
www.helsinki.fi

GFS, Mapreduce and
Bigtable

Seminar on big data management

Lecturer: Jiaheng Lu

Spring 2016

1.2.2016 1

Google big data techniques

www.helsinki.fi

Google File System

MapReduce model

Bigtable data storage platform

www.helsinki.fi

The Google File System

www.helsinki.fi

The Google File System (GFS)

A scalable distributed file system for large
distributed data intensive applications
Multiple GFS clusters are currently deployed.
The largest ones (in 2003) have:

1000+ storage nodes
300+ TeraBytes of disk storage
heavily accessed by hundreds of clients on distinct
machines

www.helsinki.fi

Introduction

Shares many same goals as previous
distributed file systems

performance, scalability, reliability, etc

GFS design has been driven by four key
observation of Google application workloads
and technological environment

www.helsinki.fi

Intro: Observations 1

•1. Component failures are the norm
constant monitoring, error detection, fault
tolerance and automatic recovery are integral to
the system

•2. Huge files (by traditional standards)
Multi GB files are common
I/O operations and blocks sizes must be
revisited

www.helsinki.fi

Intro: Observations 2

•3. Most files are mutated by appending new
data

This is the focus of performance optimization
and atomicity guarantees

•4. Co-designing the applications and APIs
benefits overall system by increasing
flexibility

www.helsinki.fi

The Design

Cluster consists of a single master and multiple
chunkservers and is accessed by multiple clients

www.helsinki.fi

The Master

Maintains all file system metadata.
names space, access control info, file to chunk
mappings, chunk (including replicas) location, etc.

Periodically communicates with chunkservers in
HeartBeat messages to give instructions and check
state

www.helsinki.fi

The Master

Helps make sophisticated chunk placement
and replication decision, using global
knowledge
For reading and writing, client contacts Master
to get chunk locations, then deals directly with
chunkservers

Master is not a bottleneck for reads/writes

www.helsinki.fi

Chunkservers

Files are broken into chunks. Each chunk has
a immutable globally unique 64-bit chunk-
handle.

handle is assigned by the master at chunk creation

Chunk size is 64 MB
Each chunk is replicated on 3 (default)
servers

www.helsinki.fi

Clients

Linked to apps using the file system API.
Communicates with master and chunkservers
for reading and writing

Master interactions only for metadata
Chunkserver interactions for data

Only caches metadata information
Data is too large to cache.

www.helsinki.fi

Chunk Locations

Master does not keep a persistent record
of locations of chunks and replicas.
Polls chunkservers at startup, and when
new chunkservers join/leave for this.
Stays up to date by controlling placement of
new chunks and through HeartBeat
messages (when monitoring chunkservers)

Introduction to
MapReduce

MapReduce: Insight

• A Toy Problem:
• • We have 10 billion documents
• • Average documents size is 20KB

• • 10 Billion docs == 200 TB
• • We want build a language model of the Web:
• – Basically count how many times each word occur

MapReduce: Insight

• for each document d
• { for each word w in d {word_count[w]++; } }

• Approximately 1 month.

• Assumptions:
• 1. All disk reads are sequential
• 2. Dictionary fits into the memory

MapReduce Programming Model

• Inspired from map and reduce operations
commonly used in functional programming
languages like Lisp.

• Users implement interface of two primary
methods:
• 1. Map: (key1, val1) → (key2, val2)
• 2. Reduce: (key2, [val2]) → [val3]

Map operation

• Map, a pure function, written by the user, takes
an input key/value pair and produces a set of
intermediate key/value pairs.
• e.g. (doc—id, doc-content)

• Draw an analogy to SQL, map can be visualized
as group-by clause of an aggregate query.

Reduce operation

• On completion of map phase, all the intermediate values for a
given output key are combined together into a list and given to
a reducer.

• Can be visualized as aggregate function (e.g., average) that is
computed over all the rows with the same group-by attribute.

Pseudo-code

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts

int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));

MapReduce: Execution overview

MapReduce: Example

MapReduce in Parallel: Example

MapReduce: Some More Apps

• Distributed Grep.

• Count of URL Access
Frequency.

• Clustering (K-means)

• Graph Algorithms.

• Indexing Systems

MapReduce Programs In Google
Source Tree

www.helsinki.fi

Google File System

MapReduce model

Bigtable data storage platform

BigTable: A Distributed Storage
System for Structured Data

Introduction

• BigTable is a distributed storage system
for managing structured data.

