• CandyLamport global snapshot algorithm

When a process $CandyLamport(A)_i$ that has not previously been involved in the snapshot algorithm receives a $snap_i$ input, it records the current state of A_i . Then it immediately sends a *marker* message on each of its outgoing channels; this *marker* indicates the boundary between the messages that are send out before the local state was recorded and the messages sent out afterward.

Then $ChandyLamport(A)_i$ begins recording the messages arriving on each incoming channel in order to obtain a state for that channel; it records messages on the channel just until it encounters a marker. At this point, $ChandyLamport(A)_i$ has recorded all the messages sent on that channel before the neighbor at the other end recorded its local state.

There is one remaining situation to consider: suppose that process $ChandyLamport(A)_i$ receives a marker message before it has recorded the state of A_i . In this case, immediately upon receiving the first marker message, $ChandyLamport(A)_i$ records the current state of A_i , sends out marker messages, and begins recording incoming messages. The channel upon which it has just received the marker is recorded as empty. The formal code appears below.

```
CandhyLamport(A)_i:
```

```
Signature:
As in A_i, plus:
Input:
  snap_i
  receive("marker")_{j,i}, j \in nbrs
Output:
  report(s, C)_i, s \in states(A_i),
  send("marker")_{i,j}, j \in nbrs, m a message of A
Internal:
  internal-send(m)_{i,j}, j \in nbrs, m a message of A
States:
As for A_i, plus:
status \in \{start, snapping, reported\}, initially start
snap-state, a state of A_i, initially null
for every j \in nbrs:
    channel-snapped(j)a Boolean, initially false
    send-buffer(j), a FIFO queue of A messages and markers,
    initially empty
    snap-channel(j), a FIFO queue of A messages,
    initially empty
```

```
Transitions:
snap_i
  Effect:
    if status = start then
       snap-state = state of A_i
       status = snapping
       \forall j \in nbrs
            add "marker" to send-buffer(j)
receive("marker")_{i,i}
  Effect:
    if status = start then
       snap-sate = state of A_i
       status = snapping
       \forall j \in nbrs
            add "marker" to send-buffer(j)
       channel-snapped(j) = true
send(m)_{i,j}
  Precondition:
    m is first on send-buffer(j)
  Effect
    remove first element of send-buffer(j)
report(s, C)_i
  Precondition:
    status = snapping
    \forall j \in nbrs : channel-snapped(j) = true
    s = snap-state
    \forall j \in nbrs : C(j) = snap_channel(j)
  Effect:
    status = reported
Input of A_i \neq receive
  Effect:
    As for A_i
Locally controlled action of A_i \neq send
  Precondition:
    As for A_i
  Effect:
    As for A_i
```

```
internal-send(m)_{i,j} in A_i

Precondition:

As for send(m)_{i,j} in A_i

Effect:

add m to send-buffer(j)
```

Theorem 1: The ChandyLamport(A) algorithm determines a consistent global snapshot for A.

Proof: Fix any fair execution of ChandyLamport(A) in which some process receives a *snap* input. We first argue that every process eventually performs a *report* output. As soon as any *snap* input occurs at some process $ChandhyLamport(A)_i$ that process records the state of A_i and send out *marker* on all its channels. As soon as any other process $ChandyLamport(A)_j$ receives a *marker* on any channel, it records the state of A_j and send out *markers* on all its channels, if it has not previously done so. Because of the connectivity of the graph, *markers* thus eventually propagate to all processes, and all processes record their local states. Also every process $ChandyLamport(A)_i$ eventually performs a *report*, as claimed.

Now we argue that the returned global state is consistent. That is, we let α denote the contained fair execution of A, and we produce the required alternative execution α' and its required prefix. Namely let α_1 be the portion of α before the first *snap* and *alpha*² the portion of α after the last *report*. Execution *alpha'* begins with α_1 and ends with α_2 ; the only reordering involves the events of α between the first *snap* and the last *report*.

Each event of α between the first *snap* and the last *report* occurs at some process $ChandyLamport(A)_i$. These events can be divided into two sets: S_1 those that precede the event $(snap_i \text{ or } receive(marker)_{j,i})$ of $ChandyLamport(A)_i$ at which the state of A_i is recorded, and S_2 those that follow this event. The reordering places all S_1 events before all S_2 events while preserving the order of events of each A_i and the order of each send (derived from an internal-send) which respect to the corresponding receive. The fact that such a reordering is possible depends on the fact that there is no internal-send(m)_{i,j} event that follows the recording of the state at A_i and whose corresponding $receive(m)_{i,j}$ event precedes the recording of the state of A_j . (If an internal-send(m)_{i,j} follows the recording of the state of A_i , then m is placed in send-buffer $(j)_i$ after the marker. But this implies that the marker arrives at $ChandyLamport(A)_j$ before m does, which means that the state of A_j is already recorded by the time m arrives). Reordering the events of α in this way and filling in states of each A_i as in α yields the sequence α' .

Now consider the prefix α_3 of α' ending just after all the events in S_1 . We claim that α' and its prefix α_3 satisfy all the needed properties; the key fact is that the results returned by all the processes constitute exactly the global state of A after α_3 . But the messages in transit for i to j after α_3 are exactly the messages whose *internal* – *send*(m)_{*i*,*j*} events occur after the recording of the state of A_j . These are exactly the messages that arrive at *ChandyLamport*(A)_{*j*} from *ChandhyLamport*(A)_{*i*} ahead of the *marker* and after $ChandyLamport(A)_J$ records the state of A_J , which are exactly the messages recorded by $ChandyLamport(A)_j$ for this channel. \Box .

• Example: Two-dollar bank

Let A be a simple special case of the banking system in which the underlying graph G has only two nodes, 1 and 2, and in which total amount of money in the system is \$2. Suppose each process begins with \$1. We use notation $CL(A)_i$ as shorthand for the process $ChandyLamport(A)_i$.

Consider fair execution of $CL(A)_i$ depicted in Figure 1. In this diagrams, the # symbols denote markers.

- (a) $snap_1$ occurs, causing $CL(A)_1$ to record the state of A_1 as \$1. Then $CL(A)_1$ sends a *marker* to $CL(A)_2$ and starts recording incoming messages.
- (b) A_1 sends \$1 to A_2 ; the dollar enters the channel from $CL(A)_1$ to $CL(A)_2$, behind the marker.
- (c) A_2 send \$1 to A_1 .
- (d) A_1 receives the dollar and $CL(A)_1$ records it in snap-channel(2)₁.
- (e) $CL(A)_2$ receives the marker from $CL(A)_1$, records the state of A_2 as \$0, sends a marker to $CL(A)_1$, records the state of the incoming channel as empty, and reports its results.
- (f) $CL(A)_1$ receives the marker from $CL(A)_2$, records the state of the incoming channel as the sequence consisting of one message (the \$1 it received before the marker), and reports its results.
- (g) A_2 receives the dollar.

The global state returned by the algorithm is shown in (h). It consists of \$1 at A_1 , \$1 in the channel from A_2 to A_1 , and no money at A_2 or in the channel from A_1 to A_2 . This yields the correct total \$2.

Figure 1: Execution of ChandyLamport(A), for the two-dollar bank

- Further reading:
 - Nancy A. Lynch: Distributed Algorithms, Chapter 19, pages 617–639, Morgan Kaufmann, 1996.
 - Gabriel Bracha and Sam Toueg. Distributed deadlock detection. *Distributed Computing*, 2(3):127–138, December 1987.