

Abstract—Current database systems lack several specific

functionalities that are needed by biological databases. bdbms is

an extensible prototype database management system for

supporting biological data. bdbms extends the current database

systems with: (1) Annotation and provenance management, (2)

Local dependency tracking, (3) Update authorization, and (4)

Non-traditional and novel access methods.

1. INTRODUCTION

Biological databases typically consist of raw data, metadata,

sequences, annotations, and related data obtained from various

sources (Fig. 1). These databases are used in life science

research to deposit raw data, store interpretations of

experiments and results of analysis processes, and search for

matching structures and sequences. They are essential to

biological experimentation and analysis [1].

Current database technology does not fulfill the specific

requirements of biological databases, and that has become a

serious handicap to scientific progress. In many cases, the data

is stored in flat files or spreadsheets because the current

database systems lack several functionalities that are needed

by biological databases. Efficient support for sequences,

annotations, and provenance are some of these functionalities

that are needed to manage and process biological data

properly. Consequently, many advantages and functionalities

that current database systems offer are nullified and bypassed

in biological databases.

Experimental technologies and semantics of the information

content change rapidly and biological databases should evolve

with them. One problem is a lack of absolute authority to

verify the correctness of information in biological databases.

All this makes it is difficult to foresee the kinds of additional

information that may become necessary to attach to data in the

database.

bdbms is an extensible prototype database engine for

supporting and processing biological databases[1]. bdbms

focuses on the four following functionalities: (1) Annotation

and provenance management, (2) Local dependency tracking,

Helsinki, April 24, 2008

58308110 Seminar: Management of Biological Databases, spring 2008

Department of Computer Science

University of Helsinki, Finland

bdbms – A Database Management System for

Biological Data

Terhi Töyli
Department of Computer Science

University of Helsinki, Finland

terhi.toyli@helsinki.fi

1

Fig. 1: An example of a database search from Entrez Nucleotide

database [3]. The database is actually a collection of sequences

from several sources including GenBank[4] and RefSeq[5].

(3) Update authorization, and (4) Non-traditional and novel

access methods.

bdbms treats annotations and provenance data as first-class

objects [2]. The framework that is provided allows adding

annotations/provenance at multiple granularities, archiving and

restoring annotations, and querying the data based on

annotation/provenance values.

bdbms introduces Annotation-SQL, or A-SQL for short,

which is an extension to SQL. The extension supports the

processing and querying of annotation and provenance

information and allows them to be propagated with query

answers with minimum user programming. The users are not

expected to know how to use A-SQL, so a graphical interface

will be provided with bdbms.

bdbms also proposes a systematic approach for tracking

dependencies among database entries [1]. In practice, when a

database item is modified, bdbms can track and mark any other

database item that is affected by this modification. In

biological databases this is very desirable, since e.g. modifying

one DNA sequence may have effect on several other items, for

instance on the protein sequence derived from the modified

DNA sequence. Lack of this automatic dependency tracking

raises concerns on the quality and the consistency of the data

available in biological databases.

The GRANT/REVOKE access models supported by current

database systems depend only on the identity of the user.

bdbms extends this by proposing a content-based

authorization, which is based on both the identity of the

updater and the content of the updated data.

There is a need to integrate for example new types of index

structures along with their supporting operators inside bdbms.

These non-traditional and novel access methods provide

access methods for supporting various types of biological data.

2. ARCHITECTURE

The annotation manager, the dependency manager, and the

authorization manager are the main components of bdbms [1].

A-SQL is bdbms's extended SQL and it supports annotation

and authorization commands. The annotation manager is

responsible for handling the annotations in an annotation

storage space, the dependency manager is responsible for

handling the dependencies and derivations among database

items, and the authorization manager handles content-based

authorizations and the standard authorizations.

The dependencies are stored in a dependency storage space

and index structures are available in bdbms in support of the

multidimensional and compressed data.

3. ANNOTATION MANAGEMENT

Users' comments, experiences, related information that is

not modeled by the database, and the provenance of the data

are examples of the extra information that is linked to the

database as annotations [1]. Annotations are important mean

of communication and interaction between database users, and

they are used to allow users to have a better understanding of

the data. Annotations often answer the questions such as: How

was the piece of data obtained? Why was something added or

modified? Which experiments or analyses or programs were

used? From which source was the piece of data obtained?

