
Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Centralised Txn Management
Review Slides

Jyrki Nummenmaa
http://www.cs.uta.fi/dtm/

jyrki@cs.uta.fi

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Purpose of these slides

These slides contain concepts, that are

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Transaction

A txn consists of the execution of a sequence
of client requests that access or update one or
more of the data items.
A txn may commit (complete successfully), or
be rolled back to the beginning & re-started, or
may be killed off without any of its requested
changes becoming permanent.
In a txn, individual modifications to the
database are aggregated into a single large
modification that appears to occur either
entirely in a single moment or not at all.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Transaction Processing system

Transaction processing systems (TP systems)
provide tools to help software development for
applications that involve querying and updating
databases.
The term ”TP system” is generally taken to mean
a complete system, including application
generators, one or more database systems,
utilities and networking software.
Within a TP system, there is a core collection of
services, called the TP monitor, that coordinates
the flow of txns through the system.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

ACID properties

A txn, T, is a collection of operations on the
state of the system that has the following
properties (known as the ACID properties):
Atomicity: T’ changes to the state are atomic:
either all happen or none happen.
Consistency: The actions of T , taken as a
group, must not violate any of the integrity
constraints associated with the state.
continued on the next slide...

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

ACID properties (continued)

Isolation: Even though txns execute
concurrently with T, it appears to T that each
other txn executed either before or after T.
Durability: Once T completes successfully
(commits), its changes to the state of the
system survive failures.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Statistics & Checkpointing

Gray and Reuter give the following figures for a
``typical'' txn system:

96 percent of all txns complete successfully.
3 percent of all txns ``commit suicide''.
1 percent of all txns are killed by the system.

To minimise the loss of work due to an abort,
the DBMS may provide checkpointing - a way
to commit changes in the midst of a txn without
terminating the txn.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Why concurrency?

Large database systems are typically multi-
user systems; that is, they are systems that
allow a large number of txns to access the data
in a database at the same time.
In principle, it is possible to at any given time
allow only a single txn to execute, but this will
not give satisfactory performance.
The txn throughput will be too slow because a
txn typically spends most of its lifetime waiting
for input/output events to compete as it
accesses items of data on disk.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Total Order Implementation

By interleaving txns, we can get better
utilization of the computer hardware.
The price we pay is more complexity in
managing the activity in the database
management system.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Lost Update Problem

Txn A retrieves record R at time t1.
Txn B retrieves record R at time t2.
Txn A updates its copy of R at time t3.
Txn B updates its copy of R at time t4.

Txn A's update is lost because txn B
overwrites it.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Uncommitted Dependency
Problem

Txn A retrieves and updates record R at
time t1.
Txn B retrieves the version of record R,
as updated by A, at time t2.
Txn A is rolled back at time t3.

Txn B saw data, which was never
permanently recorded.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Inconsistent Analysis Problem

Txn A is summing account balances.
Txn B transfers a sum of money from one
account to another whilst txn A is in the middle
of computing the sum.

Txn A may see an inconsistent state of the
database and this led it to perform an
inconsistent analysis.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Locking

A locking mechanism can solve all of the
above problems.
When a txn requires some assurance that the
contents of a database item will not change
whilst the txn is performing its work, the txn
acquires a lock on the record.
This means that other txns are `locked out' of
the record and, in particular, are prevented
from changing the item.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Lock types

Exclusive locks (X locks) and shared locks (S
locks).
If txn A holds an X lock on a record, R, then a
request from another txn, B, for a lock on R will
cause txn B to go into a wait state until A
releases its lock.
If txn A holds an S lock then txn B can also be
granted an S lock, but B will enter a wait state
if it requests an X lock.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Concurrency policy

In general, user programs will often attempt to
update the same pieces of information at the
same time.
Doing so creates a contention for the data.
The concurrency control mechanism mediates
these conflicts.
It does so by instituting policies that dictate
how read and write conflicts will be handled.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Conservative Policy

The most conservative way to enforce
serialisation is to make a txn lock all necessary
objects at the start of the transaction and to
release the locks when the txn terminates.
However, by distinguishing between reading
the data and acquiring it to modify (write) it,
greater concurrency can be provided.
We do this by choosing an appropriate lock to
put on the data --- ”read only” or ”update”.
This allows an object to have many concurrent
readers but only one writer.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

The actions of txn

A program must start a txn before it accesses
persistent data.
While the txn is in progress, the program's
actions can include reads and writes to
persistent objects.
The program can then either commit or abort
the txn at any time.
By committing a txn, changes made to
persistent data during the txn are made
permanent in the database and visible to other
processes.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

The actions of txn / 2

Changes to persistent data are ``undone'' or
``rolled back'' if the txn in which they were
made is aborted.
So txns do two things:

they mark off program segments whose effects can
be ``undone'', and
they mark off program segments that, from the point
of view of other processes, execute either all at
once or not at all – other processes don't see the
intermediate results.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Recovery

Once the txn has completed, the DBMS must
ensure that either

(a) all the changes to the data are recorded
permanently in the database, or
(b) the txn has no effect at all on the database or on
any other txns.

