Graph Data Management

A survey on addressing The BigData Challenge With A Graph

Sore Shewangizaw Dogda

Outline

- Introduction
- Graph data modeling
- Graph database models Historical view
- The Neo4j
 - What is Neo4j?
 - Graph Databases
 - Cypher
 - Application Domains

Introduction to Database models

- A data model is a collection of conceptual tools used to model real-world entities and the relationships among them [Silberschatz et al. 1996].
- A DB model consists of 3 components [Codd 1980]:

Types and characterstics of the Most Influential Database models /comparison/

DataBase Model	Abstraction level	Base data structure	Information
Network	physical	Pointers + records	records
Relational	Logical	Relations	Data + attributes
Semantic	User	Graph	schema
Object –Oriented	Physical /logical	Objects	Objects + methods
Semi structured	Logical	Tree	Data + components
Graph	Logical/user	Graph	Data + relations

Motivation for the Graph Datamodel:

• Attempt to overcome limitations imposed by traditional DB models with respect to capturing the inherent graph structure of data appearing in applications such as hypertext or GIS..

Graph data modeling:

- 1) Data and/or schema:
 - -Represented by graph. e.g. simple graphs (nodes + edges + labels + direction)
 - -Or by data structure generalizing the notion of graph.

2) Data manipulation:

- Expressed by graph transformation/ operations. (main primitives are on graph features)
- -Operations like Paths, neighborhood, sub graphs, patterns, connectivity, statistics.
- 3) Integrity constraints: Constraints grouped into
 - schema-instance consistency,
 - Identity and reference integrity,
 - Function and inclusion dependencies

• ..

Why a graph data model?

- For applications where 'Interconnectivity and topology' comes.
- Allows more natural modeling visible to user.
 E.g. GIS represents information as nodes, relations as arcs.
- Queries can refer directly to graph structure. So, we can do specific graph operations like – shortest path, sub graph determining etc.
- Implementation to GraphDB- may provide special graph storage structure and efficient graph algorithm for realizing specific operations.

Graph Databases

- Databases that use graph structures with nodes, edges and properties to store data
- Provides index-free adjacency
 - Every node is a pointer to its adjacent element
- Edges hold most of the important information and connect
 - nodes to other nodes
 - nodes to properties

Graph Databases are Designed to:

- 1. Store inter-connected data
- 2. Make it easy to make sense of that data
- 3. Enable extreme-performance operations for:
 - Discovery of connected data patterns
 - Relatedness queries > depth I
 - Relatedness queries of arbitrary length
- 4. Make it easy to evolve the database

...more on Graph Databases

- There are two important properties of graph database technologies:
- Graph Storage
 - Some graph databases use native graph storage that is specifically designed to store and manage graphs, while others use relational or object-oriented databases instead. Non-native storage is often much more latent.

Graph Processing Engine

 Native graph processing (a.k.a. "index-free adjacency") is the most efficient means of processing graph data since connected nodes physically "point" to each other in the database. Non-native graph processing uses other means to process CRUD operations.

Graph databases

... contd

Top Reasons People Use Graph Databases

- I. Problems with Join performance.
- 2. Continuously evolving data set (often involves wide and sparse tables)
- 3. The **Shape of the Domain** is naturally a graph
- **4.Open-ended business requirements** necessitating fast, iterative development.

Neo4j

What is Neo4j

- Developed by Neo Technologies
- Most Popular Graph Database
- Implemented in Java
- Open Source

(www.neo4j.org)

Neo4j Software Architecture

(Bachman, 2013, p.11)

Use cases of neo4j

Cypher

- Query Language for Neo4j
- Easy to formulate queries based on relationships
- Many features stem from improving on pain points with SQL such as join tables

Working with Graphs Use Cases & Working Examples Social Example

Q


```
MATCH (me:Person) - [:IS_FRIEND_OF] -> (friend),
(friend) - [:LIKES] -> (restaurant),
restaurant) - [:LOCATED_IN] -> (city:Location),
(restaurant) - [:SERVES] -> (cuisine:Cuisine)
```

WHERE me.name = 'Philip' AND city.location='New York' AND cuisine.cuisine='Sushi'

RETURN restaurant.name

http://maxdemarzi.com/?s=facebook

* Cypher query language example

Connected Query Performance Query Response Time* = f(graph density, graph size, query degree)

- Graph density (avg # rel's / node)
- **Graph size** (total # of nodes in the graph)
- Query degree (# of hops in one's query)

RDBMS:

>> exponential slowdown as each factor increases

Neo4j:

