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• Based on Google File System (GFS) - 2003

• Important idea: Map Reduce

• Started at Apache Nutch Project (a crawler)

• Moved to Hadoop Project - 2006

• Created by Doug Cutting

• Named after his son’s toy elephant

Brief History: Hadoop
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• Origin at UC Berkeley by Matei Zaharia 2009

• It was a class project: to build a cluster

management framework supporting different

kinds of cluster computing systems

• Goal: interactive and iterative processing

• Input target: HDFS data

• Donated to Apache Software Foundation in 

2013

Brief History: Spark

Faculty of Science

Department of Computer Science 4



www.cs.helsinki.fi

Hadoop: Ecosystem
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Spark: Ecosystem
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Hadoop: MapReduce
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Spark: Layers
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Spark: Resilient Distributed 

Datasets (RDDs)
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• Fault-tolerant collections of elements that 

can be operated on in parallel. 

• Can reference a dataset in an external 

storage system, such as a shared filesystem, 

HDFS, HBase, or any data source offering a 

Hadoop InputFormat. 

• Spark can create RDDs from any storage 

source supported by Hadoop, including local 

filesystems or one of those listed previously. 

(Hess, Ken 2016)
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An RDD possesses five main properties:

• A list of partitions

• A function for computing each split

• A list of dependencies on other RDDs

• Optionally, a Partitioner for key-value RDDs (e.g. to 

say that the RDD is hash-partitioned)

• Optionally, a list of preferred locations to compute 

each split on (e.g. block locations for an HDFS file)

Spark: RDD
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Hadoop: Iterative Operations
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Spark: Iterative Operations
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• Both big data frameworks

• Open source

• From Apache

• Different strengths (Hadoop- batch and reliable, 

spark-speed)

• They are able to work together

Hadoop & Spark
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• Has its own distributed storage system (scalable, commodity 

hardware)

• Writes all data back to physical storage after each operation 

to full recover from failure

• More advanced on security and support infrastructure

• Kerberos authentication, access control lists (ACLs), Service 

Level Authorization, which ensures that clients have the right 

permissions.

• Setup to continuously gather information from websites and 

there were no requirements for this data in or near real-time.

Hadoop: 

Advantages/Disadvantages
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• Requires an hdfs (so build on hadoop)

• Speed- operations in memory: copy from distributed 

physical storage to faster RAM, reducing this way 

reading and writing from hard drives (hadoop)

• Volatile RAM but Resilient Distributed Datasets to 

recover from failure

“Spark has been shown to work well up to petabytes. It 
has been used to sort 100 TB of data 3X faster than 
Hadoop MapReduce on one-tenth of the machines.”

(Xin ,Reynold 2014)

Spark: 

Advantages/Disadvantages
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• Can handle advanced data processing tasks like 

real time, batch processing, stream processing, 

interactive queries and machine learning

• Ease of use in that it comes with user-friendly APIs 

for Scala (its native language), Java, Python, and 

Spark SQL

• Has an interactive mode so that developers and 

users alike can have immediate feedback for 

queries and other actions

Spark: 

Advantages/Disadvantages
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Spark systems cost more because of the large 

amounts of RAM required to run everything in memory. 

But what’s also true is that Spark’s technology reduces 

the number of required systems. So, you have 

significantly fewer systems that cost more. There’s 

probably a point at which Spark actually reduces costs 

per unit of computation even with the additional RAM 

requirement. (Hess, Ken 2016)

Cost
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Hadoop vs. Spark: Components

of Interest
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Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., & Özcan, F. (2015).
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Hadoop vs. Spark: WordCount
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Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., & Özcan, F. (2015).
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Hadoop vs. Spark: Sort
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Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., & Özcan, F. (2015).
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Hadoop vs. Spark:K-Means

Faculty of Science

Department of Computer Science 21

Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., & Özcan, F. (2015).
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Hadoop vs. Spark: PageRank
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Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., & Özcan, F. (2015).
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• Automatic toolkit for MapReduce job optimization.

• Novel Producer-Transporter-Consumer (PTC) 

Model

• Characterizes the tradeoffs in the parallel execution 

among tasks. 

• Relations among about twenty parameters, which 

have significant impact on the job performance. 

• Efficient search algorithm to find the optimal 

execution plan.

Hadoop Improvement: MR Tuner
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MRTuner: Parallelism
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Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., & Wang, C. (2014).
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• Number of Map task waves

• Map output compression option

• Copy Speed in the Shuffle phase

• Number of reduce task waves

Tuning Parallelism
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MRTuner: PTC Model
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Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., & Wang, C. (2014).
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Top: T=170

Bottom: T= 145 

Tuning with PTC Model
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MR Tuner Results
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Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., & Wang, C. (2014).
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• The search latency of MRTuner is a few orders of 

magnitude faster than that of the state-of-the-art 

cost-based optimizer

• The effectiveness of the optimized execution plan is 

also significantly improved.

• MR Tuner can find much better execution plans

compared with existing MR optimizers

MR Tuner Results
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• What are Hadoop and spark

• Features of each

• Pros/Cons

• Benchmark

• MRTuner

• So...which one is better?

Wrap up
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Questions?
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