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BENCHMARKING 

In computing, a benchmark is the act of running a computer
program, a set of programs, or other operations, in order to
assess the relative performance of an object, normally by
running a number of standard tests and trials against it. The
term 'benchmark' is also mostly utilized for the purposes of
elaborately designed benchmarking programs themselves.



BIG DATA BENCHMARKING …

Benchmarks for big data could be defined by the “Vs”

▪ Volume
◦ Can the benchmark test scalability of the system to very 
large volumes of data?

▪ Velocity
◦ Can the benchmark test ability of the system to deal with 
high velocity of incoming data?

▪ Variety
◦ Can the benchmark include operations on heterogeneous 
data, e.g. unstructured, semi-structured, structured?



INDUSTRY STANDARD BENCHMARKING 
ORGANIZATIONS

▪ TPC - Transaction Processing Performance Council 
(http://www.tpc.org/ ) 

▪ SPEC - The Standard Performance Evaluation Corporation 
(https://www.spec.org/ ) 

▪ CLDS – Centre for Large- scale Data System Research 
(http://clds.sdsc.edu/bdbc)



TYPES OF BENCHMARKS 

▪ Micro-benchmarks: To evaluate specific lower-level, system 
operations
◦ E.g., A Micro-benchmark Suite for Evaluating HDFS Operations on 
Modern Clusters, Panda et al, OSU

▪ Functional \ component benchmarks: Specific high-level function.
◦ E.g. Sorting: Terasort
◦ E.g. Basic SQL: Individual SQL operations, e.g. Select, Project, Join, 
Order-By, …

▪ Genre-specific benchmarks: Benchmarks related to type of data
◦ E.g. Graph500. Breadth-first graph traversals

▪ Application-level benchmarks: Measure system performance 
(hardware and software) for a given application scenario—with
given data and workload 



YAHOO! CLOUD SERVING BENCHMARK (YCSB) FRAMEWORK 

▪ Different database systems prioritize different operations e.g. some 
optimize write performance, while others optimize read performance. 
Such optimization is a trade-off and understandably leads to de-
optimization of some other attribute.

▪ The goal of the YCSB framework is to remedy this situation, by enabling 
an apples-to-apples comparison among the variety of database 
systems.

▪ The paper introducing it also tests and reports for four databases 
PNUTS, HBase, Cassandra, and a sharded MySQL implementation. 

▪ Entire source code is public (open-source software).

▪ Further work on the project is possible and encouraged.

▪ Modular design of the project allows for easy extension e.g. of 
workloads, tests, etc.



CLIENT ARCHITECTURE

Figure by https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark

https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark


TEST SETUP
▪ Setup

▪ Six server-class machines

▪ 8 cores (2 x quadcore) 2.5 GHz CPUs, 8 GB RAM, 6 x 146GB 15K RPM SAS drives in RAID 1+0,

Gigabit ethernet, RHEL 4

▪ Plus extra machines for clients, routers, controllers, etc.

▪ Cassandra 0.4.2

▪ HBase 0.20.2

▪ MySQL 5.1.32 organized into a sharded configuration

▪ Sherpa 1.8

▪ No replication; force updates to disk (except HBase, which does not yet support this)

▪ Workloads

▪ 120 million 1 KB records = 20 GB per server

▪ Reads retrieve whole record; updates write a single field

▪ 100 or more client threads



CORE WORKLOADS

Figure by: DOI: 10.1145/1807128.1807152 



BENCHMARKING TIERS

Tier 1: Performance (Latency)

• Measure latency as throughput is increased until system is 
saturated.

Tier 2: Scaling

• Scaleup.   Increase number of servers, amount of data, and 
offered throughput scale proportionally.  Latency should 
be constant.

• Elastic Speedup. In running system, add more servers.  
Performance should improve.



WORKLOAD A : UPDATE HEAVY

Figure : Workload A—update heavy: (a) read operations, (b) update 
operations. Throughput in this (and all figures) represents total operations 
per second, including reads and writes.

Figure by https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark

https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark


WORKLOAD B : READ HEAVY

Figure : Workload B—read heavy: (a) read operations, (b) update 
operations.

Figure by https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark

https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark


SCALABILITY

Figure : Read performance as cluster size increases.

Figure by https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark

https://www.slideshare.net/kevinhan/yahoo-cloud-serving-benchmark


ELASTICITY

Figure by: DOI: 10.1145/1807128.1807152 



YAHOO! CLOUD SERVING BENCHMARK (YCSB) 
FRAMEWORK – SUMMARY 

▪ In totality, Cassandra and HBase were slower in read-heavy 
workload and faster in write-heavy workload. PNUTS and MySQL 
were faster in read-heavy workload.

