
www.helsinki.fi

Google big data 

techniques (2)

Lecturer: Jiaheng Lu

Fall 2016

10.12.2016 1



www.helsinki.fi

Google File System and HDFS

Relational DB V.S. Big data system

Google Bigtable and NoSQL databases

Outline



www.helsinki.fi 2016/12/10 3



www.helsinki.fi

The Google File System



www.helsinki.fi

The Google File System(GFS)

A scalable distributed file system for large 

distributed data intensive applications

MapReduce (Hadoop) Bigtable (HBase)

Google File System (Hadoop, HDFS)



www.helsinki.fi

Motivation: Google history

2016/12/10 6

Early days at Stanford (1995)

Larry Page and Sergey Brin

Google's first production server 

rack, 1998



www.helsinki.fi

Today…

2016/12/10 7

Google Server Farms

Google has more than 900,000 servers, 

indexed more than 50 billion pages



www.helsinki.fi

GFS: Introduction

Shares many same goals as previous distributed file 

systems

performance, scalability, reliability, etc

GFS design has been driven by four key observation of 

Google application workloads and technological 

environment



www.helsinki.fi

Intro: Observations

•1. Component failures are the norm

constant monitoring, error detection, fault tolerance and 

automatic recovery are integral to the system

•2. Huge files (by traditional standards)

Multi GB files are common

I/O operations and blocks sizes must be revisited



www.helsinki.fi

Intro: Observations (Contd)

• 3. Most files are mutated by appending new data

This is the focus of performance optimization and atomicity 

guarantees

• 4. Co-designing the applications and APIs benefits 

overall system by increasing flexibility



www.helsinki.fi

The Design

Cluster consists of a single master and multiple 

chunkservers and is accessed by multiple clients



Using filename & byte offset to chunk index.
Send request to master



Replies with chunk handle & location of chunkserver 
replicas (including which is ‘primary’)



using filename & chunk index as key



Request data from nearest chunkserver
“chunkhandle & index into chunk”



www.helsinki.fi

The Master

Maintains all file system metadata.

names space, access control info, file to chunk 

mappings, chunk (including replicas) location, etc.

Periodically communicates with chunkservers in 

HeartBeat messages to give instructions and check 

state



www.helsinki.fi

The Master

Helps make sophisticated chunk placement and 

replication decision, using global knowledge

For reading and writing, client contacts Master to get 

chunk locations, then deals directly with chunkservers

Master is not a bottleneck for reads/writes



www.helsinki.fi

Chunkservers

Files are broken into chunks. Each chunk has 

a globally unique 64-bit chunk-handle.

handle is assigned by the master at chunk creation

Chunk size is 64 MB

Each chunk is replicated on 3 (default) 

servers



www.helsinki.fi

Clients

Linked to apps using the file system API.

Communicates with master and chunkservers for reading 

and writing

Master interactions only for metadata

Chunkserver interactions for data

Only caches metadata information

Data is too large to cache.



www.helsinki.fi

GFS paper

• More information on data update and performance of 

GFS, read the original paper:

• http://static.googleusercontent.com/media/research.g

oogle.com/en//archive/bigtable-osdi06.pdf

2016/12/10 20



www.helsinki.fi 2016/12/10 21

HDFS



www.helsinki.fi

HDFS Architecture

22



www.helsinki.fi

Read Operation in HDFS

23



www.helsinki.fi

Disclaimer

• GFS/HDFS are not a good fit for: 

• Low latency data access (in the milliseconds range)

• Many small files 

• Constantly changing data

2016/12/10 24



www.helsinki.fi

• Watch a video on  “How big is Google”

• https://www.youtube.com/watch?v=-79uIRQiAFM

2016/12/10 25



www.helsinki.fi

Google File System and HDFS

Relational DB V.S. Big data system

Google Bigtable and NoSQL databases



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(1)

• Query languages are different

• Relational DB uses SQL language

• Big data system uses NoSQL language: XML, JSON, 

Graph query language. 

