlined in the following, hence includes techniques
which have previously only been implemented in specific solver implementations
rather than in general-purpose MaxSAT preprocessors.

First, let us mention that the earlier MaxPre [33] version 1 assumes that
any blocking literals only appear in a single polarity among the hard clauses.
Removing this assumption—supported by theory developed in Sections 3-4—
decreases the number of auxiliary variables that need to be introduced when a
MaxSAT instance is rewritten to only include unit soft clauses. For example,
consider a MaxSAT instance F with FH = {(¬x ∨ y), (¬y ∨ x)} and FS =
{(x), (¬y)}. For preprocessing the instance, MaxPre 1 extends both soft clauses
with a new, auxiliary variable and runs preprocessing on the instance F =
{(¬x∨y), (¬y∨x), (x∨b1), (¬y∨b2)} with B(F) = {b1, b2}. In contrast, MaxPre
2 detects that the clauses in FS are unit and reuses them as blocking literals,
invoking preprocessing on F = {(¬x ∨ y), (¬y ∨ x)} with B(F) = {¬x, y}.

In addition to the techniques already implemented in MaxPre 1, MaxPre
2 includes the following additional techniques: hardening [3], a variant Trim-
MaxSAT [39] that works on all literals of a MaxSAT instance, the intrinsic
atmost1 technique [26] and a MaxSAT-lifting of failed literal elimination [12]. In
short, failed literal elimination adds the clause (¬l) to the hard clauses FH of
an instance in case unit-propagation derives a conflict in FH ∧ {(l)}. Addition-
ally, the implementation of failed literal elimination attempts to identify implied
equivalences between literals that can lead to further simplification.

For computing the solutions required by TrimMaxSAT and detecting the car-
dinality constraints required by intrinsic-at-most-one constraints, MaxPre 2 uses
the Glucose 3.0 SAT-solver [4]. For computing solutions required by hardening,
MaxPre 2 additionally uses the SatLike incomplete MaxSAT solver [34] within
preprocessing. MaxPre 2 is available in open source at https://bitbucket.or

g/coreo-group/maxpre2/.
We emphasize that, while the additional techniques implemented by MaxPre

2 have been previously implemented as heuristics in specific solver implemen-
tations, MaxPre 2 is—to the best of our understanding—the first stand-alone
implementation supporting techniques whose correctness cannot be established
with previously-proposed MaxSAT redundancy notions (i.e., SRAT). The goal
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of our empirical evaluation presented in the next section is to demonstrate the
potential of viewing expressive reasoning techniques not only as solver heuristics,
but as a separate step in the MaxSAT solving process whose correctness can be
established via propagation redundancy.

7 Empirical Evaluation

We report on results from an experimental evaluation of the potential of in-
corporating more general reasoning in MaxSAT preprocessing. In particular, we
evaluated both complete solvers (geared towards finding provably-optimal solu-
tions) and incomplete solvers (geared towards finding relatively good solutions
fast) on standard heterogenous benchmarks from recent MaxSAT Evaluations.
All experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core machines with
64 GB memory and CentOS 7. All reported runtimes include the time used in
preprocessing (when applicable).

7.1 Impact of Preprocessing on Complete Solvers

We start by considering recent representative complete solvers covering three
central MaxSAT solving paradigms: the core-guided solver CGSS [27] (as a recent
improvement to the successful RC2 solver [26]), and the MaxSAT Evaluation
2021 versions of the implicit hitting set based solver MaxHS [17] and the solution-
improving solver Pacose [40]. For each solver S we consider the following variants.

– S: S in its default configuration.
– S no preprocess: S with the solver’s own internal preprocessing turned off

(when applicable).
– S+maxpre1: S after applying MaxPre 1 using its default configuration.
– S+maxpre2/none: S after applying MaxPre 2 using the default configuration

of MaxPre 1.
– S+maxpre2/<TECH>: S after applying MaxPre 2 using the standard config-

uration of MaxPre 1 and additional techniques integrated into MaxPre 2 (as
detailed in Section 6) as specified by <TECH>.

More precisely, <TECH> specifies which of the techniques HTVGR are applied:
H for hardening, T and V for TrimMaxSAT on blocking and non-blocking liter-
als, respectively, G for intrinsic-at-most-one-constraints and R for failed literal
elimination. It should be noted that an exhaustive evaluation of all subsets and
application orders of these techniques is infeasible in practice. Based on prelim-
inary experiments, we observed that the following choices were promising: HRT
for CGSS and MaxHS, and HTVGR for Pacose; we report results using these
individual configurations.