>> Performance remains constant as graph size increases

>> Performance slowdown is linear or better as density & degree increase

Connectedness of Data Set

The Zone of SQL Adequacy

Connectedness of Data Set

Practical Cypher Social Graph - Create

CREATE

(joe:Person {name:"Joe"}), (bob:Person {name:"Bob"}), (sally:Person {name:"Sally"}), (anna:Person {name:"Sally"}), (jim:Person {name:"Anna"}), (jim:Person {name:"Jim"}), (mike:Person {name:"Mike"}), (billy:Person {name:"Billy"}),

```
(joe) - [:KNOWS] -> (bob),
(joe) - [:KNOWS] -> (sally),
(bob) - [:KNOWS] -> (sally),
(sally) - [:KNOWS] -> (anna),
(anna) - [:KNOWS] -> (jim),
(anna) - [:KNOWS] -> (mike),
(jim) - [:KNOWS] -> (mike),
(jim) - [:KNOWS] -> (billy)
```


Practical Cypher Social Graph - Friends of Joe's Friends

```
MATCH (person) - [:KNOWS] - (friend),
        (friend) - [:KNOWS] - (foaf)
WHERE person.name = "Joe"
        AND NOT(person-[:KNOWS]-foaf)
RETURN foaf
```


{name:"Anna"}

Practical Cypher Social Graph - Common Friends

```
WHERE person1.name = "Joe"
AND person2.name ="Sally"
RETURN friend
```

friend

{name:"Bob"}

Practical Cypher Social Graph - Shortest Path

path

```
{start:"13759",
nodes:["13759","13757","13756","13755","13753"],
length:4,
relationships:["101407","101409","101410","101413"],
end:"13753"}
```

Industry: Online Job Search Use case: Social / Recommendations Sausalito, CA

Background

• Online jobs and career community, providing anonymized inside information to job

Business problem

- Wanted to leverage known fact that most jobs are found through personal & professional connections
- Needed to rely on an existing source of social network data. Facebook was the ideal choice.
- End users needed to get instant gratification
- Aiming to have the best job search service, in a very competitive market

- First-to-market with a product that let users find jobs through their network of Facebook friends
- Job recommendations served real-time from Neo4j
- Individual Facebook graphs imported real-time into Neo4j
- Glassdoor now stores > 50% of the entire Facebook social graph
- Neo4j cluster has grown seamlessly, with new instances being brought online as graph size and load have increased
 Neo Technology Confidential

Application Domains (more graphs on the real world)

accenture	• Adobe	Global 500 Telcommunication	AXON ACTIVE	Global 500 Manufacturing	CareerArcGroup
careerbuilder.com [.]			cisco.	Classmates-com	Compete
Curaspan HEALTH OROUP	Global 500 Logistics		\mathbf{T}	🛸 die Bayerische	2 DingLicom
	DOWN	DRAKER MONITOR MANAGE CONTROL	DRW TRADING GROUP	Dshini*	e Harmony [*]
ELECTRA	ePals	Equilar®	Era7 bioinformatics	6	First Data. beyond the transaction
FOVEA	<fuseworks></fuseworks>	gamesys	gen 🍋	jglassdoor-	ദ്യന്നറ്റ്
Genetics	HealthUnlocked	🕑 Hinge	(hp)	火 HUAWEI	Humanvest.co
ıce	dentropy	DIDMISSION	Impact Technologies A Sikosky Intervations Company	indiatimes	• Infojobs
isar software	Janssen	Juice PLUS	• Juni sphere	Justical Indus No. 11 local search engine	
kitedesk	KiwiRail 🥖	LAUREATE		ElifeWay.	UD AA

(www.neo4j.org)

Telekom Industry: Communications Use case: Social gaming Frankfurt, Germany

Background

- Europe's largest communications company
- Provider of mobile & land telephone lines to consumers and businesses, as well as internet services, television, and other

services

> 236,000 Employees worldwide in 2011

Interactive Television

Business problem

- The Fanorakel application allows fans to have an interactive experience while watching sports
- Fans can vote for referee decisions and interact with other fans watching the game
- Highly connected dataset with real-time updates
- Queries need to be served real-time on rapidly changing data
- One technical challenge is to handle the very high spikes of activity during popular games

- Interactive, social offering gives fans a way to experience the game more closely
- Increased customer stickiness for Deutsche Telekom
- A completely new channel for reaching customers with information, promotions, and ads
- Clear competitive advantage

Classmates-com.

