The Minimum-Backlog Problem

Michael A. Bender, Sandor P. Fekete, Alexander Kroller, Vincenzo
Liberatore, Joseph S. B. Mitchell, Valentin Polishchuk and Jukka

Suomela

Abstract. We introduce and study the minimum-backlog problem (MBP).
The MBP arises in sensor networks and is related to the classic k-server
problem. It can be understood as a 2-person game played on a graph G =
(V, E). The “player” moves along the edges of the graph; the opponent is the
“adversary.” The game proceeds in timesteps. In each timestep the adversary
pours a total of one unit of water into “cups” that are located on the vertices
of the graph, arbitrarily distributing the water among the cups. The player
then moves from her current vertex to an adjacent vertex and empties the cup
at that vertex. The player’s objective is to minimize the maximum amount of
water (the backlog) in any cup at any time.

We show that the competitive ratio of any algorithm for the MBP has a
lower bound of Q(A), where A is the diameter of the graph. Thus, we focus on
determining a strategy for the player that guarantees a uniform upper bound
on the backlog. In general graphs, the deamortization analysis of Dietz and
Sleator gives a bound of O(AlIn|V]).

Our main result is that in geometric settings (e.g., sensor fields), one
can obtain substantially better bounds on the maximum backlog. In partic-
ular, for a 2-dimensional n-by-n grid, we achieve a backlog of O(nvInlnn),
improving the O(nInn) upper bound for general graphs, and coming close to
the naive Q(n) lower bound. Then, in a model of continuous motion of the
player and continuous pouring by the adversary, for cups placed at m points
in the plane we show that the backlog can be bounded by O(DvInlnm),
where D is the diameter of the point set. Our methods apply also to higher
(fixed) dimensions.

We study also the variant of the MBP in which the adversary has a
location within the graph and must act locally (filling cups) with respect to
his position, just as the player acts locally (emptying cups) with respect to
her position. We prove that deciding the value of this game is PSPACE-hard.

Mathematics Subject Classification (2000). Primary 68W40; Secondary 68Q25.

Keywords. Online algorithms; Competitive analysis; Computational geome-
try; Games on graphs.

1. Introduction

Consider a sensor network that performs motion-tracking for a set of monitored ob-
jects or agents that move within the sensor field. Each sensor acquires data about
nearby objects. The total rate of data accumulation within the network remains
approximately constant, assuming a relatively fixed set of objects/agents being
monitored; however, the distribution of the data rate over the field is nonuniform
and unpredictable. If the system is used for a field study where the data is not ana-
lyzed until the end of the experiment, it may be much more energy-efficient to store
the bulk of the data locally on a memory card and let someone or something gather
the data by physically visiting the sensor device (or a neighborhood of the device)
[5, 11, 12, 16, 19]. Each sensor uses the wireless channel to report to the data gath-
erer the amount of data in its local buffer. The objective of the data gatherer is
to visit the sensors in an effective order, so that no sensor’s storage device is over-
full. (An analogous problem arises in scheduling battery recharging/replacement
in a field of sensors whose power consumption varies unpredictably with time and
location.)

We are motivated to study the minimum-backlog problem (MBP), in which
there is an agent moving around a domain, servicing a set of locations, “emptying”
a buffer at each in an effort to make sure that no buffer gets too full. The problem
is related to the k-server problem [4, 9, 10, 14, 15, 18] (with & = 1), in which
requests are popping up at points in a metric space, and the k servers need to
minimize the distance traveled to satisfy the requests. In the MBP, the objective
is not to minimize the traveled distance, but to keep the backlog at each request
at a low level.

Problem Formulation. We define the MBP formally as follows. We have an (un-
weighted) directed graph G = (V, E) with an (initially empty) cup on each of the
N = |V| vertices. There is a player, who moves from vertex to vertex along the
edges of the graph emptying cups, and there is an adversary (not located anywhere
in particular), who refills the cups with water. (We talk about filling with water
because of historical precedent—see the discussion below about [6].)

The following game is played for an indefinite number of timesteps. In each
timestep or round, the two opponents do the following:

e The adversary pours a total of one unit of water into the cups. At each
timestep, the adversary is free to distribute the unit of water in any way
he likes. The adversary may base his decision on the current location of the
player and current water levels in all of the cups.

e The player moves along an edge and empties the cup in its new location.
The player can see the amount of water that the adversary has poured into
each cup, and the player can use this information to make the decisions. The
problem is online, i.e., the player does not know how the water is distributed
in the future. Thus, the player’s decision of which edge to traverse may be

The Minimum-Backlog Problem 3

based only on the amount of the water that has been poured into all cups so
far, but not on the future distribution of water.

The objective of the player is to minimize the maximum amount of water in any
cup at any time. The performance of an algorithm is the worst-case maximum
amount of water in any cup at any time; the lower the performance, the better the
algorithm is. Note that we are not comparing the performance of our algorithm
with that of some other. Hence, the performance is not a competitive guarantee of
any kind; rather, it gives an absolute bound on the objective function. In fact, as
we show, the competitive ratio of any algorithm for the problem may be as bad as
Q(A), where A is the diameter of the graph.

