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Abstract. Computing small (subset-minimal or smallest) explanations
is a computationally challenging task for various logics and non-monotonic
formalisms. Arguably the most progress in practical algorithms for com-
puting explanations has been made for propositional logic in terms of
minimal unsatisfiable subsets (MUSes) of conjunctive normal form for-
mulas. In this work, we propose an approach to computing smallest
MUSes of quantified Boolean formulas (QBFs), building on the so-called
implicit hitting set approach and modern QBF solving techniques. Con-
necting to non-monotonic formalisms, our approach finds applications in
the realm of abstract argumentation in computing smallest strong expla-
nations of acceptance and rejection. Justifying our approach, we pinpoint
the complexity of deciding the existence of small MUSes for QBFs with
any fixed number of quantifier alternations. We empirically evaluate the
approach on computing strong explanations in abstract argumentation
frameworks as well as benchmarks from recent QBF Evaluations.

Keywords: quantified boolean formulas, minimum unsatisfiability, ab-
stract argumentation, strong explanations

1 Introduction

Explaining inconsistency in different logics is a central problem setting with a
range of applications. Finding small explanations for inconsistency is intrinsi-
cally a computationally even more challenging task than deciding satisfiability.
What comes to practical algorithms for computing small explanations, arguably
the most progress has been made in the realm of classical logic, in particular in
propositional satisfiability where algorithms for computing minimal unsatisfiable
subsets (MUSes) of conjunctive normal form formulas have been developed [7, 4,
8, 25]. Extensions to computing smallest MUSes [17, 21] and, on the other hand,
to computing MUSes of quantified Boolean formulas (QBF) [16, 17] have also
been proposed. Recently, it has been shown that the notion of so-called strong
inconsistency [10, 36] provides for non-monotonic reasoning a natural counter-
part of the inconsistency notion studied in the classical setting, satisfying the
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well-known hitting set duality between explanations and diagnoses [30]. The gen-
eral notion of strong inconsistency has already been instantiated for computing
explanations in the non-monotonic formalisms of answer set programming [11,
26] and abstract argumentation [35, 34, 27, 37].

We propose an approach to computing smallest MUSes of quantified Boolean
formulas (QBFs), building on the so-called implicit hitting set approach [12, 17,
31, 32] and modern QBF solving techniques [22, 23, 18]. Our approach generalizes
an implicit hitting set approach [17] and a quantified MaxSAT approach [16] to
computing smallest MUSes of propositional formulas to general QBFs. Justifying
our approach, we pinpoint the computational complexity of deciding the exis-
tence of small MUSes for QBFs with any fixed number of quantifier alternations,
generalizing and supplementing earlier complexity results related to MUSes [29,
20, 10]. While our approach is generic, a central motivation for developing the
approach comes from the realm of abstract argumentation [13], in particular for
explaining acceptance [15, 37, 5, 1] and rejection [33, 34, 27] of arguments. As we
will detail, computation of smallest strong explanations [34, 27, 37] in abstract
argumentation frameworks can naturally be viewed as the task of computing
smallest MUSes of quantified formulas. While there is work on practical pro-
cedures for computing strong explanations for credulous rejection in abstract
argumentation [34, 27], even the task of verifying a minimal strong explanation
for credulous acceptance under admissible and stable semantics is by complexity
arguments presumably beyond the reach of the earlier-proposed approaches [37].
The approach developed in this work hence provides a first practical approach to
computing smallest strong explanations in particular for credulous acceptance
and skeptical rejection in abstract argumentation frameworks.

Empirically, the approach scales favorably towards computing smallest strong
explanations in abstract argumentation for ICCMA competition instances, de-
spite the fact that this task is presumably considerably more challenging than
the standard tasks of deciding acceptance considered in the ICCMA competi-
tions. We also show that the approach allows for computing smallest MUSes for
small unsatisfiable benchmarks from QBF Evaluation solver competitions.

