

Data Exploration

Ziye Zhou

Course: Seminar on big data management

Data exploration and problems

Solution

Conclusion

Why Explore Data?

Motivation

1. Data in the real world

Incomplete

Lacking attribute values, or containing only aggregate data. e.g., Salary =" "

Noisy

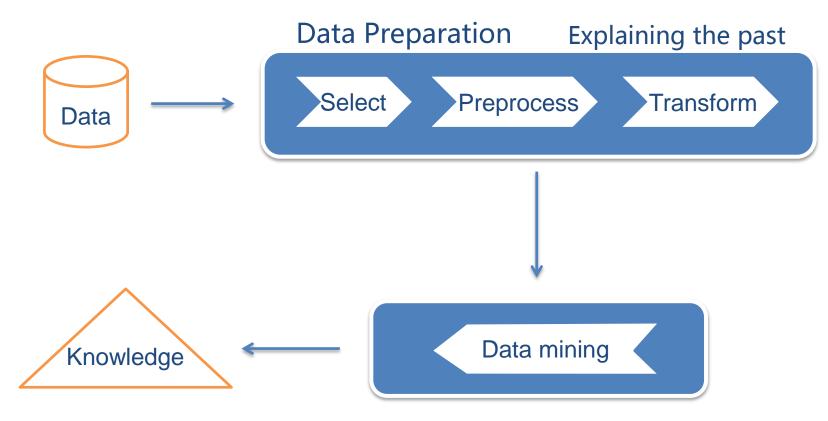
Containing errors or outliers.

$$e,g., Age = "-20"$$

Inconsistent

Discrepancies in names.

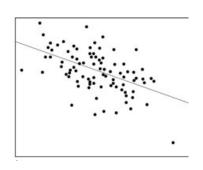
e,g., rating" 1,2,3" and "A,B,C"



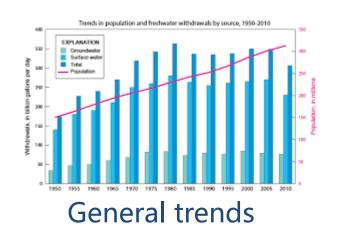
2. Users do not what they are looking for

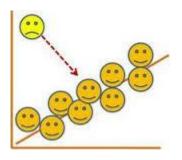
They will know that something is interesting only after they find it.

Main steps in statistical data analysis



Predicting the future(Modelling)



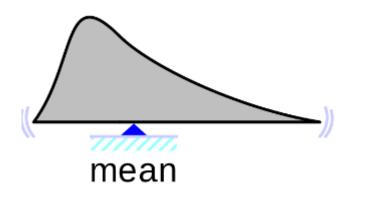

Data Exploration

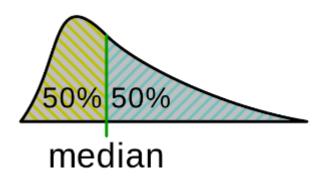
Definition: It is the first step in data analysis and typically involves summarizing the main characteristics of a dataset even if we do not know exactly what we are looking for.

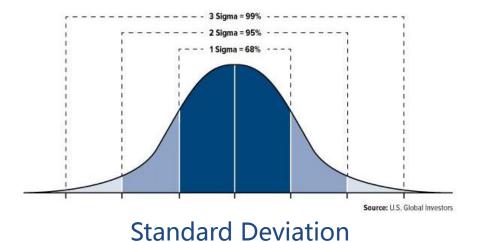
Correlations

Outliers

Ways to Explore Data

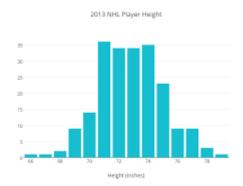

-Summary Statistics

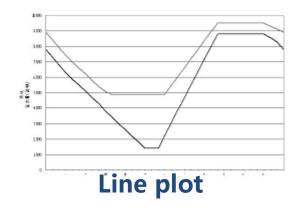

-Visualization

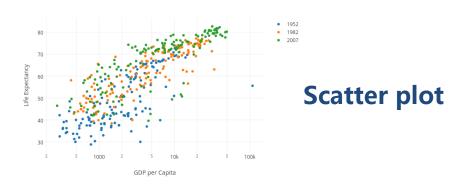


Summary Statistics

-Information that summarizes dataset






Data visualization

-Look at data graphically

Histogram

Problem?

Goal: Help users to make sense of very big datasets.

Available Tools

For professional data scientists, requires a deep knowledge of mathematics, statistics or computer science.

Database Challenges for Exploratory Computing

Marcello Buoncristiano¹, Giansalvatore Mecca¹, Elisa Quintarelli² Manuel Roveri², Donatello Santoro¹, Letizia Tanca²

