
Seminar on Big Data Management

Hannu Kämäri

13.3.2017

Motivation

 MapReduce and Spark are very popular

frameworks.

 Apache Spark and HDFS has been

under an investigation in NLS.

 Apache Hadoop is propably most

famous BigData tool.

 Data processing is becoming more and

more a central point in IT.

Paper

Related work

 Performance analysis of clustering algorithm under two

kinds of big data architecture (Li & others 2017): a

theoretical and an experimental analysis on the two frameworks

with k-means analysis. Their findings on both analysis showed

that Spark is superior compared to MapReduce when

comparing execution times or I/O.

 An evaluation and analysis of graph processing

frameworks on five key issues (Gao and others 2015):
message passing experiments with PageRank to compare

Graph, Spark and MapReduce. Findings support that Spark is

significantly faster than MapReduce.

 Graysort competition (2014): Spark was undoubtedly faster

than MapReduce.

Main algorithms

 Comparison was made between Spark and
Hadoop.

 For both five workloads were run: Word
Count, Sort, k-means, linear regression,
and PageRank. Five tests were needed to
adequately bring out differences between
the two frameworks.

 For each job both one-pass and iterative
options were evaluated.

 Tests were run with data that was suitable
for each test and for bringing out
differences between algorithms objectively.

Spark

Apache Hadoop

Results

 To summarize: Spark was faster than
MapReduce in almost all tests.

 Major differences that cause Spark to be
faster are RDD caching and better
algorithms.

 Major (only) weak point in Spark compared
to MapReduce exists in execution plans –
in some cases MapReduce has better
parallelism. This causes MapReduce to be
faster in sort-tests with larger data sets.

Why you should read the paper

 Easy to follow

 Very detailed

 Helps to deepen understanding about

the frameworks

 Presentation and visualization of results

Experimental setup

 Experimental setup is very well described.
Both hardware and software are presented
with all necessary details. Hardware details
do not only include RAM, CPU, and
memory details. Also exact details about
disk bandwidth, Ethernet, and virtual
clusters are introduced.

 Software configuration is made with equal
carefulness.

 Same care for details exists also for
workload descriptions.

Depth and coverage of analysis

 Depth of analysis is excellent. Results are presented
for all architectural elements and analysis include
reasoning of results - what caused different
performance and how different configurations impact
the results.

 Configuration adjustments show outstanding
understanding about execution details on both
software and hardware levels.

 For example authors compare different types of
cache options and explain thoroughly how each of
them affects different stages of execution.

 Breakdown of results is done with great care and it
helps readers to understand how the two algorithms
really work.

Visualization

How the paper could have been

improved

 Literature analysis is weak. Authors only

conclude that no other papers could be

found.

 Authors do not include any discussion

about relevance of the analysis

conducted.

What really matters?

 Question is in what kind of environment these
differences even matter?

 Does it matter if 100 GB of data can be sorted
in three minutes instead of five or word count
takes for 200 GB of data takes 33 seconds
instead of 50?

 Most of these technologies have been created
by large social media companies (Facebook,
LinkedIn, etc.) and are being used to analyze
their data.

 How many users are actually dealing with data
sets in that scale with such time constraints?

Trends in BigData

 I think the authors are missing a point.

 Big Data technologies are focusing more and
more on stream processing.

 Apache project list contains no new entries for
batch processing software.

 there are new tools for stream processing
such as Spark, Samza, and Storm.

 Apache has also developed tool for distributed
computing - Apache Edgent that can be run on
micro-kernels. Kafka - a message broker
designed to Big Data use. Etc. Etc.

Conclusions

 More vital discussion would handle primary
use cases for each technology and how
they should be combined. It is not an easy
task.

 Apache alone has 37 seven tools for Big
Data management.

 How they should be used and how easy
they are to use would be a more interesting
story.

 And then the analyze could focus on total
throuput? In other words – use cases do
matter.

Own example