Answering these questions is very important in assessing the

value and credibility of the data.

Most of the current database systems do not support

annotations systematically, despite their importance. Most of

the proposed techniques assume simple annotation schemes

and focus on annotation propagation. However, for example

mechanisms for annotation insertion, archival, and indexing

are needed for efficient annotation management. bdbms

addresses several of these requirements of annotation

management.

 3.1 CREATE ANNOTATION TABLE AND DROP

ANNOTATION TABLE

All annotations are metadata, but they may have different

importance, meaning, and creditability, and therefore require

categorization and separation. For example, annotations

representing the lineage of the data have different purpose and

importance from the annotations representing users' comments,

and they may also have an impact on the storage mechanism of

the data.

bdbms provides a mechanism for categorizing annotations at

the storage, query processing and annotation propagation

levels [1]. At the storage level, the A-SQL command CREATE

ANNOTATION TABLE (Fig. 2) allows user to design and

categorize their annotations. This also facilitates annotation

propagation. User relation may have multiple annotation tables

attached to it, for example one that stores experiment

information and another one that stores users' comments. The

DROP ANNOTATION TABLE (Fig. 2) command is used for

dropping an annotation table.

Several storage and indexing schemes are being investigated

to efficiently store the annotations. For example, a single

annotations of provenance can be attached to many database

items, and adding the same information multiple times to

different tables may cause the processing and storing to be

very expensive. The annotations should be stored with respect

to storage overhead, I/O cost to retrieve the annotations, and

the query processing time. It is also considered to take into

account whether the annotation is linked to multiple data items

in different tables or just to very few specific cells.

2

Fig. 2: The A-SQL commands CREATE and DROP [1]

 3.2 ADD ANNOTATION

Storing the annotations should be transparent from end-

users. Current database systems do not provide a mechanism

to facilitate annotating of the data and user has to know exactly

how the annotations are stored in the tables before the user can

make the UPDATE command. The system should provide new

expressive commands as well as visualization tools that allow

users to add their annotations seamlessly and graphically at

various granularities.

bdbms proposes the A-SQL command ADD

ANNOTATION for adding annotations (Fig. 3(a)). The

annotation_table_ names specifies to which annotation

table(s) the added annotation will be stored, the

annotation_body specifies the annotation value to be added,

and the output of the SQL_statement specifies the data to

which the annotation is attached. The output of the

SQL_statement can be at various granularities. It is planned to

support XML-formatted annotations in bdbms, since the

annotations may contain important information that users want

to query. In case the annotation body is XML-formatted text,

the users can structure their annotations and make use of XML

querying capabilities. An example of ADD ANNOTATION

command could be:

ADD ANNOTATION

TO this_table.geneAnnotation

VALUE '<Annotation>

This is a gene.

 </Annotation>'

ON (Select T.geneID

From this_table T);

This attaches the annotation to every geneID in the table

this_table and stores the annotation in the annotation table

geneAnnotation. The <Annotation> is the XML tag that

encloses the annotation information.

The SQL_statement will be an INSERT, UPDATE or

DELETE statement to allow users to link annotations to

database operations. For example, the user can use the delete

operation to store the deleted items to separate log table along

with the annotation that specifies why the items have been

deleted. The standard system recovery log cannot be used for

this purpose because it does not support the users' need to

structure their annotation freely.

 It is planned to add a visualization tool to bdbms to allow

users to annotate their data in a transparent way. Users' tables

are displayed as grids or spreadsheets where users can select

one or more cells to annotate. In Oracle, the integration of

database tables with Excel spreadsheets is addressed, and it is

planned to add that integration feature to bdbms.

 3.3 ARCHIVE ANNOTATION AND RESTORE

ANNOTATION

Annotations may be needed to be deleted or archived when

they become unnecessary or invalid. bdbms supports the

archival of annotations instead of deleting them [1]. These

old, archived annotations are not propagated along with query

answers. Archiving isolates old and invalid annotations from

the recent and valuable ones, but also reserves them for later

use. The biological data is usually a little uncertain, and the

old values may turn out to be the correct values. Archiving

annotations gives users the possibility to restore the

annotations later, if needed. Restored annotations are

propagated normally along with query answers.

