

1

Abstract—Genome databases are a mean to provide a

repository for biological information. However, modeling

biological data imposes several challenges. In particular,

regarding the architecture and design options in which they are

based.

In this paper, we describe the major currently available

implementation possibilities and describe their advantages and

disadvantages. In addition we also evaluate some of the main

databases that support the human genome project

Index Terms—architecture, databases, genome, object oriented,

relational

I. INTRODUCTION

HE human genome refers to the complete set of genes

required to create a human being [14]. The goal of the

Human Genome Project (HGP) is to obtain the complete

sequence of the 3-4 billion nucleotides that comprise the human

genome. The approximate number of genes spread in the 23

human chromosomes is not yet completely understood and has

changed over time. Likewise, not all of the genes are known.

To date, the human genome sequence is close to being

complete. The DNA sequence itself does not reveal the secrets

of human life. However, with the use of other data we can

understand questions in other fields such as genetics,

biochemistry, and medicine. The availability of the human

genome sequence will provide a framework to which a large

variety of human data can be integrated, such as gene structure,

variation and disease.

In addition to the human genome, many other organisms

have been or are currently being sequenced. All of these

sequences are stored in electronic repositories. The challenge

of storing genetic data is that it is complex and multilayered.

Such information can be structural, functional, clinically-based,

population-based, gene-based, etc. Moreover, it includes a

large number of different data types. For example, the data that

describes the DNA structure is composed of other elements

including: DNA, sequence/nucleotide bases, nucleotide

position, chromosomal assignment, gene locus, gene

organization, messenger RNA, transfer RNA, ribosomal RNA

and map position. Furthermore, each of these elements can be

Manuscript received February 28, 2008

H. Hasegawa is with University of Helsinki, FINLAND (corresponding

author e-mail: hitomi.hasegawa@helsinki.fi).

broken down into another set of complex data types. In addition,

many of the different elements have interactions with each

other and can as well belong to certain clinical or geographical

populations. As a result, the organization of this large amount

of data is very complex.

In this paper, we describe some of the major currently

available implementation possibilities to develop such

repositories (databases). In addition, we also evaluate some of

the main databases that support the human genome project.

The remainder of this paper is organized as follow. Section II

describes the different implementation approaches, namely

flat-file, XML, relational and object oriented. In Section III we

describe some of the main databases supporting the human

genome project such as GenBank, Genome Database, OMIM

and AceDB. In Section IV we describe the experiences of

Shamkant’s project [14], which implemented the same

biological database using three different approaches. Finally, in

Section V we summarize the paper and provide conclusions.

II. IMPLEMENTATION APPROACHES

This section provides an overview of the current models and

approaches used to implement biological databases.

A. Flat File

A flat database is a database designed around a single table.

With this approach all the information is gathered in one single

large table with fields to represent each parameter. The flat file

commonly specifies each record in a single line. The fields of

each record can be delimited in different ways, such as by using

commas, tabulator, whitespaces or other characters.

Whilst the use of a flat file can be easy to implement initially,

it is usually prone to errors and data corruption. The reason is

that, by using a single large table, there might be multiple

entries with duplicate data. Furthermore, the process of

merging or integrating multiple flat files can be very difficult.

In particular, because it is very possible there are multiple fields

with duplicate data.

Despite the limitations of flat-files, there are many biological

databases based on proprietary flat files. Therefore, the

integration of this kind of databases requires parsers for

different flat-file formats. A parser breaks data into smaller

elements, according to a set of rules that describe its structure.

The development and maintenance of database specific file

parsers is a non trivial and time consuming task. This

particularly affects large scale integration efforts. In general,

flat files are parsed into XML representations, which are more

Genome Databases

Current Implementation Practices

Hitomi HASEGAWA, University of Helsinki

T

2

flexible. Figure 1 shows an example of a flat-file from

GenBank.[10]

Figure 1. Excerpt from a GenBank Flat-File

B. XML

A different kind of flat file database can be implemented by

using eXtensive Markup Language (XML).However, it must

be noted that even though a single XML file can contain all the

database records, its structure is standardized opposed to an

ordinary flat file.

XML is a popular way of storing data in plain text files.