2 Preliminaries

Quantified Boolean Formulas (QBFs). We consider closed QBFs in prenex
normal form Φ = Q1X1 · · ·QkXk.φ, where Qi ∈ {∃,∀} are alternating quan-
tifiers, X1, . . . , Xk are pairwise disjoint nonempty sets of variables, and φ is a
Boolean formula over the variables

⋃k
i=1Xi and the truth constants 1 and 0

(true and false). The sequence of quantifier blocks Q1X1 · · ·QkXk is called the
prefix and φ the matrix of Φ. We denote an arbitrary prefix of k alternating

quantifier blocks by
−→
Qk. For a truth assignment τ : X → {0, 1}, the formula

φ [τ ] is obtained by replacing, for each x ∈ X, all occurrences of x in φ by
τ(x). As convenient, we interchangeably view assignments as either sets of non-
contradictory literals or as functions mapping variables to truth values. The QBF

Φ∃ = ∃X
−→
Qk.φ is true iff there exists a truth assignment τ : X → {0, 1} for which
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−→
Qk.φ [τ ] is true. In this case we call τ a solution to Φ∃. The QBF Φ∀ = ∀X

−→
Qk.φ

is true iff for all truth assignments τ : X → {0, 1}, the QBF
−→
Qk.φ [τ ] is true. If

this is not the case, that is, there is a truth assignment τ for which
−→
Qk.φ [τ ] is

false, we call τ a counterexample to Φ∀.

Smallest MUSes of QBF Formulas. Consider a QBF Φ = ∃S
−→
Qk.φ. A set

S⋆ ⊂ S is a (an unsatisfiable) core of Φ if ∃S
−→
Qk.φ [S⋆] is false. The smallest

minimal unsatisfiable subsets (SMUSes) are smallest-cardinality cores: S⋆ is a
SMUS iff |S⋆| ≤ |S′| holds for all cores S′ of Φ. A set cs ⊂ S is a correction

set (CS) if the QBF ∃S
−→
Qk.φ [S \ cs] is true. Note that these definitions are in

line with conjunctive forms: for a QBF
−→
Qk.

∧m
j=1 φj , where φj are formulas,

unsatisfiable subsets (resp. correction sets) over {φ1, . . . , φm} can be computed

as cores (resp. correction sets) of ∃S
−→
Qk.

∧m
j=1(sj → φj) with S = {s1, . . . , sm}.

Important to our approach is a relationship between correction sets and
SMUSes of QBFs: lower bounds on the size of SMUSes of a QBF are obtained via
the minimum-cost hitting sets over any sets of its correction sets. A set hs ⊂ S
is a hitting set over a collection C of correction sets if it intersects with each
cs ∈ C. A hitting set hs is minimum-cost if |hs| ≤ |hs′| for all hitting sets hs′.

Proposition 1. Let C be a set of correction sets of the QBF Φ = ∃S
−→
Qk.φ, hs

a minimum-cost hitting set over C, and S⋆ a SMUS of Φ. Then |hs| ≤ |S⋆|.

Proof. (Sketch) We show that S⋆ is also a hitting set over C. The claim follows
by observing that hs is minimum-cost. Assume for a contradiction that S⋆ ∩
cs = ∅ for some cs ∈ C. Then S⋆ ⊂ S \ cs. Since ∃S

−→
Qk.φ [S \ cs] is true, so is

∃S
−→
Qk.φ [S⋆], contradicting the fact that S⋆ is a core. ⊓⊔

Abstract Argumentation. An argumentation framework (AF) [13] F =
(A,R) consists of a (finite) set of arguments A is and an attack relation
R ⊆ A×A. Argument b attacks argument a if (b, a) ∈ R. A S ⊆ A is conflict-free
in F = (A,R) if b ̸∈ S or a ̸∈ S for each (b, a) ∈ R. The set of conflict-free sets
in F is denoted by cf (F ). An AF semantics σ maps each AF to a collection
σ(F ) of jointly acceptable subsets of arguments, i.e., extensions. A conflict-free
set S ∈ cf (F ) is admissible if for each attack (b, a) ∈ R with a ∈ S there is an
attack (c, b) ∈ R with c ∈ S, i.e., for each attack on S there is a counterattack
from S. A conflict-free set S ∈ cf (F ) is stable if for each argument a ∈ A\S there
is an attack (b, a) ∈ R with b ∈ S, i.e., all arguments outside S are attacked by
S. The sets of admissible and stable extensions in F are denoted by adm(F ) and
stb(F ), resp. An argument q ∈ A is credulously accepted in F under semantics
σ if there is an E ∈ σ(F ) with q ∈ E, and skeptically accepted in F under σ if
q ∈ E for all E ∈ σ(F ). Given an AF F = (A,R) and S ⊆ A, the subframework
induced by S is F [S] = (S,R ∩ (S × S)).

