Data cleansing

Juhani Ojares 3.4.2017

Contents

- Introduction
- Traditional methods
- •Big data method: KATARA
- •Summary

Introduction

- •Why data needs cleaning?
 - -25% critical corporate data is dirty
 - -Compromises queries and analysis tasks
 - \rightarrow wrong price data in retail databases alone costs US consumers \$2.5 billion annually

Introduction

- •What is data cleaning?
 - -making the data consistent
 - -process of *detecting* and *correcting* errors in data
- •What is dirty data?
 - -Duplicates
 - -Miss-spellings
 - -Missing data
 - -Outdated data
 - -data not obeying business rules

Traditional methods

Integrity Constraints of database (ICs)

1) Functional dependencies

- Example 1: Primary keys, foreign keys
- Example 2: [CountryCode, AreaCode] -> [City]

2) Conditional functional dependencies

Example: [CountryCode=44, AreaCode] ->
[City]

-Many others

Traditional methods

•Integrity Constraints only *detect* errors – cannot fix them!

-Domain experts needed to find repair

• \rightarrow costly, manual

•Many error-detection algorithms have high timecomplexity

Example

Detecting duplicates is combinatorial problem

•NOSQL databases usually don't use ICs!

Traditional methods

- •Problem of detecting errors
 - -Scalability
 - BigDansing addresses the *scalability* problem
- •Problem of correcting errors
 - -Accuracy
 - KATARA addresses the *accuracy* problem

KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing

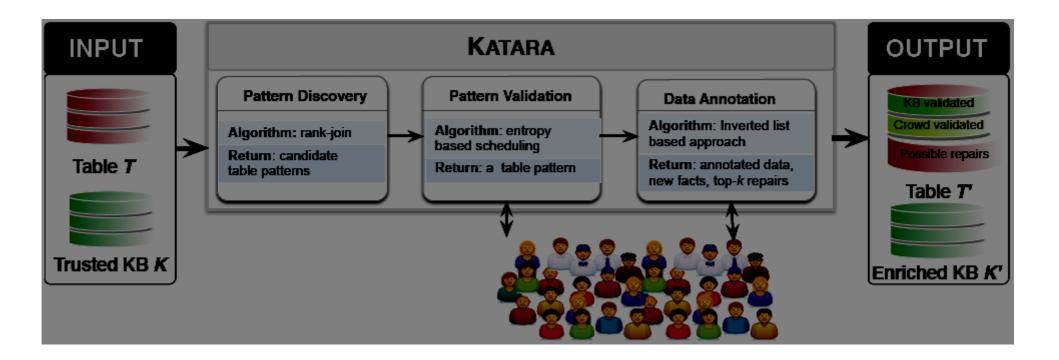
Xu Chu^{1*} John Morcos^{1*} Ihab F. Ilyas^{1*} Mourad Ouzzani² Paolo Papotti² Nan Tang² Yin Ye² ¹University of Waterloo ²Qatar Computing Research Institute {x4chu,jmorcos,ilyas}@uwaterloo.ca {mouzzani,ppapotti,ntang,yye}@qf.org.qa

Instead of domain experts

- -Knowledge Bases:
 - Example: Yago, DBPedia (Wikipedia)

-Crowdsourcing

•Overview of workflow

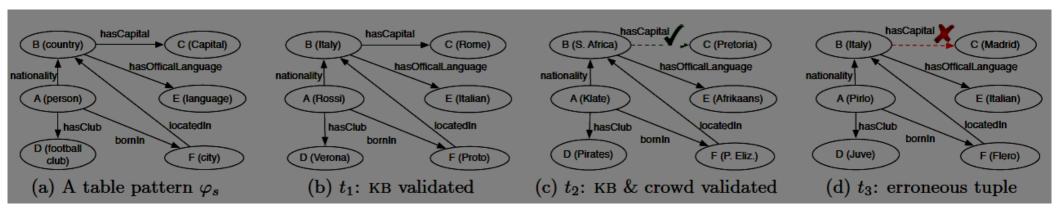


Contributions

- -Table pattern definition and discovery
 - new rank-join based algorithm to efficiently discover table patterns with high scores
- Table pattern validation via crowdsourcing
 - entropy-based scheduling algorithm
- -Data annotation
 - algorithm to generate top-k possible repairs for those erroneous data