For archiving and restoring annotations, bdbms provides

ARCHIVE ANNOTATION (Fig. 3(b)) and RESTORE

ANNOTATION A-SQL commands (Fig. 3(c)), respectively.

The annotation_table_names specifies which annotation tables

will be archived/restored, and the output of the SELECT_

statement specifies the data on which the annotations will be

archived/restored. The BETWEEN clause is optional and

specifies a time range over which the annotations will be

archived/restored. The time stamp is assigned to each

annotation when it is first added to the database.

 3.4 SELECT

Simplifying the users' queries is required to allow annotation

propagation. The problem is that users view the annotations as

metadata, whereas the DBMSs view annotations as normal

data. In user's point of view, two entries of the same gene from

different tables are identical if only their annotations differ.

However, from the database view point, they are not identical

because the annotations are viewed as normal attribute data.

In order to overcome the mismatch in interpreting the

annotations, users' queries may become complex. This can be

avoided by extending the query operators.

3

Fig. 3: The A-SQL commands ADD, ARCHIVE, and

RESTORE [1]

Fig. 4: The A-SQL SELECT command [1]

bdbms' A-SQL command SELECT extends the standard

SELECT command by introducing new operators and

extending the semantics of the standard operators (Fig. 4). The

new operators introduced are ANNOTATION, PROMOTE,

AWHERE, AHAVING, and FILTER.

The ANNOTATION operator specifies the annotation

table(s) which are to be considered in the query. Users do not

have to know how or where annotations are stored, instead

they can propagate their annotations transparently and specify

only which annotations are of interest.

The PROMOTE operator specifies the annotations from one

or more columns that users want to copy to a projected

column.

The AWHERE and AHAVING clauses are applied over the

annotations, but otherwise they are equivalent to the standard

WHERE and HAVING clauses. The FILTER clause filters

any annotation that does not satisfy filter_annotation_

condition from the data of the input relation.

The standard operators and the operators that group or

combine, for example projection, selection, group by, union,

and intersect, are also extended to process the annotations

attached to the tuples.

In addition to defining the commands and operators to

support the features within bdbms, it is also needed to define

for each A-SQL operator its algebraic definition, cost estimate

function, and algebraic properties that can be used by the

query optimizer to generate efficient query plans.

4. PROVENANCE MANAGEMENT

The provenance of data is very important in assessing the

value and credibility of the data, since the biologists often

interact and exchange data with each other. Biological data can

also be queried by its provenance. Like annotations, the data

provenance can be attached to the database at multiple

granularities.

In bdbms the provenance data is treated as a kind of

annotations where all the requirements and functionalities that

are available for annotations are also applicable to provenance

data [1]. In addition, the provenance data has some special

requirements and characteristics that need to be addressed.

Provenance data has usually well-defined structure, whereas

annotations can be free text. The values of provenance data are

drawn from a list of predefined values.

Provenance data is not usually allowed to be inserted or

updated by end-users. It needs to be automatically inserted and

maintained by the system and end-users can only retrieve or

propagate this information. It is needed to provide an access

control mechanism over the provenance data to restrict the

annotation operations to certain users or programs as required.

5. LOCAL DEPENDENCY TRACKING

In many cases, the dependencies and derivations, which

biological databases are full of, cannot be automatically

computed using coded functions, e.g. prediction tools, lab

experiments, or instruments may be needed to derive the data

(Fig. 5).

In Fig. 5(a), protein sequences are derived from gene

sequences using a prediction tool P, and the function of the

protein is derived from the protein sequence using lab

experiments. If a gene sequence is modified, then the protein

sequences that depend on that gene have to be marked as

outdated until their values are reverified. Also the function of

the protein sequences marked as outdated must be marked

outdated as well.

In Fig. 5(b) another type of dependency is presented. The

value of data in the database depends on the procedure or

program that generated the data. If the version of BLAST is

modified or BLAST is replaced with another procedure, the

Evalues must be re-evaluated. If BLAST can be modeled as a

database function, these values can be automatically evaluated.