Computational complexity. We assume familiarity with standard complexity
classes of the polynomial hierarchy, namely Σp

0 = Πp
0 = P, Σp

k+1 = NPΣp
k ,

Πp
k+1 = coNPΣp

k and Dp
k = {L1 ∩ L2 | L1 ∈ Σp

k , L2 ∈ Πp
k}, and the concepts of

hardness and completeness [28].
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3 Smallest Strong Explanations

Computing smallest MUSes of QBF formulas is motivated by the fact that it
captures smallest strong explanations for credulous acceptance [37] under ad-
missible and stable semantics and skeptical rejection under stable semantics in
the realm of abstract argumentation. Let F = (A,R) be an AF and Q ⊆ A
be a set of arguments. Following [37], a set S ⊆ A is a strong explanation for
credulously accepting Q under σ if for each S ⊆ A′ ⊆ A and F ′ = F [A′] there
exists E ∈ σ(F ′) with Q ⊆ E. Similarly, explanations for skeptically rejecting
Q ⊆ A under σ are sets S ⊆ A for which, for all S ⊆ A′ ⊆ A and F ′ = F [A′],
there exists E ∈ σ(F ′) with Q ⊈ E.

We focus on smallest-cardinality strong explanations. Our approach builds
on the line of work on employing propositional SMUS extractors for com-
puting smallest strong explanations for credulous rejection [27]. We similarly
declare Boolean variables xa and ya for each argument a ∈ A, interpret-
ing xa = 1 as argument a being included in an extension, and ya = 1
as argument a being included in a subframework. We denote Y = {ya |
a ∈ A} and X = {xa | a ∈ A}. We define the propositional formula
φcf (F ) =

∧
(a,b)∈R ((ya ∧ yb) → (¬xa ∨ ¬xb)) for conflict-free sets, and for-

mulas φadm(F ) = φcf (F ) ∧
∧

(b,a)∈R

(
(ya ∧ yb ∧ xa) →

∨
(c,b)∈R(yc ∧ xc)

)
and

φstb(F ) = φcf (F ) ∧
∧

a∈A

(
(ya ∧ ¬xa) →

∨
(b,a)∈R(yb ∧ xb)

)
encoding admissi-

ble and stable semantics. That is, for any assignment τY over Y , the satisfying
assignments over X of the formula φσ(F ) [τY ] correspond exactly to σ(F [A′])
with A′ = {a ∈ A | τ(ya) = 1}, since φσ(F ) [τY ] reduces to a standard SAT
encoding of semantics σ for which this result is well-known [9].

For extracting a smallest strong explanation for credulous acceptance and
skeptical rejection, it suffices to compute a SMUS of a 2-QBF formula.1

Proposition 2. Given an AF F = (A,R), Q ⊆ A, and semantics σ ∈
{adm, stb}. Let S∗ ⊆ A. It holds that Y [S∗] = {ya | a ∈ S} is a SMUS of

a) ΦCA
σ (F,Q) = ∃Y ∀X(φσ(F ) →

∨
q∈Q ¬xq) if and only if S∗ is a smallest

strong explanation for credulously accepting Q in F under σ,
b) ΦSR

stb (F,Q) = ∃Y ∀X(φstb(F ) →
∧

q∈Q xq) if and only if S∗ is a smallest
strong explanation for skeptically rejecting Q in F under stb.

Proof. Case a): Suppose S∗ is a strong explanation for credulously accept-
ing Q in F under σ, that is, for all S∗ ⊆ A′ ⊆ A there is an exten-
sion E ∈ σ(F [A′]) containing Q. Equivalently, for all assignments τY over Y
which set τY (ya) = 1 for a ∈ S∗, there is an assignment τX over X which
satisfies φσ(F ) [τY ] and sets τX(xq) = 1 for all q ∈ Q. This means that

the QBF ∀Y ∃X
(
φσ(F ) [Y [S∗]] ∧

∧
q∈Q xq

)
is true, which in turn means that

1 The proposition also holds when considering subset-minimal strong explanations and
MUSes of the corresponding 2-QBF.
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ΦCA
σ (F,Q) [Y [S∗]] is false. That is, Y [S∗] is a core of ΦCA

σ (F,Q). By applying
the same steps in the other direction, we obtain a one-to-one mapping between
strong explanations for credulous acceptance in F and cores of ΦCA

σ (F,Q). The
reasoning is similar for case b) and skeptical rejection. The claims follow. ⊓⊔

