
Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

General information

We will view this from the course web
page.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Motivation

We will pick up some motivating
examples from the world of electronic
commerce.
The following slides will explain discuss
those examples and some of their
implications.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Electronic commerce -
business-to-customer services
Searching for product information
Ordering products
Paying for goods and services
Providing online customer service
Delivering services
Various other business-to-business
services exist, but these are enough for
our motivational purposes...

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Internet Commerce

A person, running a web browser on a
desktop computer, electronically
purchases a set of goods or services
from several vendors at different web
sites.

This person wants either the
complete set of purchases to go
through, or none of them.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Internet Commerce Example:
Exhibition Hall

Exhibition HallExhibition Hall’’ss
Web siteWeb site

standsstands

BrokerageBrokerage
serviceservice

ExhibitorExhibitorPC Web browserPC Web browser

computerscomputers communicationscommunications furniturefurniture

RentalRental
CompaniesCompanies’’
Web SitesWeb Sites

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Technical Problems with Internet
Commerce

Security
Failure
Multiple sites
Protocol problems
Server product limitations
Response time
Heterogeneous systems

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failures: single computer

Hardware failure
Software crash
User switched off the PC
Active attack

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failure: Additional
Problems for Multiple Sites

Network failure
Or is it just congestion?
Or has the remote computer crashed?
Or is it just running slowly?

Message loss?
Denial-of-service attack?
Typically, these failures are partial.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed Transaction

A set of participating processes with local
sub-transactions, distributed to a set of
sites, perform a set of actions.
Server Autonomy - any server can
unilaterally decide to abort the transaction.
All or none of the updates or related
operations should be performed.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Subtle Difference: Transaction

Traditional data
processing
(database)
transaction:

set of read and update
operations collectively
transform the database
from one consistent
state to another.

Electronic
Commerce
transaction:

set of operations
collectively provide the
user with his/her
required package

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed business object
transaction example

Arriving to a football stadium with a car,
the customer uses a mobile terminal to
buy the ticket and get a parking place.
Business objects to

Charge the money from a bank account
Give access to parking
Entrance to stadium (writing tickets for
collection at a collection point or just giving
a digital reservation document).

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed business object
transaction example (cont’d)

(Arriving to a football stadium…)

Why is transactionality needed?
All-or-nothing situation? Maybe...
Compensational transactions are
difficult - e.g. once access is given to
car park, that is difficult to roll back.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Transaction properties -
Atomicity

Atomicity
ensures that if several different operation
occur within a single transaction, it can
never be the case that some operations
complete if others cannot complete.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Transaction properties -
Isolation

Isolation
ensures that concurrently-executing
transactions do not interfere with each
other, in the sense that each transaction
sees a consistent state of the data – often
a database.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Transaction properties -
Durability

Durability
ensures that unless an update transaction
is rolled back, then its changes will affect
the state of the data as seen by
subsequently-executing transactions.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Typical system architecture

Front-tier clients
e.g. web browsers.

Back-tier servers
such as database systems, message
queue managers, device drivers, ...

Middle-tier business objects
each typically serving one client using (and
locking) a number of shared resources
from a number of back-tier servers.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Traditional system architecture

Computers are hard-wired to each other.
A synchronous system, where a message
timeout means that a computer has crashed.
A transparent centralised database
management system, which the user can see
as a single database.
An application program can use the database
as a single database, thus benefitting from
transparency.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Main transactional services

Distributed locking is needed, if replicated
data is needed for exclusive (write) access.
Distribute Commit is needed to control the
fate of the transaction in a controlled manner.
Barrier synchronisation can be used to
guarantee a consistent view of the world.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Implementing transactional services

As we noticed, a traditional distributed
database system gives a transparent view to
the system. It also takes care of concurrency.
In a modern distributed system, the
application programmer needs to implement
a large part of transactional services.
These services are complicated, and their
implementation is far from being easy.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Transaction Model

- We will quite often write ”txn”
instead of ”transaction”.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Txn model - sites

We assume that there is a set of sites
S1,…,Sn.
All of these sites have a resource manager
controlling the usage of the local resources.
We may know all of these sites before the txn
starts (like a site for each bookstore sub-
branch) or then we may not (like when
previously unknown sites from the Internet may
join in).

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Txn model - participants

The txn needs to access resources on some of
these sites (without loss of generality, all of
them).
For this, there is a local transaction on each
site (transaction Ti on site Si).
The local transaction executes the operations
required on the local site.
To use the local resources, the local
transaction talks with the local resource
manager.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed Transactions
In a distributed transaction there is a set of
subtransactions T1,...,Tk, which are executed on
sites S1,...,Sk.
Each subtransaction manages local resources.
The particular problems of managing distributed
transactions vs. centralised (local) transactions
come from two sources:

Data may be replicated to several sites. Lock
management of the replicated data is a particular
problem.
Regardless of whether the data is replicated or not, there
is a need to control the fate of the distributed transaction
using a distributed commit protocol.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failure model - sites

Sites may fail by crashing, that is, they fail
completely.
Sometimes it is assumed that crashed sites
may recover. In this case usually the resource
managers and the participants have recorded
their actions in persistent memory.
Sometimes it is assumed that the crashed
sites do not recover.
Usual assumption: if a site functions, it
functions correctly (instead of e.g. sending
erroneus messages).