2016/12/10 27



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(2)

• System architectures are different

• Most relational DB uses a single machine, scale-up 

• Big data system uses multiple machines, scale-out

• Potentially thousands of machines

• Potentially distributed around the world

2016/12/10 28



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(3)

• Models are different

• Most relational DB uses a relational model

• Big data system uses NoSQL model, including graph 

model, document model, key-value model

2016/12/10 29



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(4)

• Schemas are different

• Most relational DB uses fixed schemas

• Big data system uses flexible schemas or schema-less

2016/12/10 30



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(5)

• Consistency models are different 

• Relational DB uses ACID

• Big data system uses weak consistency 

• Basically Available, 

• Soft state,

• Eventually Consistent

2016/12/10 31



www.helsinki.fi

Difference between the traditional 

DBMS and big data system(6)

• Update model are different

• DBMS: frequent  updates

• Big data: Mostly query, few updates

2016/12/10 32



www.helsinki.fi

Google File System and HDFS

Relational DB V.S. Big data system

Google Bigtable and NoSQL databases



BigTable: A Distributed Storage 

System for Structured Data



Introduction

• BigTable is a distributed storage system 

for managing structured data.

• Designed to scale to a very large size

• Petabytes of data across thousands of servers



Motivation

• Lots of (semi-) structured data at Google
• URLs:

‒ Contents, crawl metadata, links, anchors, 
pagerank, …

• Per-user data:
‒ User preference settings, recent queries/search 

results, …

• Geographic locations:
‒ Physical entities (shops, restaurants, etc.), roads, 

satellite image data, user annotations, …



Why not just use commercial 

DB?

• Scale is too large for most commercial 

databases

• Even if it weren’t, cost would be very high

• Building internally means system can be applied 

across many projects for low incremental cost

• Low-level storage optimizations help 

performance significantly

• Much harder to do when running on top of a database 

layer



Goals

• Need to support:

• Very high read/write rates (millions of ops per second)

• Efficient scans over all or interesting subsets of data

• Efficient joins of large one-to-one and one-to-many 
datasets



BigTable

• Distributed multi-level map

• Fault-tolerant, persistent

• Scalable
• Thousands of servers

• Terabytes of in-memory data

• Petabyte of disk-based data

• Millions of reads/writes per second, efficient scans

• Self-managing
• Servers can be added/removed dynamically

• Servers adjust to load imbalance



Basic Data Model

• A BigTable is a sparse, distributed 
persistent multi-dimensional sorted map

(row, column, timestamp) -> cell contents

• Good match for most Google applications



WebTable Example

• Want to keep copy of a large collection of web pages 
and related information

• Use URLs as row keys

• Various aspects of web page as column names

• Store contents of web pages in the contents:
column under the timestamps when they were 
fetched.



Rows

• Name is an arbitrary string

• Access to data in a row is atomic

• Row creation is implicit upon storing data

• Rows ordered lexicographically

• Rows close together lexicographically usually on one or 
a small number of machines



Rows (cont.)

Reads of short row ranges are efficient and typically 

require communication with a small number of 

machines.

• Can exploit this property by selecting row keys so 

they get good locality for data access.

• Example: 
math.gatech.edu, math.uga.edu, phys.gatech.edu, 

phys.uga.edu 

VS 

edu.gatech.math, edu.gatech.phys, edu.uga.math, 

edu.uga.phys



Columns

• Columns have two-level name structure:
‒ family:optional_qualifier

• Column family
• Unit of access control

• Has associated type information

• Qualifier gives unbounded columns
• Additional levels of indexing, if desired



Timestamps

• Used to store different versions of data in a cell

• New writes default to current time, but timestamps for writes can 
also be set explicitly by clients

• Lookup options:

• “Return most recent K values”

• “Return all values in timestamp range (or all values)”

• Column families can be marked w/ attributes:

• “Only retain most recent K values in a cell”

• “Keep values until they are older than K seconds”



Implementation – Three Major 

Components

• Library linked into every client

• One master server
• Responsible for:

‒ Assigning tablets to tablet servers

‒ Detecting addition and expiration of tablet servers

‒ Balancing tablet-server load

‒ Garbage collection

• Many tablet servers
• Tablet servers handle read and write requests to 

its table

• Splits tablets that have grown too large



Tablets

• The entire BigTable is split into 
tablets of contiguous ranges of 
rows

• Approximately 100MB to 200MB 
each

• One machine services 100 
tablets

47

Tablet1

Tablet2



Tablet Assignment

• Each tablet is assigned to one tablet server at a time.

• Master server keeps track of the set of live tablet servers and 
current assignments of tablets to servers.  Also keeps track of 
unassigned tablets.

• When a tablet is unassigned, master assigns the tablet to an 
tablet server with sufficient room.