The SMUSes of a 2-QBF ΦSR
com(F,Q) with a subformula φcom(F ) for com-

plete semantics (see e.g. [6]) capture strong explanations for skeptical rejection
under complete, which in turn coincides with (credulous and skeptical) rejection
under grounded semantics. Further, QBF encodings for second-level-complete ar-
gumentation semantics [14, 2] allow for similarly capturing strong explanations
for, e.g., skeptical rejection under preferred semantics as SMUSes of 3-QBFs. In
terms of computational complexity, verifying that a given subset of arguments is
a minimal strong explanation for credulous acceptance is already Dp

2-complete
under admissible and stable semantics [37]. In contrast, for credulous rejection
this task is Dp

1-complete, and deciding whether a small strong explanation exists
is Σp

2 -complete [27]. By Proposition 2, the complexity of computing a smallest
strong explanation for credulous acceptance and skeptical rejection is bounded
by the complexity of computing a SMUS of a given 2-QBF formula. We find it
likely that for credulous acceptance this task is complete for the third level of the
polynomial hierarchy, namely, that deciding whether a small strong explanation
exists is Σp

3 -complete. This would be in line with the complexity of deciding
whether a 2-QBF has a small unsatisfiable subset, detailed next.

4 On Complexity of Computing Smallest MUSes of QBFs

In the context of propositional logic, verification of a MUS is Dp
1-complete [29],

and deciding the existence of MUS of small size is Σp
2 -complete [20]. Further,

verifying whether a given QBF with k ≥ 2 alternating quantifiers is minimally
unsatisfiable is Dp

k-complete [10]. However, to the best of our knowledge, the
complexity of deciding whether a QBF has a small–of size at most a given
integer–unsatisfiable subset has not been established so far. We show that the
problem is Σp

k+1-complete for k-QBFs when the leading quantified is existential.

Theorem 1. Consider a QBF ∃X1∀X2 · · ·QkXk.
∧m

j=1 φj, where φj are propo-

sitional formulas over
⋃k

i=1Xi. Deciding whether there is an unsatisfiable subset
φ∗ ⊆ {φj | j = 1, . . . ,m} with |φ∗| ≤ p is Σp

k+1-complete.

Proof. (Sketch) For membership, guess a subset φ∗ and verify using a Πp
k -oracle

that ∃X1∀X2 · · ·QkXk.φ
∗ is false. For hardness, we reduce from the Σp

k+1-
complete problem of deciding whether a QBF Ψ = ∃X1∀X2 · · ·Qk+1Xk+1.ψ is
true. We may assume w.l.o.g. that ψ is in conjunctive normal form (CNF) if k is
even (Qk+1 = ∃), and in disjunctive normal form (DNF) if k is odd (Qk+1 = ∀).
For our reduction, we adapt (and simplify) the reduction for the propositional
case [20]. Let X1 = {x1, . . . , xn} and declare variables P = {pi | i = 1, . . . , n}
and N = {ni | i = 1, . . . , n}. Let ψ′ be the formula obtained from ψ by replacing
each literal xi with pi and ¬xi with ni. Finally, consider φ =

∧n
i=1(pi∨ni) → ¬ψ′.
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It holds that Φ = ∃(P ∪N ∪X2)∀X3 · · ·Qk+1Xk+1.φ∧
∧n

i=1 pi ∧
∧n

i=1 ni has an
unsatisfiable subset of size at most n + 1 iff Ψ is true. Intuitively, a solution of
Ψ gives rise to an unsatisfiable subset of Φ containing φ and exactly one pi or
ni for each i = 1, . . . , n. On the other hand, all unsatisfiable subsets of Φ must
contain φ, and due to the bound n+1, exactly one pi or ni for each i = 1, . . . , n,
which simulates a truth assignment which is a solution of Ψ . ⊓⊔

Note that for even (resp. odd) k, the reduction gives hardness for k-QBFs

of form ∃X
−→
Qk−1.φ ∧ S where S ⊂ X and φ is in DNF (resp. CNF—to see

this, consider additional variables for each disjunct pi ∨ ni in φ). This is in line
with SMUSes of QBFs being subsets of the first existential quantifier block.
Interestingly, there is a difference between the complexity of computing a SMUS
in the case Q1 = ∀ and in the case Q1 = ∃. For Q1 = ∀ the problem turns out to
be merely Σp

k-complete. This is because a nondeterministic guess may contain
both an unsatisfiable subset candidate and a counterexample assignment.

