- CandyLamport global snapshot algorithm

When a process CandyLamport $(A)_{i}$ that has not previously been involved in the snapshot algorithm receives a snap_{i} input, it records the current state of A_{i}. Then it immediately sends a marker message on each of its outgoing channels; this marker indicates the boundary between the messages that are send out before the local state was recorded and the messages sent out afterward.
Then ChandyLamport $(A)_{i}$ begins recording the messages arriving on each incoming channel in order to obtain a state for that channel; it records messages on the channel just until it encounters a marker. At this point, ChandyLamport $(A)_{i}$ has recorded all the messages sent on that channel before the neighbor at the other end recorded its local state.

There is one remaining situation to consider: suppose that process $C h a n d y \operatorname{Lamport}(A)_{i}$ receives a marker message before it has recorded the state of A_{i}. In this case, immediately upon receiving the first marker message, ChandyLamport $(A)_{i}$ records the current state of A_{i}, sends out marker messages, and begins recording incoming messages. The channel upon which it has just received the marker is recorded as empty. The formal code appears below.

CandhyLamport $(A)_{i}$:

```
Signature:
As in }\mp@subsup{A}{i}{}, plus
Input:
    snapi
    receive("marker")}\mp@subsup{)}{j,i}{},\quadj\innbr
Output:
    report (s,C)i,s
    send("marker")}\mp@subsup{)}{i,j}{},\quadj\innbrs,m a message of 
Internal:
    internal-send}(m\mp@subsup{)}{i,j}{},\quadj\innbrs,m a message of 
```

```
States:
As for }\mp@subsup{A}{i}{}, plus
status }\in{\mathrm{ start, snapping, reported}, initially start
snap-state, a state of }\mp@subsup{A}{i}{}\mathrm{ , initially null
for every j \in nbrs:
    channel-snapped(j)a Boolean, initially false
    send-buffer(j), a FIFO queue of }A\mathrm{ messages and markers,
    initially empty
    snap-channel(j), a FIFO queue of }A\mathrm{ messages,
    initially empty
```

```
snap}\mp@subsup{i}{}{\prime
    Effect:
        if status = start then
            snap-state = state of }\mp@subsup{A}{i}{
            status = snapping
            \forallj\innbrs
                add "marker" to send-buffer(j)
receive("marker")}\mp@subsup{j}{j,i}{
    Effect:
        if status = start then
            snap-sate = state of }\mp@subsup{A}{i}{
            status = snapping
            \forallj\innbrs
                add "marker" to send-buffer(j)
            channel-snapped(j) = true
send(m)
    Precondition:
        m is first on send-buffer(j)
    Effect
        remove first element of send-buffer(j)
report(s,C)i
    Precondition:
            status = snapping
            \forall \in nbrs : channel-snapped(j) = true
            s = snap-state
            \forall & nbrs:C(j) = snap_channel (j)
    Effect:
            status = reported
Input of }\mp@subsup{A}{i}{}\not=\mathrm{ receive
    Effect:
            As for }\mp@subsup{A}{i}{
Locally controlled action of }\mp@subsup{A}{i}{}\not=\mathrm{ send
    Precondition:
            As for }\mp@subsup{A}{i}{
    Effect:
            As for }\mp@subsup{A}{i}{
```

```
internal-send \((m)_{i, j}\) in \(A_{i}\)
    Precondition:
        As for \(\operatorname{send}(m)_{i, j}\) in \(A_{i}\)
    Effect:
        add \(m\) to send-buffer(j)
```

Theorem 1: The ChandyLamport (A) algorithm determines a consistent global snapshot for A.