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failure model - messages

Messages may be delayed.
Message transfer delays are unpredictable
(asynchronous message-passing)
Messages are transferred eventually.
Messages between sites are not
spontaneously generated.
Messages do not change in transmission.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failure model - messages

All messages arriving at a site Sj from a site
Sj are processed in the order they were sent.
It may be that the network is partitioned, that
is, some sites can not exchange messages.
This may continue for an unpredictable time.

This assumption is by default avoided,
since it is a really hard one.

We will state it explicitly if we want it to hold.
However, in real world this happens.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Asynchronous communication

In a synchronous system, we assume that the
relative speeds of processes and
communication delays are bounded.
In an asynchronous system we do not make
such an assumption. This means that not
receiving an expected message does not
mean a failure.
Generally, we assume here that we are
dealing with an asynchronous system.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Failure detection

Failure is hard to detect.
Typically, failure is assumed, if an expected
message does not arrive within the usual time
period.

Timeouts are used.
Delay may be caused by network congestion.
Or is the remote computer running slowly?
Mobile hosts make failure detection even harder,
because it is expected behaviour if they stay
unconnected for an unexpected time.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed Locking

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Mutual Exclusion (Locking)

The problem of managing access to a
single, indivisible resource (e.g. a data
item) that can only support one user (or
transaction, or process, or thread, or
whatever) at a time.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Desired properties for solutions

Safety: Mutual exclusion is never violated.
(Only one transaction gets the lock).

This property can not be compromised.
Liveness: Each request will be granted
(eventually).

This property should not be compromised.
Ordering (or Fairness): Access to the
resource should happen in the order of
requests.

This property needs to be discussed later.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Coordinator-based solutions / 1

There is a coordinator to control access.
Coordinator is a process on one of the
sites. (It is none of the transactions.)
When a transaction needs access, that
transaction sends a request to
coordinator. Let us write X(A) =
exclusively lock A.
The coordinator queues requests.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Coordinator-based solutions / 2

When the resource is available, the coordinator
sends a grant message to the transaction T
first in the queue. G(X(A)) = Grant X(A)
When T sees the grant message, it may use
the resource.
When T does need the resource anymore, it
sends a release message to the coordinator.
R(A) = release A.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

An example
Lock
request
list
-
-

T’’
T’’,T’
T’
-

-

T T’ T’’ C

G(X(A))X(A)

X(A)R(A)

X(A)

G(X(A))
R(A)

R(A)
G(X(A))

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Coordinator-based solutions /
properties

These coordinator-based solutions obviously
have the safety and the liveness properties, if
the coordinator is correctly implemented.
We can argue that they are also fair, since
requests are queued. However, the behaviour
of the example is does not seem fair – and the
lack of global time is a problem. More on that
later.
Since lock management is centralised, different
lock types need no special attention.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Coordinator-based solutions /
weaknesses

The system does not tolerate a crashing
coordinator.
The coordinator may become a bottleneck for
performance.
Suppose data is replicated, there is a local
copy, and the coordinator is not on the local
site. Then we always need to communicate
over the network, which reduces the benefits of
having a local copy.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Primary copy for replicated data

If data is not replicated, then to use a data
item, you must contact the site containing the
item.
If the resource manager at that site acts as
the coordinator giving locks for its items,
communication is simple.
If the data is replicated, then we can have a
”primary copy”, which is accessed for locking.
The resource manager at the site of the
primary copy is the coordinator.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Voting-based algorithms

We assume here that we know a set or
resource managers (say, M1,…,Mn), which
hold a replicated data item.
When transaction T needs access to the
shared resource, it will send a message to
M1,…,Mn asking for the permission.
Each M1,…,Mn will answer Yes or No.
T waits until the replies are in.
If there are enough Yes votes, T will get the
lock.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

A voting example

M1P1 P2 M2

X(A)

GX(A))X(A)

N(A)

X(A)
X(A)

GX(A))

N(A)

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Which resource managers to
consult?

In principle, it could be enough to ask
only a subset (like a majority) of
processes for a permission.
This subset could be statically defined,
given a data item.
However, as it might be advantageous to
contact near-by resource managers, the
set may well depend on who is asking.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

How many processes to ask?