• Designed to scale to a very large size
• Petabytes of data across thousands of servers

• Used for many Google projects
• Web indexing, Personalized Search, Google

Earth, Google Analytics, Google Finance, …
• Flexible, high-performance solution for all

of Google’s products

Motivation

• Lots of (semi-)structured data at Google
• URLs:
‒ Contents, crawl metadata, links, anchors,

pagerank, …
• Per-user data:
‒ User preference settings, recent queries/search

results, …
• Geographic locations:
‒ Physical entities (shops, restaurants, etc.), roads,

satellite image data, user annotations, …
• Scale is large

• Billions of URLs, many versions/page
(~20K/version)

Why not just use commercial
DB?
• Scale is too large for most commercial

databases
• Even if it weren’t, cost would be very high

• Building internally means system can be
applied across many projects for low
incremental cost

Goals

• Want asynchronous processes to be
continuously updating different pieces of data
• Want access to most current data at any time

• Need to support:
• Very high read/write rates (millions of ops per second)
• Efficient scans over all or interesting subsets of data
• Efficient joins of large one-to-one and one-to-many

datasets
• Often want to examine data changes over time

• E.g. Contents of a web page over multiple crawls

BigTable

• Distributed multi-level map
• Fault-tolerant, persistent
• Scalable

• Thousands of servers
• Terabytes of in-memory data
• Petabyte of disk-based data
• Millions of reads/writes per second, efficient scans

• Self-managing
• Servers can be added/removed dynamically
• Servers adjust to load imbalance

Building Blocks

• Building blocks:
• Google File System (GFS): Raw storage

• Scheduler: schedules jobs onto machines

• Lock service: distributed lock manager

• MapReduce: simplified large-scale data
processing

Basic Data Model

• A BigTable is a sparse, distributed
persistent multi-dimensional sorted map
(row, column, timestamp) -> cell contents

• Good match for most Google applications

WebTable Example

• Want to keep copy of a large collection of web pages
and related information

• Use URLs as row keys
• Various aspects of web page as column names
• Store contents of web pages in the contents:

column under the timestamps when they were
fetched.

Rows

• Name is an arbitrary string
• Access to data in a row is atomic
• Row creation is implicit upon storing data

• Rows ordered lexicographically
• Rows close together lexicographically usually on one or

a small number of machines

Rows (cont.)

Reads of short row ranges are efficient and typically
require communication with a small number of
machines.

• Can exploit this property by selecting row keys so
they get good locality for data access.

• Example:
math.gatech.edu, math.uga.edu, phys.gatech.edu,
phys.uga.edu

VS

edu.gatech.math, edu.gatech.phys, edu.uga.math,
edu.uga.phys

Columns

• Columns have two-level name structure:
‒ family:optional_qualifier

• Column family
• Unit of access control
• Has associated type information

• Qualifier gives unbounded columns
• Additional levels of indexing, if desired

Timestamps

• Used to store different versions of data in a cell
• New writes default to current time, but timestamps for writes can

also be set explicitly by clients
• Lookup options:

• “Return most recent K values”
• “Return all values in timestamp range (or all values)”

• Column families can be marked w/ attributes:
• “Only retain most recent K values in a cell”
• “Keep values until they are older than K seconds”

Implementation – Three Major
Components
• Library linked into every client
• One master server

• Responsible for:
‒ Assigning tablets to tablet servers
‒ Detecting addition and expiration of tablet servers
‒ Balancing tablet-server load
‒ Garbage collection

• Many tablet servers
• Tablet servers handle read and write requests to

its table
• Splits tablets that have grown too large

Tablets

• Large tables broken into tablets at row
boundaries
• Tablet holds contiguous range of rows
‒ Clients can often choose row keys to achieve locality

• Aim for ~100MB to 200MB of data per tablet
• Serving machine responsible for ~100

tablets
• Fast recovery:
‒ 100 machines each pick up 1 tablet for failed machine

• Fine-grained load balancing:
‒ Migrate tablets away from overloaded machine
‒ Master makes load-balancing decisions

Tablet Assignment

• Each tablet is assigned to one tablet server at a time.
• Master server keeps track of the set of live tablet servers and

current assignments of tablets to servers. Also keeps track of
unassigned tablets.

• When a tablet is unassigned, master assigns the tablet to an
tablet server with sufficient room.

API

• Metadata operations
• Create/delete tables, column families, change metadata

• Writes (atomic)
• Set(): write cells in a row
• DeleteCells(): delete cells in a row
• DeleteRow(): delete all cells in a row

• Reads
• Scanner: read arbitrary cells in a bigtable

‒ Each row read is atomic
‒ Can restrict returned rows to a particular range
‒ Can ask for just data from 1 row, all rows, etc.
‒ Can ask for all columns, just certain column families, or

specific columns

www.helsinki.fi

• GFS is developed by Google for big data challenge

• Hadoop is an open-source software of GFS

• Mapreduce is a distributed programming framework

• Bigtable is developed to store large-scale Web data

1.2.2016 44

Matemaattis-luonnontieteellinen tiedekunta /
Iso tiedonhallinta/
Jiaheng Lu

Summary

