
� CandyLamport global snapshot algorithm

When a process
���������
	�������������������

that has not previously been involved in the snap-
shot algorithm receives a � ������ input, it records the current state of

���
. Then it immedi-

ately sends a
� ���"!
#$�

message on each of its outgoing channels; this
� ���"!%#$�

indicates
the boundary between the messages that are send out before the local state was recorded
and the messages sent out afterward.

Then
�'&(�����)�
	*������+�����������

begins recording the messages arriving on each incoming
channel in order to obtain a state for that channel; it records messages on the channel
just until it encounters a

� ���,!%#$�
. At this point,

�'&(�����)�
	*������+���������-�
has recorded all

the messages sent on that channel before the neighbor at the other end recorded its local
state.

There is one remaining situation to consider: suppose that process
�.&/�������
	*�)��(�+���������0�

receives a
� ���"!%#$�

message before it has recorded the state of
�1�

. In this case, imme-
diately upon receiving the first

� ���"!%#$�
message,

�.&/�������
	�����������������-�
records the

current state of
�2�

, sends out
� ���,!%#$�

messages, and begins recording incoming mes-
sages. The channel upon which it has just received the

� ���"!%#$�
is recorded as empty.

The formal code appears below.

���)���
&(�
	*������+�����������
:

Signature:
As in

�3�
, plus:

Input:
� ����/��4#�56#$7�8
#9�;:"� ���"!
#$�4:
�=<?> ��@BA C ��D?� �

Output:�4#E��+����� � @F������@ � C � �-���G# � �;�2�H�I@
� #$���J��:,� �)�,!%#$�+:
���K> <$@LA C ��D?� � @M� �N�O# ��� ��P
#Q�4RS�

Internal:
internal-send

���T���K> <�@UA C ��D�� � @M� a message of
�

States:
As for

�2�
, plus:

� �-�9�-V � C W � �-���+�?@ � ����,(7H�JP�@E�,#E������G#$��X�@Y7H��7��-7H��Z[Z[� � �-���+�
snap-state

@
a state of

�2��@
initially

��V�Z[Z
for every

A C ��D�� � :
channel-snapped

�KA/�
a Boolean, initially

RJ�)Z � #
send-buffer

�\A%�
, a FIFO queue of

�
messages and

� ���,!%#$� � ,
initially empty
snap-channel

�KA/�
, a FIFO queue of

�
messages,

initially empty

1

Transitions:

� ����/�
Effect:
if status = start then

snap-state = state of
�2�

status = snapping� A C ��D?� �
add "marker" to send-buffer(j)

�4#�56#$7�8
#9�;:"� ���"!
#$�4:
�=<?> �
Effect:
if status = start then

snap-sate = state of
�2�

status = snapping� A C ��D?� �
add "marker" to send-buffer(j)

channel-snapped(j) = true

� #$���J���T�H�\> <
Precondition:
m is first on send-buffer(j)

Effect
remove first element of send-buffer(j)

�4#E��+����� � @F�����
Precondition:
status = snapping� A C ��D?� � � channel-snapped

�\A%��� �-�+VJ#
s = snap-state� A C ��D?� � � � �KA%��� snap_channel

�\A%�
Effect:
status = reported

Input of
�2� �� �4#�56#$7�8
#

Effect:
As for

�2�

Locally controlled action of
�2� �� � #$���

Precondition:
As for

�2�
Effect:
As for

�2�

2

internal-send
���T���K> < 7�� �2�

Precondition:
As for � #$���J���T���\> < 7�� �2�

Effect:
add m to send-buffer(j)

Theorem 1: The
�'&(�����)�
	*������+���������

algorithm determines a consistent global snap-
shot for

�
.

Proof: Fix any fair execution of
�'&(�����)�
	*������+���������

in which some process receives
a � ���� input. We first argue that every process eventually performs a

�,#E(�+���
output.

As soon as any � ���� input occurs at some process
�'&/�)���
&(�
	*������+���������-�

that process
records the state of

���
and send out

� ���,!%#$�
on all its channels. As soon as any other

process
�.&/�������
	*�)��(�+���������;<

receives a
� ���"!%#$�

on any channel, it records the state of� <
and send out

� ���,!%#$� � on all its channels, if it has not previously done so. Because
of the connectivity of the graph,

� ���"!%#$� � thus eventually propagate to all processes,
and all processes record their local states. Also every process

�.&/�������
	�����������������G�
eventually performs a

�4#E����+�
, as claimed.