Cup Emptying in Computer Science. This style of problem, with a player emptying
one cup at a time and an adversary distributing water among cups, is a classic
problem, which has been independently discovered and rediscovered many times.
However, in previous formulations, there is no issue of locality and no graph G
(or, equivalently, it is assumed that G = Ky, the complete graph). That is, the
player can empty any single cup in any timestep.

The earliest reference to cup emptying of which we are aware is the work of
Dietz and Sleator [6], who used it as a technique for deamortizing data structures.
Dietz and Sleator proved that if there are N cups, and the player always empties
the fullest one, then no cup ever contains more than In N water, and that this
bound is optimal. The bound leads to an optimal, worst-case-constant algorithm
for the order-maintenance problem. This deamortization technique has been used
many times since.

Adler et al. [1] used cup emptying as a technique for analyzing scheduling
algorithms. In particular, they showed how to use cup emptying to produce “fair”
job schedules. Chrobak et al. [3] introduced a generalization of cup emptying and
applied it to multiprocessor scheduling with conflicts between tasks. Subsequent
work on the problem includes [2, 13, 17]. In the problem, the player can empty
more than one cup at a time, but there is a conflict graph between cups. If two
cups conflict, only one of them can be emptied at a time. Here we do have a graph
(different from our graph G though), but there is still no issue of locality.

To the best of our knowledge, in all previous work on cup emptying there
seems to be no issue of locality among the cups; i.e., there is no underlying graph
G (or, G = Ky), with cups placed at its vertices, and with the constraint that
the player is limited to taking steps along edges of G. In contrast, the MBP in
this paper is cup emptying on graphs, particularly those with geometric structure,
such as the regular n-by-n grid.

It is important to note that although the motivation for studying cup emp-
tying in metric spaces came from online vehicle routing, the locality shows up in
non-geometric contexts as well. For instance, in a job scheduling problem, there
may be a (set-up) cost associated with switching from executing one job to exe-
cuting another. This, in particular, makes the Traveling Salesman Problem, which

4 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

originated as a geometric problem, applicable also to scheduling tasks. Hence, al-
though we state our problem and results in purely geometric terms, they are also
relevant in some more general scheduling applications.

Competitive Analysis is Doomed. It would be natural to try to give a competitive
algorithm for MBP. Unfortunately, an online algorithm with a good competitive
ratio is not possible. Indeed, consider MBP in the graph G that is a path on N
vertices. Suppose that the adversary picks a random permutation of the vertices
2 through N — 1, and for the first IV — 2 timesteps pours a unit of water per step
into the cups according to the permutation. Then, the adversary picks one of the
endpoints of the path and pours the water there forever. The best offline strategy
would be to rush to the endpoint and stay there—this yields a maximum backlog
of 1. On the other hand, without prior knowledge of the “drenched” endpoint,
any algorithm will put the player far from the endpoint (since the adversary may
choose the endpoint that is farthest from the current player position), thus, making
the performance of the algorithm Q(N).

Given that the competitive ratio of an online algorithm for the problem may
be very high, we concentrate on providing uniform upper bounds on the perfor-
mance; i.e., on giving universal bounds on the amount of water in any cup at any
time.

Intuition for MBP. Before giving our results, we present simple observations on
the MBP. The performance of any algorithm has a naive lower bound of Q(A),
where A, as above, is the diameter of the graph. To get another lower bound, the
adversary may pick a set of K cups such that the distance between any two cups
in the set is at least d, for some number d. The adversary will then pour the water
evenly into never-emptied cups from the set. After dK steps, one of the cups will
have Q(& 4+ =4 + -+ + d) = Q(dIn K) units of water.

Combining the above lower bounds, we see that the adversary can ensure
Q(max(A,In|V])) of water in some cup at some time. In particular, this gives an
Q(n) lower bound on the performance of any algorithm in an n-by-n grid.

As for the upper bounds, which is the main focus of the paper, a naive
algorithm has performance of O(C), where C is the length of the shortest closed
path visiting all vertices in V. A direct application of Dietz and Sleator [6] gives
an improved upper bound of O(A1n |V|). For an n-by-n grid this is O(nInn). This
is the upper bound that we set out to beat in this paper.

Results. Our main result is an algorithm for the MBP in an n-by-n grid whose
performance is O(nvInlnn). This algorithm is based on a simpler algorithm, whose
performance is O(nvInn). We show that the algorithms for the grid are applicable
to the MBP defined on an arbitrary planar point set. In more details, our results
are as follows:

e We introduce the (kT, k)-game, a generalization of the cup-emptying game.
We further generalize and introduce the (k7,k,T)-game, which includes a
graph G in the game (Section 3).