▪ Sherpa is efficient for random lokoups and does well. As range 
increases, HBase begins to perform better since it is optimized for 
large scans 

▪ PNUTS and Cassandra scaled well as the number of servers and 
workload increased proportionally. HBase performance was more 
unpredictable as the system scaled. 

▪ Elasticity of Cassandra, HBase and PNUTS were good during  the 
workload was execution but PNUTS was best with most stable 
latency while elastically repartitioning data. 



MAPREDUCE PARADIGM, AND PARALLEL DATABASE 
MANAGEMENT SYSTEM (DBMS) - INTRODUCTION

▪ A comparison of the approaches to analyzing Big Data effectively comparing 
MapReduce (MR) and Parallel Database Management System (DBMS).

▪ Systems compared - Hadoop, DBMS-X, and Vertica.

Table by http://www.hadoopsphere.com/2012/07/dbms-within-hadoop-nodes-for-high.html

http://www.hadoopsphere.com/2012/07/dbms-within-hadoop-nodes-for-high.html


MAPREDUCE PARADIGM, AND PARALLEL DATABASE 
MANAGEMENT SYSTEM (DBMS) - GOALS

▪ The goal is to compare the two paradigms in their efficacy for 
analyzing Big Data.

▪ Parameters evaluated – performance, and development 
complexity.

▪ The authors accept that the two approaches have different 
design decisions.

▪ Consider the choices made in either approach and the trade-
offs incurred due to these decisions.



COMPARING DEVELOPMENT COMPLEXITY

▪ Schema Support

▪ Programming Model & Flexibility

▪ Indexing

▪ Execution Strategy & Fault Tolerance

▪ Data transfers



SCHEMA SUPPORT

▪ MapReduce

▪ Flexible, programmers write 
code to interpret input data

▪ Good for single application 
scenario

▪ Bad if data are shared by 
multiple applications.  Must 
address data syntax, 
consistency, etc. 

▪ Parallel DBMS

▪ Relational schema required

▪ Good if data are shared by 
multiple applications



PROGRAMMING MODEL & FLEXIBILITY

▪ MapReduce

▪ Low level

▪ “Anecdotal evidence from the 
MR community suggests that 
there is widespread sharing 
of MR code fragments to do 
common tasks, such as 
joining data sets.”

▪ very flexible

▪ Parallel DBMS

▪ SQL

▪ User-defined functions, 
stored procedures, 
user-defined aggregates



INDEXING

▪ MapReduce

▪ No native index support

▪ Programmers can implement 
their own index support in 
Map/Reduce code

▪ But hard to share the 
customized indexes in 
multiple applications

▪ Parallel DBMS

▪ Hash/b-tree indexes well 
supported



EXECUTION STRATEGY & FAULT TOLERANCE

▪ MapReduce

▪ Intermediate results are 
saved to local files

▪ If a node fails, run the 
node-task again on another 
node

▪ At a mapper machine, 
when multiple reducers are 
reading multiple local files, 
there could be large 
numbers of disk seeks, 
leading to poor 
performance.

▪ Parallel DBMS

▪ Intermediate results are 
pushed across network

▪ If a node fails, must re-run 
the entire query



AVOIDING DATA TRANSFERS

▪ MapReduce

▪ Schedule Map to close to 
data

▪ But other than this, 
programmers must avoid 
data transfers themselves

▪ Parallel DBMS

▪ A lot of optimizations

▪ Such as determine where 
to perform filtering



BENCHMARK ENVIRONMENT

▪ Hadoop (0.19.0 on Java 1.6.0)

▪ HDFS data block size: 256MB

▪ JVMs use 3.5GB heap size per node

▪ “Rack awareness” enabled for data locality

▪ Three replicas w/o compression

▪ DBMS-X (a parallel SQL DBMS from a major vendor)

▪ Row store

▪ 4GB shared memory for buffer pool and temp space per node

▪ Compressed table

▪ Vertica

▪ Column store

▪ 256MB buffer size per node

▪ Compressed columns by default



BENCHMARK ENVIRONMENT (CONT.)

▪ Node Configuration:

▪ 100-node cluster

▪ Each node: 2.40GHz Intel Core 2 Duo, 64-bit red hat enterprise linux 5 
(kernel 2.6.18) w/ 4Gb RAM and two 250GB SATA HDDs.