Proposition 3. Consider a QBF ∀X1∃X2 · · ·QkXk.
∧m

j=1 φj, where φj are

propositional formulas over
⋃k

i=1Xi. Deciding whether there is an unsatisfiable
subset φ∗ ⊆ {φj | j = 1, . . . ,m} with |φ∗| ≤ p is Σp

k-complete.

Proof. For membership, guess a subset φ∗ and a counterexample τ to the QBF.
Verify using a Πp

k−1 oracle that ∃X2 · · ·QkXk.φ
∗ [τ ] is false. Hardness follows

by a reduction from the Σp
k-complete problem of deciding whether a QBF

∃X1∀X2 · · ·QkXk.φ is true (consider the negation). ⊓⊔

5 Computing Smallest MUSes via Implicit Hitting Sets

SMUS-IHS, the implicit-hitting set based approach for computing a SMUS of a

given QBF Φ = ∃S
−→
Qk.φ is detailed in Algorithm 1. The algorithm works by

1 SMUS-IHS

Input: A QBF Φ = ∃S
−→
Qk.φ

Output: A SMUS S⋆ ⊂ S of Φ
2 (τ, true? )← QBF-Solve(Φ, S);
3 if true? then
4 return ”no cores”;
5 UB ← |S|; LB ← 0;
6 S⋆ ← S; C ← ∅;
7 while true do
8 (hs, opt?)← Min-Hs(C, S,UB);
9 if opt? then LB ← |hs|;

10 if LB = UB then break;
11 C ← C ∪ Extract-MCS(S⋆,UB , Φ, S);
12 if LB = UB then break;

13 return S⋆;
Algorithm 1: Computing a QBF SMUS

Min-Hs(C, S,UB):

minimize:
∑
s∈S

s

subject to:∑
s∈cs s ≥ 1 ∀cs ∈ C

s ∈ {0, 1} ∀s ∈ S

return:

{s | s set to 1 in opt. soln}

Fig. 1. Hitting set IP



Computing Smallest MUSes of QBFs 7

1 Extract-MCS(S⋆, hs,UB , Φ, S)
2 A = hs, Cn = ∅;
3 while true do
4 (τ, true? )←

QBF-Solve
(
Φ,A);

5 if not true? then
6 if |A| < UB then
7 UB ← |A|; S⋆ ← A;
8 return Cn;
9 else

10 cs←
MinCS(τ,UB , S⋆, Φ, S);

11 Cn ← Cn ∪ {cs};
12 A ← A∪ {cs};

1 MinCS(τ,UB , S⋆, Φ, S)
2 A = {s ∈ S | τ(s) = 1};
3 for s ∈ S \ A do
4 if s ∈ A then continue;
5 (τ, true? )←

QBF-Solve
(
Φ,A ∪ {s});

6 if not true? then
7 if |A|+ 1 < UB then
8 UB ← |A|+ 1;
9 S⋆ ← A∪ {s};

10 else
11 A ← {s ∈ S | τ(s) = 1};
12 return S \ A;

Fig. 2. Extracting (left) and minimizing (right) correction sets of a QBF.

iteratively refining a lower and upper bound LB and UB on the size of the
SMUSes of Φ. The lower bounds are obtained by extracting an increasing collec-
tion C of correction sets of Φ with a QBF oracle in the Extract-MCS subroutine,
and computing hitting sets hs over them with an integer programming solver,
in the Min-Hs subroutine. The correction set extraction subroutine also obtains
unsatisfiable cores of Φ, the smallest core found at any point is stored in S⋆ and
the upper bound UB set to UB = |S⋆|. The search terminates when UB = LB
and returns S⋆ which at that point is known to be a SMUS.2

We abstract the use of a QBF oracle into the function QBF-Solve. Given a
subset Ss ⊂ S, the call QBF-Solve(Φ, Ss) returns a tuple (τ, true? ) where true?

is true iff ∃S
−→
Qk.φ [Ss] is true. In the affirmative case the oracle returns a solution

τ to Φ that sets τ(s) = 1 for all s ∈ Ss. A useful intuition here is that if the
QBF oracle returns true, then the set cs = (S \ {s | τ(s) = 1}) ⊃ (S \ Ss) is a
correction set of Φ. Similarly, if the result is false, then Ss is a core of Φ and |Ss|
an upper bound on the size of the SMUSes.