However, the main advantage of using XML is that it supports

the use of complex nested data structures and contains the

definition of the data. Moreover, XML is very flexible and

additional definitions and tags can be added for each particular

need.

Even though XML is not necessarily as robust as other

models, it is widely used in web based applications. In addition,

some database implementations based on other models (e.g.

Relational) accept XML data as input and are able to render and

map it into their native format.

XML database have several key benefits. They are scalable,

fast to access and reliable. However, converting to and from

XML to support other database models can result in

mismatches between the original XML structure and the

resulting table. By implementing the database in XML, this

problem can be avoided.[16]

In addition to the benefits mentioned above, new approaches

for exploiting the flexibility of XML have been developed. For

instance, by using wrappers data access and manipulation can

be improved. [7]

The data organization in native XML data storages is shown

in Figure 2. The main elements are an interface to map the

particular application to the underlying framework, and a

storage manager to manage data access for querying or

updating. [16]

Figure 2. XML Data Management Framework [16]

C. Relational

The entity relation is an abstract conceptual representation of

structured data. It was developed in 1976 by Chen. By the use

of entity relationship diagrams, relational databases can be

modeled.[4]

Relations in this model are defined by entities (nouns) and

the relations between them (verbs) (see Figure 3). Entities and

relationships can have attributes. In addition, every entity must

have a minimal set of uniquely identifying attributes, which is

called the entity’s primary key.

Figure 3. Two Related Entities

According to [5], the entity relation model provides

additional semantic information that is neither explicit nor

available in the relational model. The principle of the relational

model is that any table is a relation (see Figure 4). The entity

relation model adds the links that exist between different

entities. [5]

3

Figure 4. Relational Model of Data [5]

D. Object Oriented

In an object oriented approach, a database is a collection of

objects. Each object represents a perception (instance) of an

abstract or concrete entity in the real world. Objects having the

same properties are grouped together into classes, and the same

object could belong to multiple classes. For example, Person is

a class. An object is related to its class via the instance-of

relationship. [11]

The properties of objects are specified via the attributes of

the class they derive from. An attribute maps objects in the

class to values or to other objects. The later are called

references. The attributes can be scalars or sets. Scalars can be

defined or undefined, and might also be unique. For example,

class Student has attributes student id and major, where student

id is unique and major is a reference to class Department. The

class Department has attributes college and courses, where

college is a scalar, and courses is a set. [11]

Classes are related with a subclass relationship, which also

forms hierarchies. Hierarchies also provide inherited attributes.

That is, an object that derives from a sub class will inherit all

the attributes of the parent class. Figure 5 shows the concept of

inheritance.

Figure 5. Inheritance Concept

In object oriented databases, every object has a unique object

identifier. Two classes have the same key if they share a

subclass, and the key of a subclass is the same as the key of its

parent classes. Different classes could have attributes with the

same name, but attributes of the same class have different

names. As a consequence, explicit attributes of a class are not

explicit attributes of its subclasses, and two classes with

attributes of the same name do not share subclasses.

For example, dob is an explicit attribute of Person and an

implicit attribute of Student. Grad is an explicit subclass of

Student and an implicit subclass of Person. The key of Person,

Student, and Teacher is name.”[11]

It is possible to migrate relational databases to object

oriented designs. Even though it is not easy, there are a number

of papers describing how to do as well as actual examples of

such tasks. [1] [12]

According to [13], even though the benefits of deploying

object oriented databases are evident, due to the immaturity of

commercial products it had a rough start and lacked adoption.

Therefore, many opted for implementing based on the

relational model. Finally, Table 1 shows an overview of the

four approaches presented.

Table 1. Storage Approaches [16]
Framework Storage Format Advantages Disadvantages

Flat-File

ASCII files stored

in the file system

or database

management

system

Easy

implementation

and suitable for

small XML sets

Accessing and

updating are

difficult

XML

Ad-hoc data

models or typical

database models

Flexibility and

improved access

performance

Less mature

than

conventional

database

management

systems

Relational Tables

Scalability,

reliability and

easy

implementation

Might require

many joins to

access relevant

data

Object

Oriented
Tables and objects

Easy

implementation

and abstract data

type support

Document

Factorization

III. GENOME DATABASES

This section describes some of the main biological databases

supporting the human genome project as well as their

implementation design.