Industry: Social Network Use case: Social / Recommendations Seattle,WA

Background

- Memory Lane, Inc. was founded in 1995 and based in Seattle, Washington. Subsidiary of United Online, Inc.
- Classmates.com, operates an online yearbook that connects members in the United States and Canada with friends and acquaintances from school, work, and the military.
- Evolving toward more sophisticated social networking capability

Business problem

- Develop new Social capabilities to help monetize Yearbook-related offerings
 - Show me all the people I know in a yearbook
 - Show me yearbooks my friends appear in most often (i.e."Top yearbooks to look at")
 - Show me sections of a yearbook that your friends appear most in (i.e. "8 of your friends are on page 12 with the football team)
 - Show me other high schools that my friends went to (i.e. friends you made in other schools)

- 3-Instance Neo4j Cluster with Cache Sharding
 - + Disaster-Recovery Cluster
- Neo4j provides18 ms response time for the top 4 queries
- Initial graph size: 100M nodes and 600M relationships
 - People, Images, Schools, Yearbooks, Yearbook Pages
- Projected to grow to IB nodes & 6B relationships

Industry: Communications Use case: Social, Mobile Hong Kong

Background

- Hong Kong based telephony infrastructure provider (aka M800 aka Pop Media)
- Exclusive China Mobile partner for international toll-free services. SMS Hub & other offerings
- 2012 Red HerringTop 100 GlobalWinner

Business problem

- Launched a new mobile communication app"Maaii" allowing consumers to communicate by voice & text (Similar to Line,Viber, Rebtel,VoxOx...)
- Needed to store & relate devices, users, and contacts
- Import phone numbers from users' address books. Rapidly serve up contacts from central database to the mobile app
- Currently around 3M users w/200M nodes in the graph

- Quick transactional performance for key operations:
 - friend suggestions ("friend of friend")
 - updating contacts, blocking calls, etc.
 - etc.
- High availability telephony app uses Neo4j clustering
- Strong architecture fit: Scala w/Neo4j embedded

accenture Industry: Logistics Use case: Parcel Routing

Background

- One of the world's largest logistics carriers
- Projected to outgrow capacity of old system
- New parcel routing system
 - Single source of truth for entire network
 - B2C & B2B parcel tracking
 - Real-time routing: up to 5M parcels per day

Business problem So

- 24x7 availability, year round
- Peak loads of 2500+ parcels per second
- Complex and diverse software stack
- Need predictable performance & linear scalability
- Daily changes to logistics network: route from any point, to any point

- Neo4j provides the ideal domain fit:
 - a logistics network is a graph
- Extreme availability & performance with Neo4j clustering
- Hugely simplified queries, vs. relational for complex routing
- Flexible data model can reflect real-world data variance much better than relational
- "Whiteboard friendly" model easy to understand

Industry: Health Care Use case: Recommedatations **Newton, Massachusetts**

Background

- Founded in 1999.Widely considered the industry leader in patient management for discharges & referrals
- Manage patient referrals for more than 4600 health care facilities
- Connects providers, payers and suppliers via secure electronic patient-transition networks, and web-based patient management platform

Business problem

- Satisfy complex "Graph Search" queries by discharge nurses and intake coordinators, e.g.: "Find a skilled nursing facility within n miles of a given location, belonging to health care group XYZ, offering speech therapy and cardiac care, and optionally Italian language services"
- Real-time Oracle performance not satisfactory
- New functionality called for more complexity, including granular role-based access control

No other patient management platform is this connected to results.

- Fast real-time performance needs now satisfied
- Queries span multiple hierarchies, including provider graph & employee permissions graph
- Graph data model provided a strong basis for adding more dimensions to the data, such as insurance networks, service areas, and ACOs (Accountable Care Organizations)
- Some multi-page SQL statements have been turned into one simple function with Neo4j

Industry: Health Care Use case: ioinformatics **Cambridge, Massachusetts**

Background

- Clinical diagnostics company specializing in genetic carrier screening for inherited diseases
- Founded in 2008 by Harvard Business School & Harvard Medical School graduates
- Two sides of the business: Clinical and R&D
- Particularly strong in the detection of rare alleles and measuring frequency in the population

Business problem

- Clinical data split across several operational databases that are not structured for discovery
- Needed an easy query mechanism for scientists who are not data scientists."Graph search" for bioinformatics.
- Much in Bioinformatics remains unknown: having to specifying a schema ahead of time can range from difficult to impossible.

- New R&D database build atop Neo4j to support information discovery by scientists
- Lightweight web front end allows simple Cypher queries to be constructed ad hoc
- RawVCF sequence data imported into Neo4j, along with clinical data from Oracle database
- Time to answer new questions went from days of ad-hoc information gathering to hours or minutes

Conclusion

- Key questions to ask yourself to use GraphDB
 - Is my data going to have a lot of relationships?
 - What sort of questions would I like to ask my database?

References

- http://www.neo4j.org
- http://www.neo4j.org/learn/cypher
- Bachman, Michal (2013). GraphAware: Towards Online Analytical Processing in Graph Databases
 - http://graphaware.com/assets/bachman-msc-thesis.pdf
- Hunger, Michael (2012). Cypher and Neo4j
 - http://vimeo.com/83797381
- Mistry, Deep (2013). Neo4j: A Developer's Perspective
 - http://osintegrators.com/opensoftwareintegrators%7Cneo4jadeveloperspective
- Wikipedia (Neo4j, Graph Database)