The Minimum-Backlog Problem 5

e We present an algorithm for the MBP having a performance of O(nvInn) on
an n-by-n grid. We derive this algorithm from our results for the (k7, k, T)-
game applied to the n-by-n grid (Section 3).

e We present our main algorithm, having a performance of O(nvInlnn) on an
n-by-n grid. We obtain this bound by giving separate bounds for the water
of different “ages” and by showing that a better upper bound is possible in
a game that lasts for only a few rounds (Section 4).

e We show that our algorithms work for a general geometric domain, achieving
a performance of O(Dv/Inlnm) on a set of m cups in the plane, where D is the
maximum distance between the cups (i.e., D is the diameter of the set). The
extension is based on utilizing an approximating grid, but then observing that
the performance does not depend on the grid size (Section 5). Our methods
apply also to higher dimensional grids and point sets; the generalization is
deferred to the full paper.

e We prove that deciding the value of the game is PSPACE-hard (Section 6)
in the case when the adversary is also constrained to local actions (pourings)
and must move on the graph G, just like the player.

2. Preliminaries

We give basic observations about cup emptying. As mentioned earlier, previous
works studied cup emptying with no notion of locality — effectively, when the
graph G = Ky is complete. We explain that in such a setting, emptying the
fullest cup is a good strategy. In contrast, once more general graphs enter the
game, emptying the fullest cup is no longer close to optimal, as we show.

Cup Lemma. Intuitively, always emptying the fullest cup is optimal when there
is no graph G (or equivalently, G is complete), and a simple exchange argument
validates this intuition.

Lemma 2.1. The player’s strategy of emptying the fullest cup is optimal when there
is no graph G.

Dietz and Sleator [6] analyze the performance of the strategy.

Lemma 2.2 (Cup Lemma [6, Theorem 5]). In the cup emptying game with N cups,
if the player always empties the fullest cup, then no cup ever contains more than
In N units of water.

The strategy of emptying the fullest cup is far less successful in geometric
settings and general graphs. On an n-by-n grid, the empty-the-fullest strategy
exactly matches the upper bound given by a direct application of Lemma 2.2 but
does no better. (We still seem to have an unsuccessful strategy even if we “weight”
the cups based on the water level and distance to the player, and empty the cup
with highest weight.) In particular, we show the following performance (the proof
is deferred to the full version).

6 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

Lemma 2.3. In the cup emptying game on an n-by-n grid, if the player always
empties the fullest cup, then there will be times when the fullest cup contains
O(nlnn) units of water.

Despite the limitations of the Cup Lemma on graphs, it will serve as the
starting point for analyzing all of our algorithms.

The Cup Game is Fully Determined by the Pouring Sequence. Suppose that we
know the pouring sequence up to some time t. Then, by Lemma 2.1, we also know
which cup an optimal player empties in each timestep until ¢ (up to a renumbering
of cups with an equal level of water).

We formalize this observation with the following notation. Let M;; be the
amount of water that the adversary pours into cup ¢ in timestep t. We call M the
pouring matrix. Let X;; be the level of water in cup ¢ at timestep ¢ when the
player always empties the fullest cup. We call X the level matrix.

Observation 1. The first t columns of the level matriz, and hence — the cup emp-
tied at t, are fully determined by the first t columns of the pouring matriz (up to
renumbering the cups with an equal level of water).

3. First Algorithm for Grids: O(n+vInn) Water Level

In order to obtain an algorithm with a performance of O(nvInn), we introduce
and analyze generalizations of the cup game. We then apply our analysis to the
MBP in an n-by-n grid.

The (kT, k) Cup Game. We now define the (k7, k)-game. (There is no graph G yet,
or G = Ky.) Our strategy for this game is used as a subroutine in all subsequent
algorithms. For 7,k € N, the (kT, k)-game has a player (whom we call the (kT, k)-
player), who sits still for k7 timesteps and then empties k cups. For instance, in
the (7,1)-game, the (7, 1)-player empties 1 cup every 7 timesteps.

Our algorithm for the (k7, k)-game proceeds as follows. Run an imaginary
(7,1)-game with the same pouring matrix as in the (k7, k)-game. Divide time into
epochs of length k7. For each epoch, determine which £ cups would be emptied
by the imaginary (7, 1)-player. Empty these k cups in the (k7, k)-game at the end
of the epoch (Fig. 1). (In fact, we might empty fewer than k cups because the
imaginary player may empty the same cup multiple times during the epoch.)

Observe that the (7,1)-game can be easily analyzed by generalizing the Cup
Lemma.

Corollary 3.1. In the (7,1)-game with N cups, there exists a strategy (in particular,
empty the fullest) ensuring that at any time, each cup contains at most 7In N units
of water.

Proof. The original cup game is, in fact, a (1,1)-game. The (7,1)-game may be
viewed as a (1, 1)-game, in which the amount of water poured at any timestep is
scaled up by 7. O

The Minimum-Backlog Problem 7

kr(j—1) ktj
(7,1)-game: | = i“\T‘ T 7¢ time
Y‘mpty here
(kT, k)-game: i ¢ time

kr(j—1) kTj

FIGURE 1. Using the (7,1)-game to deduce the k cups to empty
in the (k7, k)-game.