A. GenBank

GenBank is a sequence database which contains published

and unpublished DNA and RNA sequences as well as

bibliographical information. As of 2005, GenBank had over 52

million sequences stored [6]. It is the main genome database in

the world and it is maintained by the National Center for

Biotechnology Information (NCBI). Originally, it was a

repository for sequence data, but it was expanded to include

EST data, protein sequence data, 3-D protein structure,

taxonomy, and links to the biological literature (MEDLINE).

[14] The structure of GenBank consists of four main entities:

physical context data, functional context data, features data and

bibliographical data. [3]

The system is a combination of flat-files, relational databases

and files containing ASN.1 structures [14]. ASN.1 is a formal

notation for describing messages to be exchanged by

4

telecommunication protocols, including Internet [2]. For the

relational databases, GenBank is implemented using Sybase

Relational Database Management System (RDBMS). Table 2

shows a simplified GenBank entity relation schema.

Table 2. The Entities and Relationships Under Each

GenBank Object [3]

Objects

Component

Objects

Entities Relationships

Physical

context

Sequence

Source

Entry

Text

Taxonomy

Taxlevel

Gencode Seqel

Secacc

Nathost

Functional

context

Gene

Region

Product Genreg

Genocc

Genprod

Features Featocc Featqual Featkey Qualval Compfeat

Biblio-

graphic

Reference

Person

Submission

Publication

Scan

Address

Keyword

Comment

Other

Entities

Relink

Authref

Refstat

Edpub

Keylink

Comlink

Average users are unable to access the structure of the

database directly for querying or other functions, most likely

for security reasons, such as SQL injection [9]. Instead, queries

are performed via the Entrez application or web interface.

Entrez allows searches via keyword, sequences or GenBank

UIDs. [14]

B. The Genome Database (GDB)

The Human Genome Database is a catalog of human gene

mapping data that supports biomedical research, clinical

practice, and professional and scientific education by providing

human genome mapping through GDB and genetic disease

information through OMIM. It is managed by the John Hopkins

University School of Medicine and the William H. Welch

Medical Library. Mapping can be classified into two types,

genetic and physical maps. Mapping is used to determine the

relative position and distance of genes or identifiable

landmarks on the chromosomes. [3][14][15]

The gene mapping data is used to associate a piece of

information with a particular location on the human genome.

The GDB data includes map information (distance and

confidence limits) and PCR probe data (experimental

conditions, PCR primers and reagents used). GDB is

maintained as a relational database. The data are in many

different tables which represent nine primary data objects (loci,

probes, maps, polymorphisms, mutations, cell lines, libraries,

citations, contacts). There are also links to the Enzyme Data

Bank via EC numbers and the Genome Sequence Data Bank

(GSDB) via DNA sequence accession numbers. [14][15]

GDB also allows users to search information in OMIM

through a direct searching link using MIM numbers. The

sources for GDB are primary books, journals, and direct

submissions by human genome mapping committees for

individual chromosomes. [3]

The GDB is implemented in Sybase RDBMS. Since it covers

a very large amount of biological data, it actually comprises of

four independent relational databases. The databases are gdb,

gdb_admin, gdb_aux_db, and gdb_project. The gdb database

contains biological information, references and certain

administrative information. Table 3 shows a simplified entity

relationship schema diagram for the Map components. [3]

Table 3. The Components of Map [3]

Object
Component Objects

Entities Relationships

Map

Contig element

Info

Order links

Consens compon

ref

Contig set info Order link dist dict Contact contig red

Dist unit dict Order sets Elem contains ref

Linkage map set

info

Order sets end Map method valid

ref

Map method qual

dict

Order sets dead Method order set

ref

Map strings Order set flat map

Map cumm lines Order set loc mods

Order class dict Order set method

dict

Order elements Order set type dict

Order elem set

orient

Orient dict

C. Online Mendelian Inheritance in Man (OMIM)

“OMIM is the online version of the human genetics database

Mendelian Inheritance in Man, serving clinical medicine and

the Human Genome Project. It is a comprehensive catalog of

human genes and genetic disorders with full text annotations on

current genetic research and clinical disorders.”[15] It was

initially administered by John Hopkins University, but later it

was transferred to the NCBI. [14]