Otherwise the values are marked as outdated.

bdbms proposes to extend the concept of Functional

Dependencies to Procedural Dependencies [1]. In Procedural

Dependencies not only the dependency among the data is

tracked, but also the type and characteristics of the

dependency. The procedure on which the dependency is based,

whether or not the procedure can be executed by the database,

and whether or not the procedure is invertible are among the

tracked characteristics. Procedural Dependencies are used in

bdbms to allow users to model the dependencies among the

database items. They are also used to detect conflicts and

4

Fig. 6: Use of bitmap to mark outdated data [1]

Fig. 5: Local dependency tracking [1]

cycles among dependency rules, and to compute the closure of

procedures.

Dependencies among the data can be stored either at the

schema level or at the instance level. Schema-level

dependencies can be modeled using foreign key constraints.

Instance- level dependencies are more complex to model and

can be modeled by dependency graphs.

Dependency graphs are used to figure out the items that

have to be marked as outdated when a modification occurs in

the database. The outdated items must be marked clearly that

these items can be identified in any future reference. bdbms

proposes to associate a bitmap with each table in the database.

A bitmap cell set to 1 corresponds the outdated cell in the

database, otherwise the bitmap cell set to 0. Fig. 6 shows in

practice how the bitmap is modified when the sequences

corresponding to genes JW0080 and JW0082 (Fig. 5(a)) are

modified. Because Psequence is automatically updated by

executing procedure P, the bits corresponding to Psequence

are not set to 1. Data compression techniques can be used to

effectively compress the bitmaps to reduce the storage

overhead.

The items that need to be verified or re-evaluated should be

able to be reported by database at all times. The outdated items

involved in query answers should be propagated with an

annotation that the query answer may not be correct. Detecting

the outdated items at query execution time is a challenging

problem, and a proposed solution is to consider the status of

the database items as annotations attached to those items. The

annotations will be automatically propagated along with query

answers.

 A mechanism for users to validate outdated items will be

provided by bdbms. An outdated item may or may not need to

be modified to become valid.

6. UPDATE AUTHORIZATION

Changes over the database should be subject to

authorization and approval by authorized entities before the

changes become permanent in the database, because they may

have important consequences. In current database management

systems the authorization is based on GRANT/ REVOKE

access model. In this model a user is granted a permission to

do certain operations based on only the identity of the user not

on the content of the data being inserted or updated [1].

Biological databases may not fit with this model, as they are

usually community based and shared effort. For example, if a

lab administrator is the only user who has the right to update

the database, then (s)he becomes a bottleneck in the process of

populating the database, and if all the lab members can modify

the data without revision, the credibility and authenticity of the

data may be compromised [2].

bdbms introduces a monitoring system, termed content-

based approval, that allows the database to systematically

track the changes over the database. The content-based

approval mechanism works with the existing

GRANT/REVOKE mechanism.

The authorization is based on the identity of the user as well

as the content of the data being inserted or updated. The

content-based approval feature can be turned ON or OFF for a

certain table or columns by the database administrator (Fig. 7).

The table_name specifies the user table on which the update

operations will be monitored, and the optional COLUMNS

clause specifies the columns to be monitored. The user/group

specifies the user or group of users that can approve or

disapprove the update operations.

The content-based approval mechanism maintains a log of all

update operation that occur in the database [2] along with the

identifier of the user who issued the operation and the issuing

time. All non-approved updates will be visible with an

annotation mentioning they were not approved yet. The logs

are revised by authorized users to approve/disapprove the

operations. If an operation is disapproved, bdbms executes an

automatically generated and stored inverse operation that

negates the effect of the original operation. The execution of

the inverse statement may affect other elements in the

database, so the Local Dependency Tracking feature tracks

down and invalidates these elements [1].

7. INDEXING AND QUERY PROCESSING

Non-traditional indexing techniques are proposed to be

integrated inside bdbms to enable biological algorithms to

operate efficiently on the database. bdbms focuses on two

fronts: (1) Supporting multidimensional datasets via

multidimensional indexing techniques (suitable for protein 3D

structures and surface shape matching), and (2) Supporting

compressed datasets via novel external-memory indexes that

work over the compressed data without decompressing it

(suitable for indexing large sequences) [1].