We now analyze the performance of our algorithm for the (k7, k)-game.

Lemma 3.2. There exists a strategy for the (kt,k)-game on N cups such that at
all ttmes no cup contains more than 7In N + k7 units of water.

Proof. Let M be the pouring matrix in the (k7,k)-game. For any j = 1,2,...,
by the end of the jth epoch, i.e., by time k7j, the (k7, k)-player knows the first
k7j columns of M. Thus, by Observation 1, the (k, k)-player knows which k cups
are emptied by the imaginary (7, 1)-player in the jth epoch. By our strategy, the
(kT, k)-player empties these k cups at her jth move (see Fig. 1). Thus,

Observation 2. At the end of any epoch j, i.e., at time k7j, any cup in the (k1,k)-
game is at most as full as it is in the (1,1)-game.

By Observation 2 and Corollary 3.1, at time k7j (the end of the jth epoch)
the amount of water in any cup is not greater than 7In N. The proof of the lemma
concludes with the following observation about water accumulated between ends
of epochs.

Observation 3. Between the times k7(j — 1)+ 1 and ktj at most kT units of water
can be added to any cup. 0

We call the imaginary (7, 1)-game, played to deduce the cups to empty in the
(kT, k)-game, attached to the (k7, k)-game.

The (kT, k, T)-Game on Graph G. As a further generalization, we now introduce
the graph G = (V, F) into the cup game. Define T'(k) to be the smallest integer
such that for any set of k + 1 vertices, there exists a closed path of length at most
T'(k) that visits all k4 1 vertices in the set. In other words, starting at any vertex
we can empty k cups and return back to our starting point in 7'(k) steps.

The (kT,k,T)-game on G is defined provided kr > T'(k), as follows. As
before, divide time into epochs of length k7. During any epoch, the (kt,k,T)-
player spends the first T'(k) timesteps moving around the graph to empty k cups.
Then the player sits still for k7 —T'(k) steps until the end of the epoch. Meanwhile,
the adversary pours one unit of water into the cups during each timestep.

8 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

Our algorithm for the (k7, k, T)-game on G proceeds as follows. Run an imagi-
nary (kT, k)-game with the same pouring matrix as in the (k7, k, T')-game. For each
epoch, determine which & cups would be emptied by the imaginary (k7, k)-player.
Empty these k cups in the (k7,k,T)-game at the beginning of the next epoch.
Since by definition T'(k) < k7, there is enough time for the player to empty the k
cups.

Theorem 3.3. There exists a strategy for the (kt, k,T)-player such that at all times
no cup contains more than 7In|V| + k7 + T(k) units of water.

Proof. Similarly to Observation 2, we have:

Observation 4. In each epoch j, after T'(k) timesteps from the beginning of the
epoch, i.e., at time ktj + T(k), any cup in the (kT,k,T)-game contains at most
the same amount of water as in the (kt,k)-game at the beginning of the epoch, i.e.,
at time kT3, plus the amount of water that has arrived during the T'(k) timesteps.

By Corollary 3.1, at the beginning of the epoch the amount of water in
any cup is not greater than 71ln|V|. The proof of the lemma concludes with the
following observation.

Observation 5. Between the times k7(j —1)+1 and k7(j — 1)+ T(k) at most T(k)
units of water may be added to any cup, and between the times kT(j—1)+T(k)+1
and ktj + T(k) at most kT units of water may be added to any cup. 0

MBP on an n-by-n Grid. We can finally turn our attention to the MBP when G
is an n-by-n grid. For a grid, T'(k) is as follows.
Lemma 3.4 ([8]). In an n-by-n grid, T(k) < 5nv/k.

We now apply Theorem 3.3.

Theorem 3.5. There exists a strategy for MBP on an n-by-n grid such that the
amount of water in any cup is O(nvInn).

Proof. Choose k = O(lnn) and 7 = ©(n/vInn). Then, by Lemma 3.4, T'(k)
O(nvInn), so Theorem 3.3 implies an upper bound of 7 Inn+k7T(k) = O(nvInn)
on the amount of water ever at a vertex. g

4. Refined Algorithm for Grids: O(nv/Inlnn) Water Level

We improve the performance of the algorithm from the previous section by apply-
ing several observations. First, we observe that the analysis of Dietz and Sleator [6]
can be extended to show that if the (1,1)-game is played for » < N timesteps,
the empty-the-fullest strategy guarantees O(Inr) units of water in any cup at any
time. Second, we note that if in a (k7, k, T')-game only “old” water is counted (i.e.,
water from two or more epochs previously), an additive term can be removed from
the upper bound in Theorem 3.3. Finally, we split the time T'(k), used by the

The Minimum-Backlog Problem 9
we are here

kT kT ¢ kT

recent new

old

FIGURE 2. Water classes in (k7, k,T')-game.

(kT, k,T)-player to empty k cups, into several subintervals. We use the time be-
tween the subintervals to clear “new” water. Altogether this gives an O(nvInlnn)
upper bound on the amount of water in the MBP on an n-by-n grid.

