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Big Data and Sampling

I Handling small data is easy while handling big data is difficult,
so why not make big data small?

I From statistics we know that sampling for often give results
that are practically as good as the exact values

I The methods here come not from actual Big Data literature,
but rather from earlier OLAP research

I However, even if the methods themselves predate Big Data,
they have been put to use recently for example in BlinkDB
system for Big Data

I Central to big data applications would be sampling stream
data. We will not be discussing that however, but rather focus
on static datasets



Sampling

I Sampling has always been central to statistics, and has been
extensively researched

I In survey research collecting data is expensive (while analyzing
it is cheap), so sampling to limit data

I In big data analyzing data is expensive (while collecting it is
cheap), and again sampling to limit data

I Most straightforward idea is to just sample uniformly at
random



Contrast to classical setting

I Often in statistics we think about sampling values at random
from some parametric distribution is order to estimate the
parameters

I For example we might sample a normal distribution to
estimate the mean, and in this case we know very well how for
example sample mean function behaves (Student’s
t-distribution etc.)

I Now we are doing something different, that is sampling a
finite collection which we can, if we so desire, scan several
times. We can for example find the minimum and maximum
values in this collection.

I This difference in setting will lead to some theory which is not
so familiar from elementary statistics



Problems with uniform sampling

I Uniform sampling will sometimes yield abysmal results

I In this presentation we are concerned with a specific failure
mode:

I If the data is spread on a large interval, obtaining useful
estimates can require large samples

I A very specific method to handle this situation



Sampling sparse data

I Sparse here means that the values are spread over a long
interval (not to be mixed with the usual definition of
sparseness)
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How badly does uniform sampling work for sparse datasets?

I Pretty badly, plot shows estimation errors in red, blue line is 0
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Stratified sampling

I Idea is to split the dataset into buckets and ensure each is
represented in the sample

I This way we can have outliers (which are disproportionaly
important for estimates) represented
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Using a stratified sample

I Suppose we have k buckets, and we sample Ni points from
bucket i.

I An estimator for sample mean is then

N1X̄1 +N2X̄2 + · · · +NkX̄k∑k
i=1Ni



Choosing a good sampling scheme

I In the previous toy-example, we used just some buckets that
looked good with respect to the distribution

I How to do this systematically?

I How to reason about the behaviour of the resulting estimates?



Hoeffding equation

I Let us fix and error bound ε, which is the distance of the true
value and estimate

I Also, set δ to be the probability that ε is greater than some t

I t = (b− a)
√

1
2n log 2

1−δ
I Where a is minimum of the dataset and b is the maximum.

I Dependence of the range of the data is intutive

I We can solve for the sample required for achieving some error
bound.



Finding good buckets

I Finding the optimal buckets: split the dataset into parts each
of which is characterized by the error, and minimize the
sample size (think rod cutting!)

I Total error is obtained as weighted average of errors over all
buckets:

∑K
i=1Niεi/

∑K
i=1Ni

I Unfortunately the dynamic programming solution runs in
O(N4) and is of no practical relevance for big data (and of
dubious relevance for any purpose)

I A more practical solution runs in O(N logN), and in practice
can deliver good results



The algorithm

I Choosing optimal error for each bucket separately is difficult,
so instead we fix an error bound ε0.

I Now clearly the total error equals the maximum error for each
bucket

I A greedy approximation of the optimal scheme: traverse the
data set, and at each step see if it seems better to add the
element to the previous bucket or to create a new bucket with
that element alone.

I Never worse than uniform sampling, oftentimes better even if
not optimal



Resulting buckets

I The same dataset, using my own R implementation with
δ = 0.9 and ε = 5
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Comparison on 150 000 samples of 300

Error on estimating mean
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Inserting new records I

I Suppose we want to append a new record to the data

I Often it will be possible to avoid computing everything from a
scratch

I Algorithm: find the bucket to which new record belongs to

I Compute the new error bound, taking into account the
updated range and sample size (of the bucket)

I If the global error bound requirement is still satisfied, no
computation will be needed

I Record is added to the bucket according to reservoir sampling

I We can be sure of satisfying global error requirement, but
optimality of is not considered. Then again, our algorithm is
approximation in any case



Inserting new records II

I It is possible that the record is outside of the range of the
bucket

I In this case only possibility is creating a new bucket with that
record alone

I If this happens very often, all will be lost



Conclusions

I Nice method, but limitations are severe
I Notice that computing the mean or sum of any data is O(N).

Now we are sampling with an O(N logN) method, what
sense might that make?

I If samples can somehow be reused in many queries, this can
still be worth it

I Or if samples can be incrementally updated this might be
useful

I Methods for incrementing the sample are relatively easy

I Also notice that the method used theoretical error bound
results established for sum of random variables (and thus the
mean), but how about arbitrary functions?

I In any case, certainly no silver bullet for handling big data
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