
Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Physical clock synchronisation

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Coordinated universal time

Atomic clocks based on atomic oscillations
are the most accurate physical clocks.
So-called Coordinated Universal Time based
on atomic time is signaled from radio stations
and satellites.
You can buy a receiver (maybe not more than
$100, I had a look at the web) and get
accuracy in the order of 0.1-10 milliseconds.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Reasons for and problems in clock
synchronisation

Different clocks work at different speeds.
Therefore, they need to be synchronised at
times (continuously).
Message delay can not be known, but must
be approximated -> perfect synchronisation
can not be achieved.
Clock skew: difference in simultaneous
readings.
Clock drift: divergence of clocks because of
different clock speeds.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

External and Internal
Synchronisation

External synchronisation of clock C is
synchronisation with some external source E.
If |C-E|<d, then C is accurate (with respect to
E) within the bound d.
Internal synchronisation is synchronisation of
clocks C and C’ between themselves. If |C-
C’|<d, then C and C’ agree within the bound
d. C and C’ may drift from an external source,
but not from each other.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Cristian’s synchronisation method

A clock at site S is synchronised with a clock
at site S’ by sending a request Mr to S’ and
receiving a time message Mt from S’
containing time t.
Round-trip time Tr is the time between
sending Mr and receiving Mt. This is a small
time and can be measured accurately.
A simple estimate: S will set its clock to
t + Tr / 2.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Accuracy of Cristian’s
synchronisation

Assume min is shortest time for a
message to travel from S to S’ (this
must be approximated).
When Mt arrives to S, the clock of S’ will
read in the range [t+min, t+Tr-min]. This
range has width Tr - 2min.
We set the clock of S to t + Tr/2.
-> Accuracy is plus/minus Tr / 2 -min

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Problems and improvements

Problem: A single source for time.
Improvement: Poll several servers and
e.g. use the fastest reply.

Problem: Faulty time servers.
Improvement: Poll several servers and
use statistics.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Further improvements

Berkely time protocol: internal
synchronisation with a server polling a
number of slaves and using an average of
estimates and sends the necessary
correction to the slaves.
The Network Time Protocol: A hierarchy of
servers. Top level = UTC, second level
synchronises with top level and so on. More
details at http://www.ntp.org.

http://www.ntp.org/
http://www.ntp.org/

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Applications of clocks

Clocks are needed in timestamp
concurrency control to generate the
timestamps!
If we are satisfied with clock accuracy
(and accept the clock skew) then we
can use the physical clock time stamps.
If not, then logical ordering of events
needs to be used.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Alternative Mutual Exclusion
Protocols

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Token-based algorithms for resource
management

In the token-based algorithms, there is a
token to represent the permission.
Whoever has the token, has the
permission, and can pass it on.
These algorithms are more suitable to
share a resource like a printer, a car park
gate, etc than for a huge database. Let’s
see why…

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Perpetuum mobile

The token travels around (say, a ring).
When a process receives the token, it
may use the resource, if it so wishes.
Then the process passes the token on.

TOKEN

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Token-asking algorithms

The token does not travel around if it is
not needed.
When a process needs the token, it asks
for it.
Requests are queued.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Analysis of token-based algorithms

Safety – ok.
Liveness – ok.
Fairness – in a way ok.
Drawbacks:
- They are vulnerable to single-site failures.
- Token management may be complicated
and/or consume lots of resources, if there
are lots of resources to be managed.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Logical clocks

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Logical order

Using physical clocks to order events is
problematic, because we can not
completely synchronise the clocks.
An alternative solution: use a logical
(causality) order.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

What kind of events we can use
to compute a logical order?

If e1 happens before e2 on site S, then we
write e1 <S e2.
If e1 is the sending of message m on
some site and e2 is the receiving of
message m on some site, then we write
e1 <m e2.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

The happens-before relation

The happens-before relation is denoted
by <H.
If e1 <S e2, then e1 <H e2.
If e1 <m e2, then e1 <H e2.
If e1 <H e2 and e2 <H e3, then e1 <H e3.
If happens-before relation does not order
two events, we call them concurrent.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Happens-before example
e1 <S1 e2
e2 <S1 e3
e3 <S1 e4
e5 <S2 e6
e6 <S2 e7
e7 <S2 e8
e1 <m1 e5
e3 <m2 e6
e7 <m3 e4
Plus the transitive closure

S2
m1

m3

m2 e6

e5

e7
e8

S1
e1

e2
e3

e4

Distributed Txn Management, 2003 Lecture 2 / 21.10.