Now we argue that the returned global state is consistent. That is, we let � denote the
contained fair execution of

�
, and we produce the required alternative execution �

�
and

its requited prefix. Namely let ��� be the portion of � before the first � ���� and
��Z J&/���

the portion of � after the last
�4#E����+�

. Execution
��Z J&/� �

begins with ��� and ends with �
�
;

the only reordering involves the events of � between the first � ���� and the last
�4#E����+�

.

Each event of � between the first � ���� and the last
�4#E��+���

occurs at some process�'&(�����)�
	*������+�����������
. These events can be divided into two sets:

�
� those that pre-

cede the event (� ����(� or
�,#�5�#$7H8)#9��� ���,!%#$�9�[<G> �

) of
�'&/�)�����%	*��������+���;�����

at which the
state of

�2�
is recorded, and

���
those that follow this event. The reordering places

all
�
� events before all

���
events while preserving the order of events of each

� �
and the order of each send (derived from an internal-send) which respect to the cor-
responding receive. The fact that such a reordering is possible depends on the fact
that there is no internal-send(m)

�K> <
event that follows the recording of the state at

�1�
and whose corresponding

�4#�56#$7�8)#9���T� �\> <
event precedes the recording of the state of

� <
.

(If an internal-send(m)
�\> <

follows the recording of the state of
�1�

, then m is placed in
send-buffer

�\A%���
after the

� ���,!%#$�
. But this implies that the

� ���,!%#$�
arrives at

�.&/�������
	*�)��(�+����������<
before m does, which means that the state of

� <
is already recorded by the time m ar-

rives). Reordering the events of � in this way and filling in states of each
���

as in �
yields the sequence �

�
.

Now consider the prefix �
	 of �
�
ending just after all the events in

�
� . We claim that �

�

and its prefix ��	 satisfy all the needed properties; the key fact is that the results returned
by all the processes constitute exactly the global state of

�
after ��	 . But the messages in

transit for
7

to
A

after ��	 are exactly the messages whose
7����G#$�+����Z� � #$���J���T� �\> < events

occur after the recording of the state of
� <

. These are exactly the messages that arrive
at
�'&/�)�����%	*��������+���;���[<

from
�'&(�����%&/�
	*�)��(�+�����������

ahead of the
� ���,!%#$�

and after

3

�'&(�����)�
	*������+�����������
records the state of

���
, which are exactly the messages recorded

by
�'&/�)�����%	*��������+���;���[<

for this channel.
�

.

� Example: Two-dollar bank

Let
�

be a simple special case of the banking system in which the underlying graph �
has only two nodes, 1 and 2, and in which total amount of money in the system is $2.
Suppose each process begins with $1. We use notation

�'	 �;���G�
as shorthand for the

process
�.&/�������
	*�)��(�+��������� �

.

Consider fair execution of
��	 ����� �

depicted in Figure 1. In this diagrams, the # symbols
denote

� ���,!%#$� � .

– (a) � ���� � occurs, causing
��	3�;���

� to record the state of
�
� as $1. Then

�'	 �;���
�

sends a
� ���,!%#$�

to
��	 ����� �

and starts recording incoming messages.

– (b)
�
� sends $1 to

� �
; the dollar enters the channel from

�'	 �;���
� to

��	 ����� �
,

behind the
� ���,!%#$�

.

– (c)
� �

send $1 to
�
� .

– (d)
�
� receives the dollar and

�'	 �;���
� records it in snap-channel

�����
� .

– (e)
�'	 �;��� �

receives the
� ���"!%#$�

from
�'	 �;���

� , records the state of
� �

as $0,
sends a

� �)�,!%#$�
to
�'	 �����

� , records the state of the incoming channel as empty,
and reports its results.

– (f)
��	 �����

� receives the marker from
��	3�;��� �

, records the state of the incoming
channel as the sequence consisting of one message (the $1 it received before the� ���"!
#$�

), and reports its results.

– (g)
� �

receives the dollar.

The global state returned by the algorithm is shown in (h). It consists of $1 at
�
� , $1 in

the channel from
� �

to
�
� , and no money at

� �
or in the channel from

�
� to
� �

. This
yields the correct total $2.

4

1# 1#

11 2 1 2 1 2

1 1 0 1 0 0

1 0

1#

1 2

1
1

#
0 1 0

1

1 1

1 2

1 0

1

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: Execution of ChandyLamport(A), for the two-dollar bank

� Further reading:

– Nancy A. Lynch: Distributed Algorithms, Chapter 19, pages 617–639, Morgan
Kaufmann, 1996.

– Gabriel Bracha and Sam Toueg. Distributed deadlock detection. Distributed Com-
puting, 2(3):127–138, December 1987.

5