We must avoid the situation in which some of
the changes are applied to the database while
others are not.
The database would not necessarily be left in a
consistent state if only some of the txn's
changes are made permanent.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Recovery / 2
Problems might arise if there is some sort of
failure during the lifetime of the txn.
There are several types of possible failure:

A computer failure (due to a hardware or software
error) during the execution of the txn.
A txn error. This could be, for example, because
the user interrupted the execution with a control-C.
A condition, such as insufficient authorization, might
cause the system to cancel the txn.
The system may abort the txn, e.g. to break a
deadlock.
Physical problems. Disk failure, corrupted disk
blocks, power failure, etc.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Recovery log
In order to recover from txn failures, the system
maintains a log, which keeps track of all txn
operations affecting the database item values.
The log is kept on disk, so it is not affected by
any of the failures except disk failure.
Periodically, the log is backed up to archive
tape, in order to guard against failures.
For each txn, the log will contain information
about the fact that the txn started, the granules
that it wrote and read and whether or not it
completed successfully.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Recovery log / 2
Some CC schemes require more
extensive log information than others.
It is considered to be advantageous
when a CC scheme requires less log
information.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Serializability
For performance reasons, we allow executions of
txns that have the same effect as serial
executions, even though they may involve
interleaving the execution of the operations in the
txns.
An execution is serializable if it produces the same
output and has the same effect on the database as
some serial execution of the same txns.
Any serial execution is assumed to be correct and
since a serializable execution has the same effect
as one of the possible serial executions,
serializable executions may be assumed to be
correct, too.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Scheduler
We assume that the DBMS has a
scheduler, i.e. a program that controls the
concurrent execution of txns.
It restricts the order in which the Reads,
Writes, Commits and Aborts of different txns
are executed.
It orders these operations so that the
resulting schedule is serializable.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Scheduler / 2
After receiving the details of an operation from the
txn, the scheduler can take one of the following
three actions:
Execute: The scheduler will be informed when the
operation has been executed.
Reject: The scheduler may tell the txn that the
operation has been rejected. This would cause
the txn to be aborted.
Delay: The scheduler can place the operation into
a queue. Later, the scheduler can make a decision
as to whether to execute it or reject it.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Schedule
A schedule, say S, of a set of n txns, T1 ,
T2 , ... , Tn, is an ordering of the operations
of the txns, subject to the constraint that, for
each txn, say Ti,
that participates in S, the ordering of the
operations in Ti must be respected in S.
Of course, operations from some other txn,
say Tj, can be interleaved with the
operations of Tj in S.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Conflicting operations
Two operations in a schedule conflict, if

they belong to different txns,
they access the same data item, say x, and
one or both of the operations is a write.

Let S1 and S2 be two schedules over the same set
T1 , T2 ,... , T_n, of txns.
We say that S1 and S2 are {\it conflict equivalent}
if the order of any two {\it conflicting} operations is
the same in both schedules.
A schedule is {\it serializable} if it represents a
serializable execution.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Conflicting operations / 2
A schedule, S is conflict serializable if it is
conflict equivalent to some serial schedule,
S'.
In this case, we could (in principle) re-order
the non-conflicting operations in S so as to
obtain the schedule $S’

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Conflicting operations / 2
Most CC methods do not explicitly test for
serializability.
Rather, the scheduler is designed to operate
according to a protocol which guarantees that the
schedule produced by the scheduler will be
serializable.
In general, checking for serializability is tricky.
Txns are continuously starting, finishing and rolling
back, and each txn is continuously submitting
operations to be scheduled.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

2PL and serializability
Most commercial DBMS's CC facilities are
based on the use of the strict two-phase
locking protocol.
When the txns adhered to 2PL, the resulting
schedule is always serializable.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

2PL
A txn adheres to the two-phase locking (2PL)
protocol if all locking operations are carried out
before any of the unlocking operations.
If a txn adheres to the 2PL protocol, we can divide
its execution into two phases: (1) a growing phase,
during which locks on granules are obtained and
no lock is released, and (2) a shrinking phase
during which existing locks can be released but no
new locks can be acquired.
Some DBMSs allow a read lock to be upgraded to
an exclusive lock.
Our definition of 2PL covers this case.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

2PL
The advantage of 2PL is that if every txn in a
schedule follows the 2PL protocol, the schedule is
guaranteed to be serializable.
2PL severely limits the amount of concurrency that
can occur in a schedule. A long-running txn, T may
not need to keep a lock on a granule, say X, even
though T has finished reading or writing, because
T may later need to lock some granule.
Another problem is that T may need to lock a
granule, say X a long time before it really needs to,
merely so that it can release a lock on a `popular'
granule, Y, so that other txns can access Y.

Distributed Transaction Management, Fall 2003 / Jyrki Nummenmaa Background reading

Strict schedules
Strict 2PL guarantees so-called strict schedules
i.e. schedules in which a txn, T1, can neither read
nor write a granule,X, until all txns that have
previously written X have committed or aborted.
Strict schedules simplify recovery because you just
have to restore the `before' image of X, i.e.the
value that X had before the aborted write.
In strict 2PL, a txn, T, does not release any of its
locks until after it commits or aborts.
Thus no other txn can read or write an granule that
is written by T unless T has committed.
Strict 2PL is not deadlock-free unless it is
combined with conservative 2PL.

	Centralised Txn Management Review Slides
	Purpose of these slides
	Transaction
	Transaction Processing system
	ACID properties
	ACID properties (continued)
	Statistics & Checkpointing
	Why concurrency?
	Total Order Implementation
	Lost Update Problem
	Uncommitted Dependency Problem
	Inconsistent Analysis Problem
	Locking
	Lock types
	Concurrency policy
	Conservative Policy
	The actions of txn
	The actions of txn / 2
	Recovery
	Recovery / 2
	Recovery log
	Recovery log / 2
	Serializability
	Scheduler
	Scheduler / 2
	Schedule
	Conflicting operations
	Conflicting operations / 2
	Conflicting operations / 2
	2PL and serializability
	2PL
	2PL
	Strict schedules