 OMIM is divided into six sections: MIM Number, Title,

Text, Allelic Variants, References, Clinical Synopsis, and Edit

History. The OMIM database contains information on genetic

disorders and traits. It covers five disease areas based on organs

and systems: endocrine / hematology, immunology, connective

tissue / skin and appendages / craniofacial / ear,

physochological / neurological / muscular, cardiac /

gastrointestinal / pulmonary / renal / genital, and inborn errors

of metabolism. [14]

The entire database is a ASN.1 flat-file/relational format. In

its initial full-text form, all these information was not easily

accessible via search engines, and only a limited number of

links between mapping and disease data were available. The

full text entries were converted to ASN.1 structured format

when OMIM was transferred to the NCBI. This change

improved greatly the ability to link OMIM to other databases as

well as give a structure to the data. OMIM is currently under

editorial revision and some documents are presented in a

restructured format instead of the traditional long, “flat” text.

Since this database is updated daily, the entries may differ from

the most recently published version of the OMIM book.

[14][15]

D. AceDB-based Genome Databases

AceDB refers to two separate things, either a database model,

or to the C. elegans database. The reason is that the acronym is

used for the Caenorhabditis elegans Database and also to the

5

open software object oriented database model. AceDB is based

on open software and has been adapted by many groups to

organize molecular biology data about the genomes of diverse

species. AceDB allows automatic cross-referencing of items

and allows for hypertextual navigation of the links using a

graphical user interface and mouse. Additionally, the software

has graphical user interfaces. [15]

“ACeDB databases are available for the following genomes:

C. elegans, Human Chromosome 2 1, Human Chromosome X,

Drosophila melanogaster, Mycobacteria, Neurospora crassa,

Saccharomyces cerevisiae, Schizosaccharomyces pombe,

Arabidopsis, beans, Chlamydomonas reinhardtii, cotton, grains,

maize, rice, Solanaceae, sorghum, soybeans, and forest trees,

cattle, chicken, pig, and sheep.” [15]

AceDB provides a generic object oriented database

management system (OODBMS) supporting routines for

dealing with DNA and protein sequences, genome maps, and

other biological entities. AceDB is suitable for medium sized

projects and those requiring rapid development. [8]

AceDB can run in two modes. In the standalone mode the

software reads and writes directly to local files. Database file

permissions are administered via the Windows or Unix system.

Hence, multiple users can read the files simultaneously, but

only one can write them at a given time. In client server mode,

multiple users can connect to the AceDB server. This mode

does not restrict the write access rights to a single user.

Figure 6. AceDB Architecture [8]

AceDB’s data model aggregates records that closely

represent biological data. For example Figure 7 shows an

author object. The class from this object is created contains the

relevant attributes for a bibliographic entry. “Within each

object, the data is organized hierarchically into a tree either

containing data cells or human-readable tags, which organize

and give structure to the tree.” [8]

Figure 7. An AceDB Object [8]

An advantage of using objects rather than tables is that they

allow multiple values. This is of particular relevance for

biological data, which often has multiple values. Moreover,

AceDB supports new data type definitions that can represent

biological data in a more accurate way than with common data

types (i.e. string, integer, double). [8]

One of the major disadvantages of AceDB is that, despite its

large amount of features, it is based on open source software.

Hence, it does not have the same level of support and stability

that a commercial product would provide. For this reason, a

trend has been to gradually replace projects based on AceDB to

commercial relational systems when they are mature. At this

point stability might play a more important role. [8]

Table 4 and Table 5 summarize the main characteristics of

the database presented in this section.

Table 4. Summary of Major Genome Databases [14]

Database Content
Initial

Technology

Current

Technology

GenBank
DNA/RNA

sequence, protein
Text files Flat-file/ASN.1

GDB
Genetic map

linkage data
Flat-file Relational

OMIM

Disease

phenotypes and

genotypes, etc.