Proof: Fix any fair execution of ChandyLamport (A) in which some process receives a snap input. We first argue that every process eventually performs a report output. As soon as any snap input occurs at some process ChandhyLamport $(A)_{i}$ that process records the state of A_{i} and send out marker on all its channels. As soon as any other process ChandyLamport $(A)_{j}$ receives a marker on any channel, it records the state of A_{j} and send out markers on all its channels, if it has not previously done so. Because of the connectivity of the graph, markers thus eventually propagate to all processes, and all processes record their local states. Also every process ChandyLamport $(A)_{i}$ eventually performs a report, as claimed.
Now we argue that the returned global state is consistent. That is, we let α denote the contained fair execution of A, and we produce the required alternative execution α^{\prime} and its requited prefix. Namely let α_{1} be the portion of α before the first snap and alpha a_{2} the portion of α after the last report. Execution alpha' begins with α_{1} and ends with α_{2}; the only reordering involves the events of α between the first snap and the last report.
Each event of α between the first snap and the last report occurs at some process ChandyLamport $(A)_{i}$. These events can be divided into two sets: S_{1} those that precede the event $\left(\right.$ snap $_{i}$ or receive $\left.(\text { marker })_{j, i}\right)$ of ChandyLamport $(A)_{i}$ at which the state of A_{i} is recorded, and S_{2} those that follow this event. The reordering places all S_{1} events before all S_{2} events while preserving the order of events of each A_{i} and the order of each send (derived from an internal-send) which respect to the corresponding receive. The fact that such a reordering is possible depends on the fact that there is no internal-send $(\mathrm{m})_{i, j}$ event that follows the recording of the state at A_{i} and whose corresponding receive $(m)_{i, j}$ event precedes the recording of the state of A_{j}. (If an internal-send $(\mathrm{m})_{i, j}$ follows the recording of the state of A_{i}, then m is placed in send-buffer $(j)_{i}$ after the marker. But this implies that the marker arrives at $\operatorname{ChandyLamport}(A)_{j}$ before m does, which means that the state of A_{j} is already recorded by the time m arrives). Reordering the events of α in this way and filling in states of each A_{i} as in α yields the sequence α^{\prime}.
Now consider the prefix α_{3} of α^{\prime} ending just after all the events in S_{1}. We claim that α^{\prime} and its prefix α_{3} satisfy all the needed properties; the key fact is that the results returned by all the processes constitute exactly the global state of A after α_{3}. But the messages in transit for i to j after α_{3} are exactly the messages whose internal $-\operatorname{send}(m)_{i, j}$ events occur after the recording of the state of A_{j}. These are exactly the messages that arrive at ChandyLamport $(A)_{j}$ from ChandhyLamport $(A)_{i}$ ahead of the marker and after

ChandyLamport $(A)_{J}$ records the state of A_{J}, which are exactly the messages recorded by ChandyLamport $(A)_{j}$ for this channel. \square.

- Example: Two-dollar bank

Let A be a simple special case of the banking system in which the underlying graph G has only two nodes, 1 and 2, and in which total amount of money in the system is $\$ 2$. Suppose each process begins with $\$ 1$. We use notation $C L(A)_{i}$ as shorthand for the process ChandyLamport $(A)_{i}$.
Consider fair execution of $C L(A)_{i}$ depicted in Figure 1. In this diagrams, the \# symbols denote markers.

- (a) snap occurs, causing $C L(A)_{1}$ to record the state of A_{1} as $\$ 1$. Then $C L(A)_{1}$ sends a marker to $C L(A)_{2}$ and starts recording incoming messages.
- (b) A_{1} sends $\$ 1$ to A_{2}; the dollar enters the channel from $C L(A)_{1}$ to $C L(A)_{2}$, behind the marker.
- (c) A_{2} send $\$ 1$ to A_{1}.
- (d) A_{1} receives the dollar and $C L(A)_{1}$ records it in snap-channel $(2)_{1}$.
- (e) $C L(A)_{2}$ receives the marker from $C L(A)_{1}$, records the state of A_{2} as $\$ 0$, sends a marker to $C L(A)_{1}$, records the state of the incoming channel as empty, and reports its results.
- (f) $C L(A)_{1}$ receives the marker from $C L(A)_{2}$, records the state of the incoming channel as the sequence consisting of one message (the $\$ 1$ it received before the marker), and reports its results.
- $(\mathrm{g}) A_{2}$ receives the dollar.

The global state returned by the algorithm is shown in (h). It consists of \$1 at $A_{1}, \$ 1$ in the channel from A_{2} to A_{1}, and no money at A_{2} or in the channel from A_{1} to A_{2}. This yields the correct total $\$ 2$.

Figure 1: Execution of ChandyLamport(A), for the two-dollar bank

- Further reading:
- Nancy A. Lynch: Distributed Algorithms, Chapter 19, pages 617-639, Morgan Kaufmann, 1996.
- Gabriel Bracha and Sam Toueg. Distributed deadlock detection. Distributed Computing, 2(3):127-138, December 1987.