▪ Nodes are connected to Cisco Catalyst 3750E 1Gbps switches. Internal 
switching fabric has 128Gbps. 50 nodes per switch

▪ Multiple switches are connected to create a 64Gbps Cisco StackWise
plus ring.  The ring is only used for cross-switch communications.



DATA LOADING TIMES

DBMS-X: grey is loading, white is re-organization after loading

Loading is actually sequential despite parallel load commands

Hadoop does better because it only copies the data to three HDFS replicas.

Figure by: DOI: 10.1145/1559845.1559865



PERFORMANCE BENCHMARKS

▪ Original MR task (Grep)

▪ Analytical Tasks

▪ Selection

▪ Aggregation

▪ Join

▪ User-defined-function (UDF) aggregation



EXECUTION TIME

Hadoop’s large start-up cost shows up in Figure 4, when data per node is 

small

Vertica’s good data compression

grep

Figure by: DOI: 10.1145/1559845.1559865



DBMS can use index, both relations are partitioned on the join key; MR has to read 

all data.

MR phase 1 takes an average 1434.7 seconds

600 seconds of raw I/O to read the table; 300 seconds to split, parse, deserialize; 

Thus CPU overhead is the limiting factor

Figure by: DOI: 10.1145/1559845.1559865



Hadoop’s start-up cost; DBMS uses index; vertica’s reliable message 

layer becomes bottleneck 

Figure  by:DOI: 10.1145/1559845.1559865



DBMS: Local group-by, then the coordinator performs the global group-
by; performance dominated by data transfer.

Figure by: DOI: 10.1145/1559845.1559865



▪ DBMS: lower – UDF time; upper – other query time

▪ Hadoop: lower – query time; upper: combine all results into 
one

Figure by: DOI: 10.1145/1559845.1559865



MAPREDUCE PARADIGM, AND PARALLEL DATABASE 
MANAGEMENT SYSTEM (DBMS) - SUMMARY

▪ In totality, the authors found SQL DBMS to be significantly faster and 
demanding of less code. 

▪ MR programs took some time before all nodes were running at full 
capacity. In contrast, parallel DBMSs are started at OS boot time, and thus
are considered to always be “warm”, waiting for a query to execute 

▪ Compression does not improve performance in Hadoop.

▪ Parallel DBMSs much more challenging than Hadoop to install and 
configure properly and takes longer time to load and tune the data.



MAPREDUCE PARADIGM, AND PARALLEL DATABASE 
MANAGEMENT SYSTEM (DBMS) – SUMMARY (CONT.)

▪ MR systems use a large number of control messages to synchronize 
processing, resulting in poorer performance due to increased overhead

▪ Fault tolerance is much better in MR system.

▪ It may be easier to for developers to get started with MR, maintenance of 
MR programs is likely to lead to significant pain for applications developers 
over time. 



RECENT APPROACHES TO BIG DATA BENCHMARKING

▪ BigBench

▪ It is an industry-wide effort on creating a comprehensive and 
standardized Big Data benchmark. Commercial supporters include 
Intel and Cloudera.

▪ Yahoo! Streaming Benchmark

▪ A combined tool to compare Apache Flink,  Apache Storm and 
Apache Spark Streaming to provide an apples-to-apples 
comparison.

▪ TPC-DS

▪ TPC-DS is the de-facto industry standard benchmark for 
measuring the performance of decision support solutions 
including, but not limited to, Big Data systems.



CONCLUSION

▪ Big data systems differ in architectural designs and their 
particular requirements.

▪ Both the papers admit that there is a trade-off in every 
alternative - if read-time performance is optimized, then 
the write-time performance is poor. 

▪ The way to approach the requirements for a particular 
scenario is need-based i.e. what does the current 
application require? 

▪ Big data benchmarking still lacks unified industry standard.

▪ Several benchmark tools are developed but each satisfies 
specific purpose.



REFERENCES

▪ Cooper, B. (2016). GitHub - brianfrankcooper/YCSB: Yahoo! Cloud Serving 
Benchmark. Github.com. 

▪ https://github.com/brianfrankcooper/YCSB

▪ Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). 
Benchmarking cloud serving systems with YCSB. Proceedings Of The 1St ACM 
Symposium On Cloud Computing - Socc '10. 
http://dx.doi.org/10.1145/1807128.1807152

▪ Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., & 
Stonebraker, M. (2009). A comparison of approaches to large-scale data 
analysis. Proceedings Of The 35Th SIGMOD International Conference On 
Management Of Data - SIGMOD '09. 
http://dx.doi.org/10.1145/1559845.1559865

https://github.com/brianfrankcooper/YCSB
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1559845.1559865


THANK YOU



QUESTIONS?