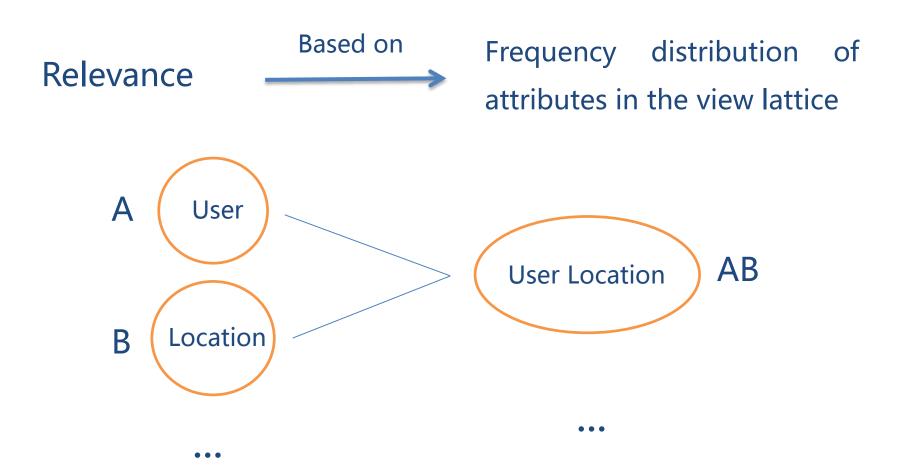
> ¹Università della Basilicata – Potenza – Italy ²Politecnico di Milano – Milano – Italy (Ref: ACM SIGMOD Record, 2015, 44(2): 17-22.)

A paradigm: Step-by-step " conversation" of a user and a system

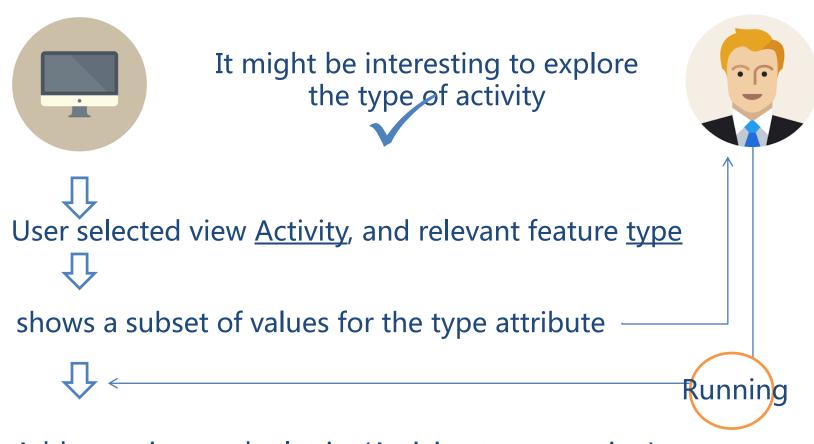
Starting the conversation

Activity

It might be interesting to explore the type of activities


In fact: running over 50%, while cycling < 20%

Initial hints about his interests


Potentially interesting perspectives

A Model of Relevance

How to extract relevant feature?

How the Conversation goes on?

Add new view to the lattice(Activity, type, running)

Reseach challenges

- Responsiveness
- Summarization
- CPUs vs GPUs
- Fast Statistical Operators
- User Involvement

A Step Forward

Solve the technical problem of implementing a database-exploration system.

♦ Preliminary

• The critical step is the development of a statistical algorithm to measure the difference between two tuple-sets T^{Q1}, T^{Q2} with a common target feature, in order to compute the relative relevance.

A Step Forward

- Sample tuple sets T^{Q1} and T^{Q2} to extract subsets q_1 and q_2 of cardinality much lower than the one of T^{Q1} , T^{Q2} , i.e., $|q_i| \ll |T^{Qi}|$.
- This can be done using different sampling strategies: sequential, random or hybrid

A Step Forward

- The method relies on an ensemble of hypothesis tests operating on randomly-extracted subsets of the original tuple-sets.
- The main intuition is that hypothesis tests should be conducted incrementally, in order to increase scalability, while at the same time keeping the emergence of false positives under control.

Step1: Sampling

- Sample tuple sets T^{Q1} and T^{Q2} to extract subsets q_1 and q_2 of cardinality much lower than the one of T^{Q1} , T^{Q2} , i.e., $|q_i| \ll |T^{Qi}|$.
- This can be done using different sampling strategies: sequential, random or hybrid

Step2: Comparison

- Let X_1 and X_2 be the projections of q_1 and q_2 over a specific attribute (feature). The data in X_1 and X_2 can be either numerical or categorical.
- The comparison step aims at assessing the discrepancy between X_1 and X_2 through theoretically-grounded statistical hypothesis tests of the form $test_i(X_1, X_2)$
 - Examples of these tests:
 - one-sample Chi-square test: assessing the distribution of a subset with discrete values.
 - two-sample Kolmogorov-Smirnov test: whether two subsets have been generated by two continuous different probability density functions.

Step3: Iteration

- Repeat the extraction and comparison steps M times.
- At the j-th iteration, a new pair of subsets X_1 and X_2 are extracted and test_i(X_1 , X_2) is computed.
 - ➤ If the test rejects the null hypothesis, we stop the incremental procedure since we have enough statistical confidence that there is a difference in the data distributions of T^{Q1}andT^{Q2}.
 - Otherwise, the procedure proceeds o the next iteration.

- The procedure described above can be applied to different pairs of tuple sets.
- The difference between their empirical distributions is computed using the Hellinger distance.
- Based on this, we can rank the tuple sets to find out those exhibiting the largest differences.

Conclusion

- Briefy introduction to data exploration
 Effciently extracting knowledge from data even if we do not know exactly what we are looking for.
- "Conversation" model

User and System that help each other to refine the data exploration process, ultimately gathering new knowledge that concretely fullfils the user needs.

Technical challenges and solutions