As benchmarks, we used the combined set of weighted instances from the
complete tracks of MaxSAT Evaluation 2020 and 2021. After removing dupli-
cates, this gave a total of 1117 instances. We enforced a per-instance time limit of
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Fig. 1. Impact of preprocessing on complete solvers. For each solver, the number of
instances solved within a 60-min per-instance time limit in parentheses.

60 minutes and memory limit of 32 GB. Furthermore, we enforced a per-instance
120-second time limit on preprocessing.

An overview of the results is shown in Figure 1, illustrating for each solver
the number of instances solved (x-axis) under different per-instance time lim-
its (y-axis). We observe that for both CGSS and MaxHS, S+maxpre1 and
S+maxpre2/none leads to less instances solved compared to S. In contrast,
S+maxpre2/HRT, i.e., incorporating the stronger reasoning techniques of Max-
Pre 2, performs best of all preprocessing variants and improves on MaxHS also
in terms of the number of instances solved. For Pacose, we observe that both Pa-
cose+maxpre1 and Pacose+maxpre2/new (without the stronger reasoning tech-
niques) already improve the performance of Pacose, leading to more instances
solved. Incorporating the stronger reasoning rules further significantly improves
performance, with Pacose+maxpre2/HVRTG performing the best among all of the
Pacose variants.

7.2 Impact of Preprocessing on Incomplete MaxSAT Solving

As a representative incomplete MaxSAT solver we consider the MaxSAT Evalua-
tion 2021 version of Loandra [9], as the best-performing solver in the incomplete
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Table 1. Impact of preprocessing on the incomplete solver Loandra. The wins are
organized column-wise, the cell on row X column Y contains the total number of
instances that the solver on column Y wins over the solver on row X.

base maxpre2/ maxpre2/

#Wins (maxpre1) no-prepro none VG

base (maxpre1) — 154 135 152
no-prepro 208 — 216 218
maxpre2/none 105 143 — 77
maxpre2/VG 110 140 80 —

Score (avg): 0.852 0.840 0.863 0.870

track of MaxSAT Evaluation under a 300s per-instance time limit on weighted
instances. Loandra combines core-guided and solution-improving search towards
finding good solutions fast. We consider the following variants of Loandra.

– base (maxpre1): Loandra in its default configuration which makes use of
MaxPre 1.

– no-prepro: Loandra with its internal preprocessing turned off.
– maxpre2/none: base with its internal preprocessor changed from MaxPre 1

to MaxPre 2 using the default configuration of MaxPre 1.
– maxpre2/VG: maxpre2 incorporating the additional intrinsic-at-most-one con-

straints technique and the extension of TrimMaxSAT to non-blocking literals
(cf. Section 6), found promising in preliminary experimentation.

As benchmarks, we used the combined set of weighted instances from the
incomplete tracks of MaxSAT Evaluation 2020 and 2021. After removing dupli-
cates, this gave a total of 451 instances. When reporting results, we consider for
each instance and solver the cost of the best solution found by the solver within
300 seconds (including time spent preprocessing and solution reconstruction).

We compare the relative runtime performance of the solver variants using
two metrics: #wins and the average incomplete score. Assume that τx and τy
are the lowest-cost solutions computed by two solvers X and Y on a MaxSAT
instance F and that best-cost(F) is the lowest cost of a solution of F found
either in our evaluation or in the MaxSAT Evaluations. Then X wins over Y
if COST(F , τx) < COST(F , τy). The incomplete score, score(F , X), obtained by
solver X on F is the ratio between the cost of the solution found by X and
best-cost(F), i.e., score(F , X) = (best-cost(F) + 1)/(COST(F , τx) + 1). The
score of X on F is 0 if X is unable to find any solutions within 300 seconds.

An overview of the results is shown in Table 1. The upper part of the table
shows a pairwise comparison on the number of wins over all benchmarks. The
wins are organized column-wise, i.e., the cell on row X column Y contains the
total number of instances that the solver on column Y wins over the solver on
row X. The last row contains the average score obtained by each solver over
all instances. We observe that any form of preprocessing improves the perfor-
mance of Loandra, as witnessed by the fact that no-prepro is clearly the worst-
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Fig. 2. Impact of preprocessing on instance size.

performing variant. The variants that make use of MaxPre 2 outperform the
baseline under both metrics; both maxpre2 no new and maxpre2-w:VG obtain
a higher average score and win on more instances over base. The comparison
between maxpre2/none and maxpre2/VG is not as clear. On one hand, the score
obtained by maxpre2/VG is higher. On the other hand, maxpre2/none wins on
80 instances over maxpre2/VG and looses on 77. This suggests that the quality
of solutions computed by maxpre2/VG is on average higher, and that on the
instances on which maxpre2/none wins the difference is smaller.

