Data Sampling for Big Data

Risto Tuomainen

March 31, 2016

・ロト・日本・モト・モート ヨー うへで

Introduction

Problems of uniform sampling and a new hope

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An algorithm for sparse data sampling

Big Data and Sampling

- Handling small data is easy while handling big data is difficult, so why not make big data small?
- From statistics we know that sampling for often give results that are practically as good as the exact values
- The methods here come not from actual Big Data literature, but rather from earlier OLAP research
- However, even if the methods themselves predate Big Data, they have been put to use recently for example in BlinkDB system for Big Data
- Central to big data applications would be sampling stream data. We will not be discussing that however, but rather focus on static datasets

- Sampling has always been central to statistics, and has been extensively researched
- In survey research collecting data is expensive (while analyzing it is cheap), so sampling to limit data
- In big data analyzing data is expensive (while collecting it is cheap), and again sampling to limit data

 Most straightforward idea is to just sample uniformly at random

Contrast to classical setting

- Often in statistics we think about sampling values at random from some parametric distribution is order to estimate the parameters
- For example we might sample a normal distribution to estimate the mean, and in this case we know very well how for example sample mean function behaves (Student's t-distribution etc.)
- Now we are doing something different, that is sampling a finite collection which we can, if we so desire, scan several times. We can for example find the minimum and maximum values in this collection.
- This difference in setting will lead to some theory which is not so familiar from elementary statistics

Problems with uniform sampling

- Uniform sampling will sometimes yield abysmal results
- In this presentation we are concerned with a specific failure mode:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- If the data is spread on a large interval, obtaining useful estimates can require large samples
- A very specific method to handle this situation

Sampling sparse data

 Sparse here means that the values are spread over a long interval (not to be mixed with the usual definition of sparseness)

Observation index

(日)、

э

How badly does uniform sampling work for sparse datasets?

Pretty badly, plot shows estimation errors in red, blue line is 0

Sample size

Stratified sampling

- Idea is to split the dataset into buckets and ensure each is represented in the sample
- This way we can have outliers (which are disproportionaly important for estimates) represented

- ► Suppose we have k buckets, and we sample N_i points from bucket i.
- An estimator for sample mean is then

$$\frac{N_1 \bar{X}_1 + N_2 \bar{X}_2 + \dots + N_k \bar{X}_k}{\sum_{i=1}^k N_i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- In the previous toy-example, we used just some buckets that looked good with respect to the distribution
- How to do this systematically?
- How to reason about the behaviour of the resulting estimates?

- Let us fix and error bound *ε*, which is the distance of the true value and estimate
- \blacktriangleright Also, set δ to be the probability that ϵ is greater than some t

•
$$t = (b-a)\sqrt{\frac{1}{2n}\log\frac{2}{1-\delta}}$$

- ▶ Where *a* is minimum of the dataset and *b* is the maximum.
- Dependence of the range of the data is intutive
- We can solve for the sample required for achieving some error bound.

- Finding the optimal buckets: split the dataset into parts each of which is characterized by the error, and minimize the sample size (think rod cutting!)
- ► Total error is obtained as weighted average of errors over all buckets: ∑^K_{i=1} N_i ǫ_i / ∑^K_{i=1} N_i
- ► Unfortunately the dynamic programming solution runs in O(N⁴) and is of no practical relevance for big data (and of dubious relevance for any purpose)
- ► A more practical solution runs in O(N log N), and in practice can deliver good results

- Choosing optimal error for each bucket separately is difficult, so instead we fix an error bound e₀.
- Now clearly the total error equals the maximum error for each bucket
- A greedy approximation of the optimal scheme: traverse the data set, and at each step see if it seems better to add the element to the previous bucket or to create a new bucket with that element alone.
- Never worse than uniform sampling, oftentimes better even if not optimal

Resulting buckets

 \blacktriangleright The same dataset, using my own R implementation with $\delta=0.9$ and $\epsilon=5$

Comparison on 150 000 samples of 300

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Inserting new records I

- Suppose we want to append a new record to the data
- Often it will be possible to avoid computing everything from a scratch
- Algorithm: find the bucket to which new record belongs to
- Compute the new error bound, taking into account the updated range and sample size (of the bucket)
- If the global error bound requirement is still satisfied, no computation will be needed
- Record is added to the bucket according to reservoir sampling
- We can be sure of satisfying global error requirement, but optimality of is not considered. Then again, our algorithm is approximation in any case

- It is possible that the record is outside of the range of the bucket
- In this case only possibility is creating a new bucket with that record alone

If this happens very often, all will be lost

Conclusions

- Nice method, but limitations are severe
- Notice that computing the mean or sum of any data is O(N). Now we are sampling with an O(N log N) method, what sense might that make?
 - If samples can somehow be reused in many queries, this can still be worth it
 - Or if samples can be incrementally updated this might be useful
- Methods for incrementing the sample are relatively easy
- Also notice that the method used theoretical error bound results established for sum of random variables (and thus the mean), but how about arbitrary functions?
- In any case, certainly no silver bullet for handling big data