More specifically, given an input QBF Φ = ∃S
−→
Qk.φ, SMUS-IHS begins by

checking that the QBF has no solutions by invoking QBF-Solve(Φ, S) on Line 2.
If the result is true, then there are no cores (and as such no SMUSes) of Φ so
the search terminates on Line 4. Otherwise, S is a core of Φ, so the upper bound
UB is set to |S|, the smallest known core S⋆ to S, the set C of correction sets to
∅, and the lower bound LB on the size of the SMUSes to 0 (Lines 5 and 6).

Each iteration of the main search loop (Lines 7-12) starts by computing
a hitting set hs over the collection C of correction sets extracted so far. The
procedure Min-Hs on Line 8 computes an incumbent solution hs to the integer
program representation of the hitting set problem detailed in Figure 1. The
solution either (a) is optimal, i.e., represents a minimum-cost hitting set or

2 Note that by employing integer programming our approach also allows for computing
weighted SMUSes, i.e., cores with smallest total weight over their elements.
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(b) has |hs| < UB . In addition to hs, the procedure returns an indicator opt?
on whether hs is minimum-cost. If it is, then by Proposition 1 |hs| is a lower
bound on the size of the SMUSes, so the LB is updated on Line 9 and the
termination criterion (UB = LB) checked on Line 10. If UB > LB , the procedure
Extract-MCS next extracts correction sets of Φ that do not intersect with hs. In
addition to new correction sets, the procedure will also compute new unsatisfiable
cores of the instance, thereby potentially tightening the upper bound UB , which
is why the termination criterion is checked again on Line 12 before the loop is
reiterated. An important note here is that no correction sets are ever removed
from C so the sequence of LB values will be increasing.

The procedure Extract-MCS (Figure 2, left) computes MCSes that do not
intersect with hs by using a QBF oracle. The procedure maintains a subset
A ⊂ S (initialized to hs) and iteratively invokes the QBF oracle by calling
QBF-Solve(Φ,A). If the result is false, the set A is a core of Φ, so the procedure
checks whether the upper bound can be improved before terminating and return-
ing the set Cn of new corrections sets extracted. Otherwise (i.e., if the result is
true) the oracle also returns a solution τ to Φ that sets τ(s) = 1 for each s ∈ A.
Since hs ⊂ A holds in each iteration of Extract-MCS, the set S \ {s | τ(s) = 1}
is a correction set of Φ that does not intersect with hs. The correction set is
then minimized in the MinCS procedure (Figure 2, right) by repeated queries to
the QBF oracle, each asking for a solution that sets at least one more variable
in S \ {s | τ(s) = 1} to true. The minimization procedure ends when the oracle
reports false. Then a new core of Φ is also obtained, potentially allowing the
upper bound to be tightened. The minimized cs is added to the set Cn of new
correction sets and to A to prevent it from being rediscovered.

The following proposition establishes the correctness of SMUS-IHS.

Proposition 4. On input Φ = ∃S
−→
Qk.φ, SMUS-IHS terminates and returns a

SMUS S⋆ of Φ.

Proof. Subject to termination, S⋆ is a subset of S for which ∃S
−→
Qk.φ [S⋆] is

false (since the set S⋆ is only updated after the QBF oracle reports false) and
|S⋆| = |hs| for some minimum-cost hitting set hs over a set of correction sets
of Φ. Termination follows by the finite number of correction sets of Φ and the
fact that each hitting set hs is computed at most twice during the execution of
the algorithm. More precisely, consider a hitting set hs returned by Min-Hs. In
the next invocation of Extract-MCS either (i) a new correction set cs for which
cs∩ hs = ∅ is computed, or (ii) the set hs is shown to be a core of Φ. In case (i)
cs is added to C, preventing hs from being recomputed in subsequent iterations.
In case (ii) SMUS-IHS will either terminate on Line 12 if LB = |hs| (i.e., we know
hs is minimum-cost), or compute a new hitting set hs′ that is either a minimum-
cost hitting set over C or has |hs′| < UB ≤ |hs|. That is, the only way in which
hs can be recomputed in subsequent iterations is if it was of minimum cost in
which case the algorithm terminates after computing hs for a second time. ⊓⊔

The proof of Proposition 4 is similar to a correctness proof of IHS for
MaxSAT [3]. Note that the correctness of SMUS-IHS does not rely on correc-
tion sets being minimal or the extraction of all disjoint correction sets at each
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iteration; as long as the loop on Lines 3-12 is executed at least once on each
invocation of Extract-MCS, the algorithm will either compute a previously un-
seen correction set, or be able to determine that the input hitting set is a SMUS.
Similarly, the minimization of the correction sets need not be exhaustive. The
set S \ A will be a correction set of Φ after each iteration of the loop in MinCS.