“Aging” of Water. The upper bound on the amount of water in the (k7, k)-game
(Lemma 3.2) consists of two terms. The first term (Observation 2) bounds the
amount of water that arrived before the current epoch. The second term (Obser-
vation 3) bounds the amount of water that arrived during the current epoch. We
capture this fact in the following definitions and lemma (Fig. 2).

Definition 4.1. The water that arrived during the current epoch in a (k7, k)-game
is called new. The water that arrived in previous epochs is called old.

Similarly, in the (k7, k, T)-game, we may define:

Definition 4.2. The water that arrived during the current epoch in a (k7,k,T)-
game is new. The water that arrived in the previous epoch is recent. The water
that arrived earlier is old.

From the above definitions and Observations 2-5 we have:

Lemma 4.3. Both in the (k7,k)-game and in the (k7,k,T)-game the amount of
old water in any cup at any time is at most TIn N.

Playing for Less Than IN Rounds in the (7,1)-Game. The Cup Lemma gives an
upper bound of In N on the water level in a (1,1)-game played for an indefinite
number of rounds. Following the original proof of the Lemma, we show that if a
game is played for a small number 7 of rounds, the upper bound may be improved
to Inr. We use the following improved result to bound the level of new water in
our refined algorithm.

Lemma 4.4. Let the (7,1)-game on N cups be played for r < N timesteps. Let the
player follow the empty-the-fullest strategy. Then the amount of water in any cup
is O(Tlnr).

Proof. We follow the proof of Lemma 2.2 due to Dietz and Sleator [6]. For j =
L...r;i=1...N,let X;); be the order statistics of X7 — the jth column of X;
X(s); is the ith highest water level at time j. Let S; be the sum of the r —j +1

10 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

largest elements in X7:
r—j+1

Si= > Xuy;-
=1

Then, after emptying the fullest cup and adding at most 1 unit of water to the
r — j cups, fullest at time j + 1,

r—j+1
S
S € Y Xy +1=148 =Xy S1+8; -
1=2

which can be rewritten as

5j+1§(7“—j)< 5 + 1)

r—j+1 r—j

leading to
S1 1 1
S <(r—i(2L4+ —— 4+...)
s J)<T+’/‘—1+ +r—j>
Substituting j = r — 1 and noting that S; = 0,
1
Sp < —— 4+ 1.
r—1

Similarly to Corollary 3.1,

Corollary 4.5. Let (1,1)-game on |V| cups be played for r < |V| rounds. Let the
player follow the Empty-the-Fullest strategy. Then the amount of water in any
cup is O(71Inr).

Playing for Less Than |V|/k Epochs in the (k7, k,T)-Game. For r € N, r <
|[V|/k, let the (kT, k,T)"-game be the (k7 k, T)-game played for r epochs.

Lemma 4.6. There exists a strategy for the player in a (kt,k,T)"-game such that
the amount of old water in any cup at any time is at most 7Inkr.

Proof. We expand upon the analysis from Theorem 3.3. Since we are only count-
ing old water, only the first term remains in the upper bound in the theorem.
The amount of old water in the (k7,k,T)"-game is at most the amount of old
water in the imaginary (k7, k)-game played for the same number, r, of epochs (ob-
serve the difference in the definition of old water for (k7, k)- and (kr, k, T')-games,
Definitions 4.1 and 4.2). Finally, if the (k7, k)-game is played for only r epochs,
the amount of water in the attached imaginary (7, 1)-game is at most 7Inkr (by
Lemma 4.4). O

Observe that the bound in the above lemma is independent of |V|.

Corollary 4.7. There exists a strategy for the player in a (k7,k,T)"-game such that
the amount of water in any cup at any time is at most TInkr + 2k7.

The Minimum-Backlog Problem 11

kt

v

FIGURE 3. Split T'(k). Play (kr, k, T')-game emptying k cups dur-
ing the intervals of total length 7'(k). Within each epoch play
(T/r + L, k', T)"-game emptying k' cups during the intervals of
length L.

Proof. The amount of old water is at most 7 In kr by Lemma 4.6. The total amount
of recent water in any cup is k7 and the total amount of new water is at most
kT. O

Splitting T'(k). In the (k7,k,T)-game the player was given a contiguous interval
of time, of length T'(k), to empty k cups. There is nothing wrong in splitting the
interval into smaller subintervals and spreading the subintervals along the epoch.
Instead of emptying the k cups in “one shot” the player would empty some cups
during the first subinterval, have a rest, then empty some other cups during the
second one, have a rest, etc.

In particular, we may pick r € N, split T'(k) into r equal-length subintervals,
and spread the subintervals evenly along the epoch. During the subintervals, k
cups may be emptied ensuring at most 7 1n |V| of old water in any cup at any time
(Fig. 3).

Each of the r gaps between the subintervals will have length L = (kr —
T(k))/r. For k' € N, such that L > T'(k’), during a gap the player may empty any
k' cups. This means that a (T'/r+ L, k', T)-game (equivalently, (k7/r, k', T')-game)
may be defined. We will play the game with the new water.