Compressing the data inside the database improves the

system performance. The size of the data, the number of I/O

operations to retrieve the data, and the buffer requirements are

significantly reduced. In bdbms it is being investigated how

biological data can be stored in compressed form and yet be

able to operate on the compressed data without decompressing

it.

In bdbms, an extensible indexing framework, termed SP-

GiST, is used [1]. The SP-GiST framework is implemented

inside PostgreSQL, and it broadens the class of supported

indexes to include disk-based versions of space-partitioning

trees. Space-partitioning trees are a family of access methods

that index objects in a multi-dimensional space.

SP-GiST allows developers to instantiate a variety of index

structures in an efficient way through pluggable modules and

5

Fig. 7: Content-based approval [1]

without modifying the database engine. In bdbms, several

advanced search operations, e.g., k-nearest-neighbor search,

regular expression match search, and substring searching, were

implemented.

Biological databases consist of large amounts of sequence

data, which need to be stored, indexed and searched

efficiently. Compressing sequences improves the system

performance as it reduces the size of the data significantly.

New techniques for compressing biological sequences and

operating over the compressed data without decompressing it

is investigated in bdbms [1] .

In bdbms, the process of Run-Length-Encoded sequences

are investigated. RLE is a compression technique that replaces

the consecutive repeats of a character C by one occurrence of

C followed by C's frequency. Fig. 8 illustrates how protein

secondary structures are stored in bdbms. SBC-tree (String B-

tree for Compressed sequences) is an index structure for

indexing and searching RLE-compressed sequences of

arbitrary length.

First the sequence is compressed using RLE, and then an

SBC-tree index is built over the compressed sequences.

Queries will use the index to retrieve the desired data without

decompression.

In bdbms, the following challenges regarding the processing

of compressed data are planned to be addressed:

Full integration of the SBC-tree index: To fully integrate

the SBC-tree index inside bdbms it is planned to address

several query processing and optimization issues including: (1)

supporting subsequence matching, and (2) providing accurate

cost functions for estimating the cost of the index [1]. The

supported operations of the SBC-tree index is planned to be

extended to include subsequence matching, which is an

important operation as it is used in many algorithms such as

sequence alignment algorithms.

Processing various formats of compressed data: bdbms

supports indexing and querying RLE-compressed sequence

data [1]. In the case of sequences where characters have long

repeats in tandem, RLE is effective. Other compression

techniques can be more effective in compressing the other

kinds of data. The plan is to investigate indexing and querying

other formats of compressed data in addition to RLE-

compressed sequences to efficiently support these data inside

bdbms.

8. DISCUSSION

Building a database resource for the E. coli model organism

and a protein structure database project are the two

applications that have been driving the bdbms project [1].

bdbms is currently being prototyped using PostgreSQL. The

A-SQL language and content-based authorization model are

currently under development in PostgreSQL. The SP-GiST

and SBC-tree access methods are already integrated inside

PostgreSQL.

It is clear that the current database systems are not optimal

for storing biological data. Biology is not that exact science,

and the experiments and results need to be explained and

commented to make them more understandable and

comparable.

My own knowledge on biology and biological databases is

not yet comprehensive enough so that I could analyze the

necessity of being able to treat the annotations as first-class

objects and make queries based on them, but I strongly agree

that annotations are very essential in biological databases.

REFERENCES

[1] M. Y. Eltabakh, M.Ouzzani, W. G. Aref, bdbms - A Database

Management System for Biological Data. CIDR 2007: 196-206.

[2] M. Y. Eltabakh, M.Ouzzani, W. G. Aref, A. K. Elmagarmid, Y. Laura-

Silva, M. U. Arshad, D. Salt, I. Baxter, Managing Biological Data

Using bdbms. ICDE 2008.

[3] The Entrez Nucleotide database, 2008.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore

[4] GenBank® http://www.ncbi.nlm.nih.gov/Genbank/index.html

[5] Refseq http://www.ncbi.nlm.nih.gov/RefSeq/

6

Fig. 8: Indexing and querying RLE-compressed sequences [1]