Index cards/

Text files
Flat-file/ASN.1

AceDB

Genetic map

linkage data,

sequence data

Object oriented Object oriented

6

Table 5. Summary of Problems of the Major Genome

Databases [14]
Database Database Problem Areas

GenBank
Schema browsing, schema evolution, linking to other

databases

GDB
Schema expansion/evolution, complex objects, linking to

other databases

OMIM
Free entries are unstructured, linking to other

databasesFlat-file/ASN.1

AceDB Schema expansion/evolution, linking to other databases

IV. EXPERIMENTAL PROJECT

This section describes an experimental study carried out by

Shamkant [14] which aimed at characterizing the pros and cons

of implementing the same database with three different

approaches. The database, known as MITOMAP, was

implemented with the flat-file, relational and object-oriented

approaches respectively. The model system was the

mithocondrial system. This system is a representative system to

the human genome because the human mithcondrial DNA was

the first to be sequenced and afterwards it has been subject of

many studies. Therefore, currently, there is an extensive array

or mtDNA functional and comparative genetic information.

Further, the analysis of mithocondrial data has continuously

revealed interrelationship between the various types of genetic

data. In addition, the mithocondrial genome has been

completely sequenced. It contains 37 genes essential for life, it

is 16,569 nucleotide pairs long and encodes all three major

classes of genes; 13 polypetides, two rRNAs and 22tRNAS,

respectively, as well as replication, transcription and RNA

processing signals. Likewise, a wide variety of mtDNA

mutations have been associated to human diseases. [14]

A. Relational

The relational model was the first prototype for MITOMAP.

The database was designed in a normalized fashion. Thus, each

row in the relational table represents a collection of related

values that cannot be represented in simpler sets. By doing so, it

helps eliminate data duplication problems, multiple update

issues and the generation of non genuine rows resulting from

JOIN operations. However, this also results in a higher

decomposition of data into smaller tables. This is due the

common null values in the tables. Since the amount of

biological data is very large, it results in a great number of

tables, which can make the database become very hard to

manage very quickly. In addition, the null values also present

additional problems for querying, because relational joins

cannot be performed in across null fields. Therefore, even

though the relational model allows an atomization of individual

data items simpler, a new challenge is brought up in the

comprehension and maintenance of the data structure as a

whole from a domain knowledge perspective. Furthermore, the

definition of relationships in the relational model is good for

representing well defined binary relations. However, biological

data does not always fit nicely into that model. Hence, the

design of the database itself has to be made very carefully.

Likewise, the formulation of queries requires knowledge of the

structure of the database. This means that in practice, only

expert database users might be able to formulate queries

correctly. Unfortunately, common users probably do not fit that

user profile. [14]

Modeling the database with the relational model has benefits

too. If properly normalized, it guarantees the lack of anomalies

in the database. In addition, the query response is fast. However,

these benefits become irrelevant if the rows do not completely

represents the data. Further, if the desired questions cannot be

queried, the response speed is irrelevant as well. Also,

modeling the data is difficult, especially for biological data.

Other problems include the lack of methods for sharing

schemas across tables or to link data from one table to another.

The result of this prototype also required several

implementations due to the inability to comprehensibly model

all of the data types required for MITOMAP. [14]

B. Object-Oriented

The second prototype for MITOMAP used the object

oriented model. This model provides benefits for biological

data since it allows for more complex and direct mapping of

real world concepts to a structure in the data model. With this

approach, the data representation resembles the person’s

mental model that designed the object. This is due to the fact

that objects can have different degrees of normalization, unlike

the relational model. [14]

At the time of the MITOMAP implementation, the object

oriented management systems were still immature. For that

reason, some collection types were not available in a flexible

enough manner to support the unpredictable nature of

biological queries. Likewise, even though data resembled real

world, many parts of the implementation had to be hard coded.

Hard coding means that certain aspects of the data such as

configuration and formatting are embedded within the code.

Furthermore, the concept of inheritance did not always fit

biological data properly. The biological classes are in many

occasions totally unrelated and thus they do not benefit from

inheriting attributes or methods from other classes. The object

oriented model does however, allow modification of biological

classes over time. This is particularly beneficial for biological

data since it changes over time. [14]

As a whole the object oriented model provided a better and

more useful way to implement MITOMAP than the relational

model. However, there were several deficiencies in the model

with object oriented modeling with regards to biological

variability.

C. Flat-File

MITOMAP was also implemented as a simple flat-file. The

implementation was static and hard coded. The main benefit

was that the database was tailored specifically for the

mithocondrial data. This provided the required functionality.