7.3 Impact of Preprocessing on Instance Sizes

In addition to improved solver runtimes, we note that MaxPre 2 has a positive
effect on the size of instances (both in terms of the number of variables and
clauses remaining) when compared to preprocessing with MaxPre 1; see Figure 2
for a comparison, with maxpre2/HRT compared to maxpre1 (left) and to original
instance sizes (right).

8 Conclusions

We studied liftings of variants of propagation redundancy from SAT in the con-
text of maximum satisfiability where—more fine-grained than in SAT—of inter-
est are reasoning techniques that preserve optimal cost. We showed that CPR,
the strongest MaxSAT-lifting, allows for changing minimal corrections sets in
MaxSAT in a controlled way, thereby succinctly expressing MaxSAT reasoning
techniques very generally. We also provided a practical MaxSAT preprocessor ex-
tended with techniques captured by CPR and showed empirically that extended
preprocessing has a positive overall impact on a range of MaxSAT solvers. In-
teresting future work includes the development of new CPR-based preprocessing
rules for MaxSAT capable of significantly affecting the MaxSAT solving pipeline
both in theory and practice, as well as developing an understanding of the re-
lationship between redundancy notions and the transformations performed by
MaxSAT solving algorithms.
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A Proofs

We detail the remaining proofs of the main claims of the paper.
We begin with formulating the observation that an optimal solution of an

instance to which redundant clauses has been added is also optimal solutions to
the original instance as a Lemma. The lemma will then be used to prove other
results.

Lemma 4. Assume that C is redundant wrt a MaxSAT instance F . Let τ be an
optimal solution of F ∧ C. Then τ is an optimal solution of F .

Proof. The result follows B(F) ⊂ B(F ∧C) since COST(F , τ) ≤ COST(F ∧C, τ) =
COST(F ∧ C) = COST(F). ut

Proof of Theorem 1.

Proof. Assume first that C is redundant. If FH is unsatisfiable, then so are
FH ∧ C and FH

∣∣
¬C and any truth assignment τ that satisfies C fullfils the

three conditions. Assume then that FH is satisfiable. Then ∞ > COST(F) =
COST(F ∧C) so F ∧C is satisfiable. Let τ be an optimal solution of F ∧C. Then
τ satisfies C (condition (i)). Since τ also satisfies FH , it follows that FH

∣∣
τ

= >
implying condition (ii). Finally, by Lemma 4, τ is an optimal solution of F
implying COST(F ,¬C) ≥ COST(F , τ) = COST(F) = COST(F∧C) = COST(F∧C, τ)
and condition (iii).

Assume then that COST(F ,¬C) ≥ COST(F , τ) = COST(F∧C, τ) (i.e. condition
(iii)). If FH is unsatisfiable, then so is FH ∧C and∞ = COST(F) = COST(F ∧C)
as required. Now assume that COST(F) <∞. As COST(F ∧C) ≥ COST(F) follows
from any solution of the former being a solution of the latter, it suffices to show
that COST(F ∧ C) ≤ COST(F).

Let δ be an optimal solution to F . If δ satisfies C, then COST(F) = COST(F , δ) =
COST(F ∧ C, δ) ≥ COST(F ∧ C). Otherwise ¬C ⊂ δ so by the assumption and
the optimality of δ we have that ∞ > COST(F) = COST(F , δ) = COST(F ,¬C) ≥
COST(F , τ) = COST(F ∧ C, τ) as required. ut

Proof of Lemma 1.

Proof. The interesting case is COST(F , τ) <∞. Then (τ \ (¬C)) satisfies FH
∣∣
¬C

so by the assumption FH
∣∣
¬C `1 FH

∣∣
(¬C)L

it satisfies FH
∣∣
(¬C)L

as well. Thus

τR = (τ \ (¬C))∪ (¬C)L is an extension of (¬C)L into a complete assignment of
F that satisfies FH . Since τ = (τ \(¬C))∪¬C and τR = (τ \(¬C))∪(¬C)L only
differ on literals in L and L ⊂ C\B(F) it follows that COST(F , τ) = COST(F , τR).

ut

Proof of Proposition 2. The proof relies on the following MaxSAT instance.
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Definition 6. Fix k ∈ N and let Fk = (FkH ,B(Fk), wk) be a MaxSAT instance
that has; FkH = {(xi) | i = 1 . . . k}, B(Fk) = var(Fk) = {x1, . . . , xk} and
wk(l) = 1 for all l ∈ B(Fk).