To summarize (refer to Fig. 3), we divide the time into epochs of length
kT = T(k)+rL. We play the (k7, k,T)-game (with the old water) emptying k cups
during the total-length-T'(k) periods. We also divide each epoch into r periods of
length k7/r = T'(k)/r + L. We play the (k7/r, k', T)-game (with the water that is
classified as new in the above (k7, k, T')-game) emptying k' cups during the length-
L segments. The (k7/r, k', T)-game (which, equivalently, is a (k' 7’%, k', T)-game)
“resets” every r periods, as a different epoch from the (k7,k,T)-game is entered.
Thus, with the new water a (k’f—g,, k', T)"-game is played.

By Lemma 4.3 the amount of old water is at most 71n |V|. By Corollary 4.7

the amount of new water is at most % In k'r+2k7 /r. Finally, recent water was new

12 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela
5nvk + ronVk!
snvk/r 5nVk ‘5n\/E/r 5nVk! ‘Bn\/E/r 5k ‘

N N e

K K’ K

FIGURE 4. kT = 5nvVE + r5nVk. Play (kT,k, 5nvk)-game with

the old water and (&’ ,’:,Tr,k’, 5nv/k')"-game with the new water.

in the previous time segment, and thus, its amount is also at most % Inrk'+2kt /7.
Overall, we have:

Lemma 4.8. Let k', r be such that T(k') < (kt—T(k))/r. Then in a (k7,k,T)-game
the player has a strategy with performance In |V |+ (2ktInrk’)/(rk’) + 4kt /r.

MBP on an n-by-n Grid. Suppose that k,7,r, k' are such that kr = 5nvk +
r5nVk (see Fig. 4). By Few’s result (see Lemma 3.4), a (k7, k, 5nV/k)-game is well
defined in an n-by-n grid. Note that since T'(k) < 5nvk, we have (kr —T(k))/r >
5nvk’ > T(k'). Thus, Lemma 4.8 can be applied to conclude that there is a strat-
egy for a player in an n-by-n grid with performance 7Inn? + (2k7Inrk’)/(rk’) +
(4kT) /7. Substituting 7 = (5nvk + r5nv'k’) /k, we obtain

Lemma 4.9. For any k, k', and r, there exists a strateqy for a player in an n-
by-n grid with performance 10n((Inn)/VEk + (rVE Inn)/k + VEInrk')/(rk") +
(Inrk')/VE +2VE/r + 2VF).

We are now ready to give our main result:

Theorem 4.10. There exists a strategy for MBP on an n-by-n grid with a perfor-

mance of O(nyvInlnn).

Proof. Choose k = (In®n)/(Inlnn), ¥ = Inlnn, » = (Inn)/(Inlnn) and apply
Lemma 4.9. g

5. General Geometric Domains

In this section we consider the MBP in which the cups are installed at a set P
of m points in the plane. The game no longer proceeds in discrete time steps.
Instead, the player may move continuously in the plane with maximum speed of 1.
The adversary pours the water also continuously; the maximum amount of water
poured during any length-¢ time interval is ¢. The adversary is free to choose how
to distribute the water among the cups.

Let D be the diameter of set P;i.e., D is the maximum distance between two
points of P. By pouring into the diametrical points of the set, the adversary can
ensure a water level of (D) at one of the points. We show that there is a strategy
for the player to ensure O(D+v/Inlnm) water in any cup at any time.

The Minimum-Backlog Problem 13

Our result is based on a generalization of Theorem 4.10. Specifically, suppose
that in a standard (discrete-time) MBP on an n-by-n grid, the adversary may pour
water not into all n? cups, but only into a subset S of them. Following the analysis
of the algorithm of Section 4, we get the following corollary of Theorem 4.10:

Corollary 5.1. There exists a strateqy for MBP on a subset S of grid points with
a performance of O(Ay/Inln|S|), where A is the diameter of the grid.

We use the above corollary to get

Theorem 5.2. Let P be a set of m points in the plane. There exists a strategy for
the player, with the performance O(D+Inlnm), where D is the diameter of P.

Proof. (Sketch.) By laying down a fine enough grid, we may assure that the points
of P are at the nodes of the grid. As the fineness of the grid grows, the game tends
to the MBP on a grid. The difference though, is that the adversary may now pour
water only into the subset of nodes, in which the cups from P are situated. From
Corollary 5.1, the performance of the player is O(D+/Inlnm). The theorem follows
from the fact that the performance is independent of the grid size. O

Remark. In the above theorem we only prove the existence of the strategy; we do
not discuss the running time of an implementation of it. In the full version we
show that it is enough to lay a grid of polynomial size and snap P onto the grid.
The snapping does not increase the length of a tour by much, and we can tolerate
the increase by taking a larger constant in Few’s result (Lemma 3.4).