Bigtable paper

• More details on Bigtable, read the paper:

• http://static.googleusercontent.com/media/research.google.com/
en//archive/bigtable-osdi06.pdf



www.helsinki.fi 10.12.2016 50

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Types and examples of NoSQL 

databases

Types Examples

Column Accumulo, Cassandra, Druid, HBase, Vertica

Document HyperDex, Lotus Notes, MarkLogic, MongoDB, OrientDB, 

Qizx, RethinkDB

Key-value: Aerospike, Dynamo, FairCom, c-treeACE, HyperDex, 

MemcacheDB, MUMPS

Graph Allegro, InfiniteGraph, MarkLogic, Neo4J, OrientDB, Virtuoso, 

Stardog

Multi-model Alchemy Database, ArangoDB, CortexDB, FoundationDB, 

MarkLogic, OrientDB



www.helsinki.fi

• A column-oriented DBMS is a database management system 

(DBMS) that stores data tables as sections of columns of data 

rather than as rows of data.

• This column-oriented DBMS has advantages for data 

warehouses, clinical data analysis, customer relationship 

management (CRM) systems, and library card catalogs, and 

other ad hoc inquiry systems

10.12.2016 51

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Column stores



www.helsinki.fi

RowId EmpId Name Age

1 123 Anna 34

2 456 Mikko 30

3 789 Emilia 44

10.12.2016 52

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Example of column stores

Row-oriented storage:

1:123, Anna,34; 2:456,Mikko,30;  3:789,Emilia,44

Column-oriented storage:

123:1,456:2, 789:3;  Anna:1, Mikko:2,Emilia:3; 34:1,30:2,44:3



www.helsinki.fi

• Key-value (KV) stores use the associative array 

as their fundamental data model. 

• In this model, data is represented as a collection 

of key-value pairs, such that each possible key 

appears at most once in the collection.

10.12.2016 53Matemaattis-luonnontieteellinen tiedekunta / 

Henkilön nimi / Esityksen nimi

Key-value stores



www.helsinki.fi

RowId EmpId Name Age

1 123 Anna 34

2 456 Mikko 30

3 789 Emilia 44

10.12.2016 54

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Example of Key-value stores

1: (123,Anna,34); 2: (2,456,Mikko,30); 3: (789,Emilia,44)



www.helsinki.fi

• The central concept of a document store is the 

notion of a "document". 

• Encodings in use include XML, YAML, and JSON as 

well as binary forms like BSON. 

10.12.2016 55

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Document store



www.helsinki.fi 10.12.2016 56

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Example of document store

University of Helsinki

Yliopistonkatu 4, 

00100 Helsinki

Finland

XML: <contact>

<company> Universtiy of Helsinki </company>

<address> Yliopistonkatu 4 </address >

<city>Helsinki</city>

<zip> 00100 </zip>

<country>Finland</country>

</contact>

JSON: “contact": {

“company": "Universtiy of Helsinki",

" address ": " Yliopistonkatu 4 ",

“city": " Helsinki ",

“zip": "00100“,

“country”:”Finland”

},



www.helsinki.fi

• Designed for graph data 

• Applications: social relations, public transport links, 

road maps or network topologies, etc.

10.12.2016 57

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Graph stores



www.helsinki.fi 10.12.2016 58

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu

Multi-model stores

• Support multiple data models against a single, integrated backend:

Document, graph, relational, and key-value models are examples 

of data models

Database Key-

value

SQL Document Graph Object Transacti

on

OrientDB Yes Yes Yes Yes Yes Full ACID, 

even 

distributed

Couchbase Yes Yes Yes No Yes

Marklogic Yes Yes Yes Yes No Full ACID



www.helsinki.fi

• Watch a short video on NoSQL database

• https://www.youtube.com/watch?v=qUV2j3XBRHc&t=24s

10.12.2016 59

Matemaattis-luonnontieteellinen tiedekunta /

Iso tiedonhallinta/

Jiaheng Lu



Summary of this course

• Three topics on big data

• Data models (relation, XML, JSON, graph )

• Data sketches (Bloom filter, Count-min, Count-
sketch, FM sketch)

• Google big data techniques (MapReduce, GFS, 
Bigtable )



Examination 

• Examination time: 21.12 Wednesday 
8.00AM Room CK112

• The exam covers the lectures (including self-
assessment questions) and the exercises. 

• The exam lasts 2.5 hours. No notes, computer or 
other material is allowed in the exam.



10.12.2016 62

Matemaattis-luonnontieteellinen tiedekunta / 

Henkilön nimi / Esityksen nimi