Dual IHS for leading universal quantifier. A way of employing SMUS-IHS for

computing a SMUS of ∀X1
−→
Qk−1.

∧m
j=1 φj over {φ1, . . . , φm} is to give the (k+1)-

QBF Φk+1 = ∃S∀X1
−→
Qk−1.

∧m
j=1(sj → φj) as input. For an alternative—more

inline with the complexity results of Proposition 3—approach we can instead

consider the k-QBF Φk = ∀S∀X1
−→
Qk−1.

∧m
j=1(sj → φj). For any S∗ ⊂ ¬S =

{¬s | s ∈ S}, Φk [S
∗] consists of the same formulas as Φk except for the ones

corresponding to S∗, which are essentially deactivated. Thus we may define for

a QBF Φ = ∀S
−→
Qk.φ that a core is a set S∗ ⊂ ¬S for which ∀S

−→
Qk.φ [(¬S) \ S∗]

is false, and that a correction set cs ⊂ ¬S makes ∀S
−→
Qk.φ [cs] true.

This leads to a dual IHS algorithm. First, check for the existence of a core by
a call to QBF-Solve(Φk, ∅). If the oracle reports true, exit. Else we obtain a coun-
terexample assignment to S, giving an upper bound as the number of variables
in S set to true. Similarly to SMUS-IHS, we obtain lower bounds by computing
minimum-cost hitting sets over collections of (now the dual notion of) correction
sets. A correction set is now extracted by calling QBF-Solve(Φk,¬(S \ hs)). A
true result implies that ¬(S \ hs) is a correction set which is then minimized
similarly as in SMUS-IHS. Further, some modern QBF oracles are able to pro-
vide a subset A′ ⊂ ¬(S \ hs) used to prove the absence of a counterexample.
Such A′ can directly be used as a correction set. Upper bounds on the size of
SMUSes are obtained via the oracle reporting false and providing a counterex-
ample assignment. Note that the dual algorithm can be applied for QBFs of

form ∃X1
−→
Qk−1

∧m
j=1 φj by giving ∀S∃X1

−→
Qk−1.

∧m
j=1(sj → φj) as input.

6 Empirical Evaluation

We implemented the SMUS-IHS algorithm; the implementation is available in
open source at https://bitbucket.org/coreo-group/qbf-smuser. Since no direct
competitors are available, we demonstrate the feasibility of the approach for
computing smallest explanations in abstract argumentation, as well as in the
more general context of extracting clausal SMUSes from QBF instances. We
use CPLEX as the minimum-cost hitting set problem IP solver. As choices for
the QBF solver, we consider DepQBF (version 6.0.3) [24] and RAReQS (ver-
sion 1.1) [18]. DepQBF is a search-based QDPLL solver with conflict-driven
clause learning and solution-driven cube learning, providing an incremental in-
terface for extracting assignments and unsatisfiable cores and solving under user-
provided assumption literals [22, 23]. RAReQS is an expansion-based CEGAR
solver, iteratively SAT solving and refining a propositional abstraction. We mod-
ified RAReQS to extract unsatisfiable cores from the top-level SAT solver. We
consider the following variants of the SMUS-IHS algorithm.
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Fig. 3. Number of solved instances: strong explanations for credulous acceptance under
admissible (left) and stable (right).

– S (default): S as the QBF solver, extracting all MCSes at each itera-
tion, i.e., executing Extract-MCS until unsatisfiability, and calling MinCS

in Extract-MCS.
– S-1cs: S, extracting at most one MCS per invocation of Extract-MCS.
– S-noMin: S without correction set minimization.
– S-optHS: S, computing minimum-cost hitting sets at each iteration.

Experiments were run under per-instance 3600-s time and 16-GB memory limit
with Intel Xeon E5-2670 CPUs, 57-GB memory, RHEL 8.5 and GCC 8.5.0.

To obtain benchmarks for computing strong explanations in argumentation
frameworks, we extended the implementation from [27] to output the negations
of encodings described in Section 3 in QDIMACS format. The updated version
is available at https://bitbucket.org/andreasniskanen/selitae/. As input AFs,
we used the set of 326 AFs from ICCMA’19 (http://argumentationcompetition.
org/2019/). We consider three tasks: computing smallest strong explanations
for credulous acceptance under admissible and stable semantics and for skepti-
cal rejection under stable semantics. For each AF, a query argument was picked
uniformly at random from the set of credulously accepted arguments or skepti-
cally rejected arguments. This gave 324 AF-query pairs for admissible semantics
and 312 AF-query pairs for stable semantics (there were 2 AFs which have no
non-empty admissible extensions and 14 AFs without a stable extension).