Suppose we have n processes, and we
consult k processes for an exclusive lock
(write-lock) and m processes for a shared
lock (read-lock).
To avoid two simultaneous exclusive locks,
we must have k > n/2.
To avoid simultaneously having an exclusive
and a shared lock, must have k + m > n.
If read-operations dominate, then we may
choose m=1 and k= n.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Example

Suppose we operate an airline with offices in
Tampere, Stockholm and London.
It seems reasonable to replicate timetables
and use m=1, k=n, since that information
does not change that often.
For ticket booking, primary copy seems more
appropriate. By statistical analysis we may
get to know, where people (geographically)
people book which flights, to choose the
placement of each primary copy.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Who needs to give permission?

If we need a permission from all resource
managers, then we do not tolerate site
failures (all the downsides of having a
coordinator plus all the extra effort of
contacting all the resource managers).
Generally, a majority is enough.
There are also ways other than simple
majority or unanimous vote, but one has to be
careful to preserve the mutual exclusion.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

A problematic voting

M1P1 P2 M2

X(A)

R(A)
G(X(A))

X(A)

X(A) N(A)

X(A)

G(X(A))

N(A)

Now what?

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Analysis for voting

Safety – apparently ok.
Liveness – this far there is nothing to
stop the previous slide situation
repeating over and over.
Fairness – similarly, nothing appears to
guarantee fairness.
-> Some improvements are necessary.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

How to re-start after not getting a
lock?

Apparently, something needs to be done to
avoid repeating the situation where no-one
gets the lock.
If we re-start requesting locks, we can tell
younger transactions to wait longer before re-
starting.
However, new transactions may always step
in to stop the oldest transaction from getting
the lock -> this is not the solution.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Queueing the requests?

Instead of just answering the lock requests,
the resource managers can also maintain a
lock request list.
Put the oldest transaction T first in the list and
answer no-one Yes before T has either got
and released the lock or canceled the lock
request.
Now, eventually T should get the lock and we
are able to get liveness.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Using timestamps – basic idea:

Give each transaction a timestamp
Execute the transactions’ reads and
writes.
If there is a conflict (impossible event
compared to serial execution based on
timestamps), roll back the younger
transaction, which is then free to restart.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Using timestamps – examples
T1 starts
T2 starts
T2 writes X
T1 is to read X –
conflict, as T2 should
have not have written
this value!
Roll back T2, if it still
exists. Otherwise roll
back T1.
Multiversioning solves
this.

T1 starts
T2 starts
T2 reads X
T1 is to write X –
conflict, as T2 should
have read this new
value!
Roll back T2, if it still
exists. Otherwise roll
back T1.
Multiversioning does
not solve this!

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Distributed timestamps?

Can be used similarly as centralised
timestamps with the exception that we
must be able to order timestamps
globally.
Same trick: clock time + site id: if local
clock times are equal, use site id.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Ordering things

Fairness in both the coordinator-based and
voting-based protocol as well as
timestamping seems to depend on ordering
the transactions by their age.
However, we would need synchronised
clocks to do this. Perfect synchronisation or
clocks is not possible. Good synchronisation
can sometimes be assumed.
Next time we will study logical ordering
events and possibly deadlock management.

Distributed Txn Management, 2003 / Jyrki Nummenmaa Lecture 1 / 7.10.

Programming

It is important to get started with the
programming part.
Study the basis for this (unless you alread
know).
For our purposes, network access with
sockets seems appropriate.
For Java, see the following tutorial:
http://java.sun.com/docs/books/tutorial/networ
king/index.html

http://java.sun.com/docs/books/tutorial/networking/index.html

	Distributed Transaction Management – 2003
	General information
	Motivation
	Electronic commerce -business-to-customer services
	Internet Commerce
	Internet Commerce Example:Exhibition Hall
	Technical Problems with Internet Commerce
	Failures: single computer
	Failure: Additional Problems for Multiple Sites
	Distributed Transaction
	Subtle Difference: Transaction
	Distributed business object transaction example
	Distributed business object transaction example (cont’d)
	Transaction properties -Atomicity
	Transaction properties -Isolation
	Transaction properties -Durability
	Typical system architecture
	Traditional system architecture
	Main transactional services
	Implementing transactional services
	Transaction Model
	Txn model - sites
	Txn model - participants
	Distributed Transactions
	Failure model - sites
	Failure model - messages
	Failure model - messages
	Asynchronous communication
	Failure detection
	Distributed Locking
	Mutual Exclusion (Locking)
	Desired properties for solutions
	Coordinator-based solutions / 1
	Coordinator-based solutions / 2
	An example
	Coordinator-based solutions / properties
	Coordinator-based solutions / weaknesses
	Primary copy for replicated data
	Voting-based algorithms
	A voting example
	Which resource managers to consult?
	How many processes to ask?
	Example
	Who needs to give permission?
	A problematic voting
	Analysis for voting
	How to re-start after not getting a lock?
	Queueing the requests?
	Using timestamps – basic idea:
	Using timestamps – examples
	Distributed timestamps?
	Ordering things
	Programming