6. PSPACE-Hardness for a Localized Adversary

In this section we consider the MBP on (directed) graphs with a localized adver-
sary. More specifically, we consider the following game, which we call the localized
MBP:

e The game is played on a directed graph; each vertex carries some integer load
(= water level).

e At each time step, both player and adversary are located at some vertices,
beginning at (distinct) starting positions.

e Both participants take turns in moving from their respective current position
along an outgoing edge to an adjacent node. (They are not allowed to stay
in place.)

e A move by the player ends with her removing the load from the vertex she
reached.

e A move by the adversary ends with him increasing the load on the vertex he
reached by one unit.

e The game ends when the player steps onto the vertex currently occupied by
the adversary, or when the adversary manages to get the load on some vertex
to a pre-specified target value.

14 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

e The player wins if she can keep the adversary from reaching the target value;
the adversary wins if he can reach the target value.

As it turns out, this version is already quite difficult when it comes to com-
puting the value of the game for just the smallest nontrivial target value of 2:

Theorem 6.1. The localized MBP is PSPACE-hard, even for a target value of 2.

Proof. We present a reduction from Quantified 3SAT (Q3SAT), where the Boolean
formula F', containing m clauses ¢, co, ..., ¢y, and n variables xq, o, ..., Ty, is in
conjunctive normal form with 3 literals per clause; without loss of generality, we
assume that n is even. A Q3SAT instance Ir asks for the truthfulness of the
expression VridxoVrs ... 3z, : ¢y Aca A ... Acy. It is helpful to think of this as
a game between two players who take turns at setting the variables in ascending
order of indices; the first player tries to set the odd variables in a way that will
keep F' from being true, while the second player (adversary) sets the even variables
in a way that aims at F' ending up satisfied.

Now we construct an instance of the localized MBP by specifying the di-
graph D = (V, A) on which it is played; for more details of a somewhat related
construction, see [7]. The initial vertices for player and adversary are u_; and uy,
respectively, and the player starts the game. We use the vertex set V = {x;, T;, u; :
1<i<n}U{u_1,u0}U{c;,¢,dj:1<j<m} and the edge set

A= {(zs,u), (Ti,u;) 1 1 <i <npU{(ws, Tiga), (Wi, Tiva) : —1 < i <n—2}
U{(un7cj)7(un—lan)a(éjadj) 01 S .] S m} U {(Ejack) 01 S .] S m?k 7&.]}
U{(¢j, i), (dj,x;) iff ¢j contains z;, 1 <j<m, 1 <i<n}

U{(c;,7i), (dj,@;) : iff ¢; contains T;, 1 <j <m, 1 <i<n}.

We single out the subset Vo = {29;-1,T2;—1 : 1 < i < n/2} C V that start with
an initial load of one; all other vertices start with an initial load of zero. Note that
V| = O(m +n), |Vo| = O(n), |A| = O(m? + n), so the construction is clearly
polynomial. The construction is illustrated in Figs. 5 and 6.

Now consider the game on D. For easier reference, we denote by diamonds
the subgraphs induced by (u;—1, z;,T;, u;). The players traverse the diamonds ac-
cording to their chosen truth assignments in the given instance of Q3SAT, i.e., the
adversary traverses x; if x; = 1, otherwise traversing z;; analogously, the player
traverses T; if x; = 1, otherwise x;; obviously, both participants are forced to move
this way, implying a corresponding truth assignment. We argue in the following
that the adversary wins if and only if all clauses are satisfied.

After arriving at vertex wu,—_1, the player selects a clause ¢; by moving to
the corresponding clause selector vertex ¢;. This forces the adversary to move by
(un,c;) in order to avoid being caught. As the player has no way of catching the
adversary in her next move, the adversary wins if the clause vertex c; is adjacent
to a variable vertex with load one, i.e., the corresponding variable setting satisfies
the clause. On the other hand, the player can prevent the adversary from reaching

The Minimum-Backlog Problem 15

u_1 (player) up (adversary)

from clauses

from clauses

from clauses

from clauses

clause selectors clauses

FI1GURE 5. The variable gadget: The player chooses a truth set-
ting for the odd variables by running from u_; to u,_1, while the
adversary chooses a truth setting for the even variables by running
from ug to u,. Note that initially, the odd-numbered vertices carry
a load of 1 (indicated by circles), while all other vertices start out
with a load of 0.

,v’(“‘. 7™ :’1“-.

to other ¢;

FIGURE 6. A clause gadget: The player picks a clause by moving
to a clause selector vertex ¢;, which is connected to all clause
nodes ¢ for k # j. This forces the adversary to move to ¢; in
order to avoid being caught prematurely. Then the player moves
to dj, catching the adversary after he moves to one of the three
variable vertices corresponding to the clause c;. The adversary
wins iff that vertex had already carries a load of 1, i.e., if the
corresponding variable satisfies the clause.

16 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

a load of two if the clause is unsatisfied, by moving to vertex d;, assuring himself
of catching the adversary in her next move.
This shows that the player wins iff there is an unsatisfied clause. O

Acknowledgments. We gratefully acknowledge Gerhard Woeginger for discussions
that lead to the formulation of this problem. We thank Estie Arkin, Leonidas
Guibas, Patrik Floréen and Petteri Kaski for many helpful discussions.