The runtime results for computing smallest explanations for credulous ac-
ceptance under admissible and stable are summarized in Figure 3. On credulous
admissible (left), RAReQS as the QBF solver yields clearly the best results: all
algorithmic variants except for 1cs solve 324 instances under 1000 seconds. In
contrast, using DepQBF results in solving only 221 instances using the config-
uration 1cs. On credulous stable (right), using RAReQS results in solving 150



Computing Smallest MUSes of QBFs 11

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●
●●●●
●
●●
●

●
●●
●●
●●●

●●
●●●●●●

●●●

●●

●
●
●

●●
●
●

●●
●

●

0 50 100 150 200 250 300 350

instances solved

C
P

U
 ti

m
e 

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

●

default−dual
opths−dual
default
opths
1cs
nomin−dual
1cs−dual
nomin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●
●●●●
●●
●●
●●●●●

●
●●●
●●●
●
●●
●●●

●

●●
●●

●

●●
●●
●

●
●

●
●
●●●●

●
●
●
●

●

0 100 200 300 400 500

instances solved

C
P

U
 ti

m
e 

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00 ● default
opths
1cs
default−dual
opths−dual
1cs−dual
nomin−dual
nomin

Fig. 4. Number of solved instances for different SMUS-IHS variants on 2-QBFs (left)
and 3-QBFs (right) using RAReQS as the QBF oracle.

instances for each SMUS-IHS variant except 1cs. DepQBF results in clearly bet-
ter performance, allowing for solving 200 instances using the default and optHS
configurations. Interestingly, correction set minimization is an important factor
for runtime efficiency when using DepQBF on these instances. The results for
skeptical rejection under stable are similar: using DepQBF results in better per-
formance, but the difference due to the choice of the QBF solver is not as drastic
(with 181 solved instances using DepQBF and 156 using RAReQS).

To demonstrate more general applicability of SMUS-IHS, we also consider
computing SMUSes of QBFs in CNF form, for the relatively small unsatisfiable
QBFLIB (http://www.qbflib.org/) benchmarks encoding reduction finding [19]
using RAReQS which has exhibited good performance for deciding satisfiability
in this domain. We discarded instances for which RAReQS on its own took more
than one second to decide unsatisfiability, leaving 719 2-QBF and 905 3-QBF
instances. For each instance, each clause C in the matrix φ was replaced by
sC → C, where sC is a fresh variable. Finally, the quantifier QS with S = {sC |
C ∈ φ} was appended as the outermost quantifier in the prefix either with Q = ∃
for the SMUS-IHS algorithm or with Q = ∀ for dual SMUS-IHS.

The results are shown in Figure 4. For 2-QBF instances (left) we observe
that the dual algorithm outperforms other solver variants if several MCSes are
extracted at each iteration. The default configuration solves more instances than
optHS-dual which computes minimum-cost hitting sets. Disabling either min-
imization (noMin-dual) or exhaustive MCS extraction (1cs-dual) leads to a
noticeable loss in performance. The non-dual variants are not as effective, which
is in line with the fact that their input is a 3-QBF. For 3-QBF instances (right)
the default, optHS and 1cs configurations clearly outperform all other config-
urations, with slight performance improvements obtained by using non-optimal
hitting sets and exhaustive MCS extraction. Here the dual variants are less com-
petitive; their input is a 4-QBF, since the original 3-QBF has an ∃∀∃ prefix.
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7 Conclusions

We proposed an approach to computing smallest unsatisfiable subsets of quan-
tified Boolean formulas, and pinpointed the complexity of deciding if a k-QBF
(for arbitrary k) has a small unsatisfiable subset. While the approach is generally
applicable to computing SMUSes of QBFs, we detailed an application in comput-
ing smallest strong explanations for credulous acceptance and skeptical rejection
in abstract argumentation. Our implementation allows for computing smallest
strong explanations of standard ICCMA argumentation competition benchmarks
in practice. This suggests studying further applications of the approach to other
non-monotonic formalisms admitting QBF encodings. The exact complexity of
computing smallest strong explanations remains a further open question.
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