However, some of the main problems with this approach is that

even small changes require the application to be programmed

7

again. Making the changes in the code requires a significant

amount of programming and expert knowledge in the database

structure. Furthermore, this approach also results in all

structure of the data to be inherent in programs accessing the

data. Finally, the database scalability was poor and unlike the

relational and object oriented approaches, did not provide any

data normalization or recovery mechanisms.

V. CONCLUSION

This paper showed the main current approaches for

implementing biological databases. Our analysis shows that

biological databases are complex and that no single approach is

suitable or practical. Therefore, it is important that research

efforts continue in this area in order to find different ways of

storing and creating databases suitable for biological data.

REFERENCES

[1] R. Alhajj, and F. Polat, “Reengineering Relational Databases to

Object-Oriented: Constructing the Class Hierarchy and Migrating the

Data”,In Proceedings of 8th Working Conference on Reverse Engineering

(WCRE’01), 2001.

[2] ASN.1, http://asn1.elibel.tm.fr/en/introduction/index.htm

[3] I. Kuan Cheang, Y. Bae Choi, and A. Tang, “Overview of the Structures

of Heterogeneous Genome Databases”, IEEE 27th Annual Hawaii

International Conference on System Sciences, 1994.

[4] P. Chen, “The Entity Relationship Model – Toward a Unified View of

Data” ACM International Conference on Very Large Databases,

Framingham MA, Sept. 22-24, 1975.

[5] P. Chen, “Entity Relationship Modeling: Historical Events, Future Trends,

and Lessons Learned”, Software Pioneers: Contributions to Software

Engineering, Springer-Verlag, Lecturing Notes in Computer Sciences,

June 2002, pp. 110-114.

[6] Growth of GenBank. Available at

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

[7] Z. Lacroix, “Biological Data Integration: Wrapping Data and Tools”,

IEEE Transactions on Information Technology in Biomedicine, Vol. 6,

No. 2, June 2002.

[8] L. Stein, and J. Thierry-Mieg “AceDB: A Genome Database

Management System”, Computing in Science and Engineering, Vol. 1, No.

3, pp.44-52, 1999.

[9] SQL Injection, http://msdn2.microsoft.com/en-us/library/ms161953.aspx

[10] S. Philippi, and J. Köhler, “Automated Structure Extraction and XML

Conversion of Life Science Database Flat Files” IEEE Transactions on

Information Technology in Biomedicine, Volume 10, Issue 4, Oct. 2006,

pp. 714-721.

[11] X. Qian, and L. Raschid, “Query Interoperation Among Object-Oriented

and Relational Databases”, In proceedings of ICDE, 1995.

[12] C. Ramathan, and S. Koduri, “An Object-Oriented Prototype for a

Geophysical Database”, In Proceedings of 27th Southeastern Symposium

on System Theory (SSST’95). 1995.

[13] R. Sargent et al., “The Design and Implementation of a Database for

Human Genome Research”, In Proceedings of 8th International

Conference on Scientific and Statistical Database Systems, p. 220-225,

Stockholm Sweden, June, 1996.

[14] N. Shamkant, and A. Kogelnik, “The Challenges of Modeling Biological

Information for Genome Databases”, Conceptual Modeling, LNCS 1565,

pp. 168-182, Springer-Verlag 1999.

[15] R. Smith, “Brief Guide to Information Resources Supporting the Human

Genome Project”, IEEE Engineering in Medicine and Biology, Nov.-Dec.

1995

[16] A. Vakali, B. Catania and A. Maddalena, “XML Data Stores: Emerging

Practices”, IEEE Internet Computing, Volume 9 Issue 2, pp. 62-69

March-April 2005.

Hitomi Hasegawa (BS’06) attended Northeastern University in Boston MA.

Currently she is pursuing a MS in Bioinformatics at the University of Helsinki.

Prior to moving to Finland, she worked in research roles in biochemistry,

imaging and pharmaceutical projects in both the United States and Japan. As a

result, Hitomi has participated in the filing of several patents (currently under

review). In the United States she did research for Rohm and Haas, and later for

Northeastern University. In Japan she worked at Sunstar Inc. During her work

at Rohm and Haas she won the award for Safety Procedures in the laboratory. In

addition to research, Hitomi has carried out roles as an interpreter between

transnational teams for Sunstar Inc. Her current research interests are in

database research and development.