MAB is supported in part by NSF Grants CCF-0621439/0621425, CCF-
0540897,/05414009, CCF-0634793/0632838, and CNS-0627645. AK is supported
by DFG Grants FE407/9-1 and FE407/9-2. VL is supported in part by NSF
Grants CCR-0329910, Department of Commerce TOP 39-60-04003, Department
of Energy DE-FC26-06NT42853, and the Wright Center for Sensor Systems En-
gineering. JSBM is supported in part by the U.S.-Israel Binational Science Foun-
dation (2000160), NASA (NAG2-1620), NSF (CCF-0528209, ACI-0328930, CCF-
0431030), and Metron Aviation. JS is supported in part by the Academy of Fin-
land, Grant 116547, and by Helsinki Graduate School in Computer Science and
Engineering (Hecse).

References

[1] M. Adler, P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, and M. Pa-
terson. A proportionate fair scheduling rule with good worst-case performance. In
Proceedings of SPAA, pages 101-108, 2003.

[2] A. Bar-Noy, A. Freund, S. Landa, and J. S. Naor. Competitive on-line switching
policies. In Proceedings of SODA, pages 525-534, 2002.

[3] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall, and G. J. Woeginger. The buffer
minimization problem for multiprocessor scheduling with conflicts. In Proceedings of
ICALP, pages 862—874, 2001.

[4] M. Chrobak and L. L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM Journal on Computing, 20(1):144-148, 1991.

[5] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy. Rethinking data management for
storage-centric sensor networks. In Proceedings of the Third Biennial Conference on
Innovative Data Systems Research (CIDR), 2007.

[6] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proceedings
of STOC, pages 365—372, 1987.

[7] S. P. Fekete, R. Fleischer, A. Fraenkel, and M. Schmitt. Traveling salesmen in the
presence of competition. Theoretical Computer Science, 313:377-392, 2004.

[8] L. Few. The shortest path and the shortest road through n points. Mathematika,
2:141-144, 1955.

[9] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Proceedings
of FOCS, pages 454-463, 1990.

[10] A. Floratos and R. Boppana. The on-line k-server problem. Technical Report
TR1997-732, NYU, Computer Science Department, 1997.

The Minimum-Backlog Problem 17

[11] Y. Gu, D. Bozdag, R. W. Brewer, and E. Ekici. Data harvesting with mobile elements
in wireless sensor networks. Computer Networks, 50(17):3449-3465, 2006.

[12] D. Jea, A. Somasundara, and M. Srivastava. Multiple controlled mobile elements
(data mules) for data collection in sensor networks. In Proceedings of the First IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS),
pages 244-257, 2005.

[13] H. Koga. Balanced scheduling toward loss-free packet queuing and delay fairness. In
Proceedings of ISAAC, pages 61-73, 2001.

[14] E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Journal of the
ACM, 42(5):971-983, 1995.

[15] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11(2):208-230, 1990.

[16] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage
for sensor networks. In Proceedings of the Fifth International Conference on Infor-
mation Processing in Sensor Networks (IPSN), pages 374-381, 2006.

[17] G. Rote. Pursuit-evasion with imprecise target location. In Proceedings of SODA,
pages 747-753, 2003.

[18] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

[19] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile element sched-
uling for efficient data collection in wireless sensor networks with dynamic deadlines.
In Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS), pages 296—
305, 2004.

Michael A. Bender

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400
USA

e-mail: bender@cs.sunysb.edu

Sandor P. Fekete

Department of Computer Science
Braunschweig University of Technology
Pockelsstr. 14

D-38106 Braunschweig

Germany

e-mail: s.fekete@tu-bs.de

Alexander Kroller

Department of Computer Science
Braunschweig University of Technology
Pockelsstr. 14

D-38106 Braunschweig

Germany

e-mail: a.kroeller@tu-bs.de

18 Bender, Fekete, Kroller, Liberatore, Mitchell, Polishchuk and Suomela

Vincenzo Liberatore

Department of Computer Science
Case Western Reserve University
10900 Euclid Avenue

Cleveland, Ohio 44106-7071

USA

e-mail: vl@case.edu

Joseph S. B. Mitchell

Department of Applied Math and Statistics
Stony Brook University

Stony Brook, NY 11794-3600

USA

e-mail: jsbm@ams.sunysb.edu

Valentin Polishchuk

Corresponding author

Helsinki Institute for Information Technology HIIT
Department of Computer Science

University of Helsinki

P. O. Box 68

FI-00014 University of Helsinki

Finland

e-mail: valentin.polsichuk@cs.helsinki.fi

Jukka Suomela

Helsinki Institute for Information Technology HIIT
Department of Computer Science

University of Helsinki

P. O. Box 68

FI-00014 University of Helsinki

Finland

e-mail: jukka.suomela@cs.helsinki.fi