The following observation regarding Fk is straight-forward to prove.

Observation 5 Fix k ∈ N and consider the instance Fk detailed in Definition 6.
Then the assignment τ that sets τ(l) = 1 for all l ∈ B(F) (i.e. τ = B(Fk)) is
an optimal solution of Fk for which COST(Fk, τ) = COST(Fk) = k.

The idea underlying the proof of Proposition 2 is to form the instance FM by
conjoining the instance F with the instance Fk (detailed in Definition 6) in a way
that each solution of FM corresponds to either a solution of F or of Fk. Then
we let the clause C block all solutions that correspond to solutions of F , after
which we can show that such C is CPR if and only if COST(Fk) = k ≤ COST(F).
We formalize this intuition next.

Proof. (of Proposition 2): Let Fk be as detailed in Definition 6 and assume
without loss of generality that F and Fk are variable disjoint. Denote var(Fk) =
{y1, . . . , yk}. Now take a fresh variable b /∈ var(F) ∪ var(Fk) and form the
instance FM = (FMH ,B(FM ), wM ) s.t. FMH = {D∨ b | D ∈ F}∪{C ∨ (¬b) | C ∈
Fk}, B(FM ) = B(F) ∪ B(Fk), with each blocking literal l ∈ B(FM ) having the
same weight as it did in either F or Fk.

Let then C = (b) be a clause and τ = {b, y1, . . . , yk} an assignment. Now
the following hold; (i) τ(C) = 1, (ii) FMH

∣∣
¬C `1 F

M
H

∣∣
τ

= >, and (iii) k =
COST(F ∧ C, τ) = COST(F , τ). Hence C is CPR if and only if k = COST(F , τ) ≤
COST(F ,¬C). The proposition follows by noting that restricting FM by ¬C =
{¬b} satisfies all clauses of form D ∨ (¬b) for D ∈ FkH and removes the literal
b from each clause D ∨ b for D ∈ FH . As such FM is reduced to F , more
specifically COST(FM ,¬C) = COST(F). We conclude that C is CPR if and only
if COST(F) ≥ k. ut

Proof of Observation 3.

Proof. It suffices to show that a redundant clause C is also CPR. Let τ be
an optimal solution of F ∧ C. Then τ satisfies F ∧ C since ∞ > COST(F) =
COST(F ∧C). Specifically τ(C) = 1, as required by condition (i) of Definition 2.
Since τ also satisfies F we have that FH

∣∣
τ

= > which implies FH
∣∣
¬C `1 FH

∣∣
τ

(condition (ii)). Finally, by Lemma 4, τ is also an optimal solution of F so
COST(F ,¬C) ≥ COST(F) = COST(F , τ) = COST(F ∧ C, τ) (condition (iii)). We
conclude that C is CPR. ut

Proofs of the lemmas used for Theorem 2.

Proof. (of Lemma 2): Assume that τ(FH ∧
∧
l∈B(F)\cs(¬l)) = 1. For the inter-

esting case, assume that τ(C) = 0, i.e., that ¬C ⊂ τ . We show that τL satisfies
(FH ∧ C) ∧

∧
l∈B(F∧C)\cs(¬l).
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From L ⊂ (C \ B(F ∧ C)) and B(F) ⊂ B(F ∧ C) it follows that {¬l | l ∈
B(F ∧C) \ cs} ⊂ τL and that τL(C) = 1. What remains to show is τL(FH) = 1.
For contradiction, assume τL(D) = 0 for some D ∈ FH . Then D ⊂ {¬l | l ∈ L}
since τ satisfies F . Hence ⊥ ∈ F

∣∣
(¬C)L

which contradicts F
∣∣
¬C `1 F

∣∣
(¬C)L

(i.e.

C being CSPR) as τ satisfies the former, but not the latter. ut

Proof. (of Lemma 3): Otherwise FH ∧
∧
l∈B(F)\css(¬l) is satisfiable for css =

cs \ (B(F ∧ C) \ B(F)) ⊂ B(F) ⊂ cs, which by Lemma 2 implies (FH ∧ C) ∧∧
l∈B(F∧C)\css(¬l) being satisfiable, contradicting cs ∈ mcs(F ∧ C). ut
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