BigDansing

A System for **<u>Big</u>** Data Cleansing

Introduction

Data Cleansing Process

Architecture of BigDansing

Experiment

Discussion

"Inaccurate data has a direct impact ... the average company losing 12% of its revenue"
 Ben Davis (Econsultancy)

"More than 25 Percent of Critical Data Used in Large
 Corporations is Flawed" – Gartner Inc.

"This is the digital universe. It is growing 40% a year into the next decade"
 -- EMC2

Concepts

Data Cleansing

Data cleansing, data cleaning, or data scrubbing is the process of detecting and correcting (or removing) corrupt or inaccurate records from a record set, table, or database.

Data Quality

Data are of high quality "if they are fit for their intended uses in

operations, decision making and planning ".

An Intuitive Example

Quality Rule

Two customers having the same zipcode cannot be in different cities

D(zipcode -> city)

Dirty Dataset

Name	Zipcode	City
Winnie	91340	San Francisco
Robbert	91340	New York
Emma	91340	San Francisco

An Intuitive Example

Quality Rule

Two customers having the same zipcode cannot be in different cities

D(zipcode -> city)

Dirty Dataset

Name	Zipcode	City
Winnie	91340	San Francisco
Robbert	91340	New York
Emma	91340	San Francisco

Scalability

Can not scale to large datasets

Abstraction

Need to understand both the quality rules and the distributed platform

Scalability

Can not scale to large datasets

Abstraction

Need to understand both the quality rules

and the distributed platform

A Big Data Cleansing system to tackle efficiency, scalability, and ease-of-use issues in data cleansing

Generic abstraction

define customized rules together with traditional rules in a simple waythe underlying distributed platform is transparent

Fast and scalable detection, repair and updates

■1.9B rows \rightarrow 13B violations < 3 hours on 16 small machines

Data Cleansing Process

Data Cleansing Flowchart

Source: https://www.slideshare.net/Zuhairkhayyat/bigdansing-presentation-slides-for-kaust

Source: Zuhair Khayyat et al: BigDansing: A System for Big Data Cleansing. SIGMOD Conference 2015: 1215-1230

Input: quality rules a dirty dataset

general purpose distributed platform like Hadoop or Spark

Repair Algorithm : run existing centralized algorithm as a black box in a distributed way

Let's dig into the components one by one...

Input: quality rules a dirty dataset

Quality Rule

Dirty data is detected by

Declarative Rule

Functional dependencies (FD)

e.g. Zipcode → City

Conditional functional dependency (CFD)

e.g. Country = 'Saudi Arabia', Zipcode → City

Denial constraints (DC)

e.g. ∀ t1, t2 ∈ D, ¬(t1.Salary > t2.Salary ^ t1.Rate < t2.Rate)

User Defined Function (UDF)

Duplicates, statistical errors

Abstraction UDF-based Approach

Quality rules are represented by 5 functions

Scope, Block, Iterate, Detect, and GenFix

declarative rules

-automatically be translated into logical operators

UDFs

-can be implemented using logical operators

Logic Operators Scope

Scope

Input: data units

Output: data units

Example: Zipcode \rightarrow City

Input: t1 – t6

Output:

t1 – t6 (Zipcode,City)

					1
	Name	Zipcode	City		
t1	Annie	60601	NY		
t2	Laure	90210	LA		
t3	John	60601	СН		
t4	Mark	90210	SF		
t5	Rober	60601	СН		
t6	Mary	90210	LA		
					Zipcode
			t1		60601
			t2		90210
			t3		60601
			t4		90210
			t5		60601
			t6		90210

Logic Operators Block

Block

Input: data units

Output: grouping key

Example: Zipcode \rightarrow City

Input: t1 – t6

Output:

<60601, (t1,t3,t5)>,

<90210, (t2,t4,t6)>

	Zipcode	City
t1	60601	NY
t2	90210	LA
t3	60601	СН
t4	90210	SF
t5	60601	СН
t6	90210	LA

Logic Operators Iterate

Iterate

Input: a group of data units

Output: single tuple, tuple pair

Example: Zipcode \rightarrow City

Input: <60601, (t1,t3,t5)>

Output:

<t1,t3>, <t1,t5>, <t3,t5>

	Zipcode	City
t1	60601	NY
t3	60601	СН
t5	60601	СН

Logic Operators

Detect

Input: data units

Output: Violation(s)

Example: Zipcode \rightarrow City

Input: <t1,t3>, <t1,t5>, <t3,t5>

Output:

<t1.City ≠ t3.City>,

<t1.City ≠ t5.City>

	Zipcode	City
t1	60601	NY
t3	60601	СН
t5	60601	СН

Logic Operators GenFix

GenFix

Input: Violation Output: possible fix(es)

Example: Zipcode \rightarrow City

Input: <t1.City ≠ t3.City>,

<t1.City ≠ t5.City>

Output:

<t1.City = t3.City>,

<t1.City = t5.City>

Rule Engine

RuleEngine

three-layer

 on top of general purpose data processing framework such as MapReducelike with execution abstraction

Rule Engine Logical Plan

Define the data unit flow

Validating the plan: At least one input dataset For UDF: at least one detect For Rules: at least one rule