Example: Pattern discovery and annotation

	A	В	С	D	E	F	G
t_1	Rossi	Italy	Rome	Verona	Italian	Proto	1.78
t_2	Klate	S. Africa	Pretoria	Pirates	Afrikaans	P. Eliz.	1.69
t_3	Pirlo	Italy	Madrid	Juve	Italian	Flero	1.77



•Example: question for the crowd

Q_1 : What is the most accurate type of the highlighted column?	2
(A, B, C, D, E, F,)	
(Rossi, Italy, Rome, Verona, Italian, Proto,)	
(Pirlo, Italy, Madrid, Juve, Italian, Flero,,)	
\bigcirc country \bigcirc economy	
$\bigcirc \text{ state } \bigcirc \text{ none of the above }$	

- •Experimental study results
 - –Pattern discovery

	Support		MaxLike		PGM		Rank Join		
	Р	R	Р	R	Р	R	Р	R	
WikiTables	.54	.59	.62	.68	.60	.67	.78	.86	
WebTables	.65	.64	.63	.62	.77	.77	.86	.84	
RelationalTables	.51	.51	.71	.71	.53	.53	.77	.77	
Yago									
P R P R P R P R									
WikiTables	.56	.70	.71	.89	.61	.77	.71	.89	
WebTables	.65	.69	.80	.84	.76	.80	.82	.87	
RelationalTables	.64	.67	.81	.86	.74	.77	.81	.86	
DBPedia									

Table 2: Pattern discovery precision and recall

•Experimental study results

-Effectiveness of possible repairs

	Kat/	ARA (Yago)	Kat/	ARA (DBPedia)	E	Q	SC/	ARE
	Р	R	Р	R	Р	R	Р	R
Person	1.0	0.80	1.0	0.94	1.0	0.96	0.78	0.48
Soccer	N.A.		0.97	0.29	0.66	0.29	0.66	0.37
University	0.95	0.74	1.0	0.18	0.63	0.04	0.85	0.21

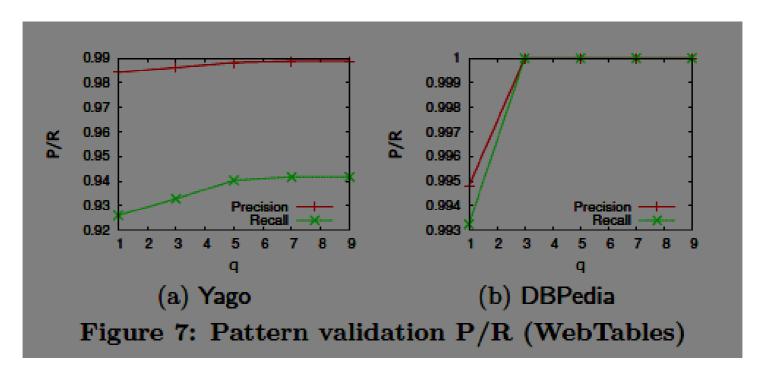
Table 6: Data repairing precision and recall (RelationalTables)

	KAT	fara (Yago)	KAT	TARA (DBPedia)	EQ SCARE		
	Ρ	R	Р	R	P/R	P/R	
WikiTables	1.0	0.11	1.0	0.30	Ń.A.		
WebTables	1.0	0.40	1.0	0.46	N.A.		

Table 7: Data repairing precision and recall (WikiTables and WebTables)

•Experimental study results

-Pattern validation



Discussion

•Strengths:

- -Automatic finding of repairs
- -Easy-to-answer questions presented to crowd

•Weaknesses:

-If data is special-purpose, no KBs available

-Not any crowd can be used!

Summary

- •Dirty data is a big problem
- •Even bigger problem with Big Data
- •Traditional methods such as ICs don't scale to Big Data
- •Knowledge Bases and crowdsourcing can help finding *accurate* repairs