Support simple and bushy plans

Physical operators are system specific MPI, Hadoop, Spark

Each physical operator is an independent execution unit

•Each logical operator \rightarrow one physical operator

BigDansing consolidate logical plans to improve I/O

 More physical operators can be added with different optimizations to improve logical plans

Run on the parallel general purpose data processing framework such as MapReduce-like

User don't need to care about how the distributed computation performs

Repair Algorithm

Repair Algorithm

equivalence class

hypergraph-based

Repair Algorithm

Implement two existing serial repair algorithms to run in distributed mode

Equivalence class algorithm

Hypergraph algorithm

 Design a distributed version of the seminal equivalence class algorithm

Equivalence Class Algorithm

■Fix errors based on (=,≠)

Based on heuristics:

Partition the possible fixes into different groups Assign the highest frequency value to group

Example:

Group 1: Zipcode = 60601 Highest frequency = CH Group 2: Zipcode = 90210 Highest frequency = LA

	Name	Zipcode	City
t1	Annie	60601	NY
t2	Laure	90210	LA
t3	John	60601	СН
t4	Mark	90210	SF
t5	Robert	60601	СН
t6	Mary	90210	LA
t7	Jon	60601	СН

Hypergraph Algorithm

■Fix errors based on (<,>,≤, and ≥)

Based on linear optimization and greedy MVC:

Select hyper-graph node with highest edges Change its value depending on edge conditions

	Name	Salary	Rate
t1	Annie	24000	15
t2	Laure	25000	10
t3	John	40000	25
t4	Mark	88000	24
t5	Robert	15000	15
t6	Mary	81000	28
t7	Jon	40000	25

Experiment

Dataset

Dataset	Rows	Dataset	Rows
$TaxA_1$ - $TaxA_5$	100K - 40M	customer2	32M
$TaxB_1$ - $TaxB_3$	100K - 3M	NCVoter	9M
TPCH1-TPCH10	100K - 1907M	HAI	166k
customer1	19M		

More intuitively, TPCH datasets with 959M, 1271M, 1583M, and 1907M rows are of sizes **150GB**, **200GB**, **250GB**, and **300GB** respectively.

Experiment

Quality Rules

Identifier	Rule
φ_1 (FD):	$Zipcode \rightarrow City$
φ_2 (DC):	$\forall t_1, t_2 \in TaxB, \neg(t_1.Salary > t2.Salary$
	$\wedge t_1.Rate < t_2.Rate)$
φ_3 (FD):	$o_custkey \rightarrow c_address$
φ_4 (UDF):	Two rows in Customer are duplicates
φ_5 (UDF):	Two rows in NCVoter are duplicates
φ_6 (FD):	$Zipcode \rightarrow State$
φ_7 (FD):	$PhoneNumber \rightarrow Zipcode$
φ_8 (FD):	$ProviderID \rightarrow City, PhoneNumber$

Single-node experiments with Φ1 (Functional Dependencies)

TaxA dataset: FD: Zipcode \rightarrow City FD: Zipcode \rightarrow State

provides a finer granular abstraction allowing users to specify rules more efficiently

Multi-nodes experiments with $\Phi1$ (Functional Dependencies)

TPCH dataset: FD: custkey →custAddress 16 Workers

Scalability

TPCH Dataset: FD: custkey → custAddress Dataset: 500M rows

Repair quality

	NADI	EEF	BigDa	nsing	Itera-
Rule(s)	precision	recall	precision	recall	tions
φ_6	0.713	0.776	0.714	0.777	1
$\varphi_6 \& \varphi_7$	0.861	0.875	0.861	0.875	2
$\varphi_6 - \varphi_8$	0.923	0.928	0.924	0.929	3
	R,G /e	R,G	R,G /e	R,G	Iter.
ϕ_D	17.1	8183	17.1	8221	5

TaxA/HAI Dataset: Dataset: 100K--40M/166k rows

Outperform existing baseline systems up to more than two orders of magnitude without sacrificing the repair quality!

A data cleansing framework rather than a data cleansing algorithm

very useful as the emerging of big data

There have been extensive studies on data cleansing algorithm for decades.
 But now the demand is to run these algorithms on distributed system.

Discussion Contributions

Flexibility and scalability

Logic Abstraction

define customized rules together with traditional rules in a simple way with an UDF-based approach

Portable and Easy-to-use

run on various platforms ranging from DBMS to MapReduce-like platforms

Flexibility of Repair Algorithm

adopt existing algorithms or userdefined ones by treating the repair algorithm as a black box

Scalability and Fast Computation

integrate on general purpose distributed framework

When treating UDFs as black boxes, it is hard to do static analysis, such as consistency and implication, for the given rules.

Dataset must be static and quality rules must be predefined. stream data / real-time cleansing / modified quality rules

Require domain expertise.

hinder its adoption in industrial targeting non-expert users

In the experiment, the authors added random text/numerical/duplicate errors and the system considers only key-based blockers, which is not accurate for many real-world data sets, due to dirty/missing data.

It is usually hard, if not impossible, to guarantee the accuracy of the data cleaning process without verifying it via experts or external sources.

Discussion Limitations

Thanks!