The happens-before graph

Form a directed graph with events as
vertices.
If e1 <S e2 or e1 <H e2, then there is an
edge from e1 to e2.
The closure of the graph represents the
happens-before relation.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Happens-before graph

m1

m3

m2 e6
e7
e8 e3

e4

e7

e8
The transitive closure represents
full information on the logical order

S1 S2
e1e1

e5
e5e2

e2e3
e6

e4

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Lamport timestamps

Initially, assing 0 to myTS.
If event e is the receipt of a m, then:

Assign max(m.TS,myTS) to myTS.
Add 1 to myTS.
Assign myTS to e.TS.

If event e is the sending of a m, then:
Add 1 to myTS.
Assign myTS to both e.TS and m.TS.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Find the logical order of events.

T T’ T’’ T’’’

m3m2

m5m4

m1

m6
m7

m9
m8

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Use Lamport timestamps

T T’ T’’ T’’’

m3m2

m5m4

m6
m7

m9
m8

1

1

2

3

4
5
6
78

9
10
1112

13
14

m1
1

4
5

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Lamport timestamps - properties

Lamport timestamps guarantee that if
e<H e', then e.TS < e'.TS
- This follows from the definition of
happens-before relation by observing the
path of events from e to e’.
Lamport timestamps do not guarantee
that if
e.TS < e'.TS, then e <H e' (why?).

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Assigning vector timestamps

Initially, assign [0,...,0] to myVT.
If event e is the receipt of m, then:

For i=1,...,M, assign
max(m.VT[i],myVT[i]) to myVT[i].
Add 1 to myVT[self].
Assign myVT to e.VT.

If event e is the sending of m, then:
Add 1 to myVT[self].
Assign myVT to both e.VT and m.VT.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Vector timestamps

T1 T2 T3
m1

m3m2

m5m4

m6
m7

m9
m8

[1,0,0,0]
[0,1,0,0]

[2,0,0,2]

[3,0,0,2] [0,0,1,0]

[3,1,2,6]
[3,1,3,6][3,2,3,8]

[3,3,3,8]

T4
[1,0,0,1]

[1,0,0,2]

[1,0,1,3]
[1,1,1,4]
[3,1,1,5]
[3,1,1,6]
[3,1,3,7]
[3,1,3,8]
[3,3,3,9]

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Vector timestamp order

e.VT ≤V e'.VT, if and only if
e.VT[i] ≤ e'.VT[i], 1≤ i ≤ M.

e.VT <V e'.VT, if and only if
e.VT[i] ≤ V e'.VT[i], and
e.VT ≠ e'.VT.

[0,1,2,3] ≤ [0,1,2,3]
[0,1,2,2] < [0,1,2,3]
The order of [1,1,2,3] and [0,1,2,4] is not
defined, they are concurrent.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Vector timestamps - properties

Vector timestamps also guarantee that if
e<H e', then e.VT < e'.VT
- This follows from the definition of
happens-before relation by observing the
path of events from e to e’.
Vector timestamps also guarantee that if
e.VT < e'.VT, then e <H e' (why?).

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed Deadlock
Management

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Deadlock - Introdcution

Centralised example:
T1 locks X on time t1.
T2 locks Y on time t2.
T1 attempts to lock Y on time t3 and gets
blocked.
T2 attempts to X on time t4 and gets
blocked.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Deadlock (continued)

Deadlock can occur in centralised systems.
For example:

At the operating system level there can be resource
contention between processes
At the transaction processing level there can be
data contention between transactions.
In a poorly-designed multithread program, there can
be deadlock between threads in the same process.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed deadlock
”management” approaches

The approach taken by distributed systems
designers to the problem of deadlock depends
on the frequency with which it occurs.
Possible strategies:

Ignore it.
Detection (and recovery).
Prevention and Avoidance (by statically making
deadlock structurally impossible and by allocating
resources carefully).
Detect local deadlock and ignore global deadlock.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Ignore deadlocks?

If the system ignores the deadlocks,
then the application programmers have
to make their applications in such a
way, that a timeout will force the
transaction to abort and possibly re-
start.
The same approach is sometimes used
in the centralised world.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed Deadlock Prevention and
Avoidance

Some proposed techniques are not feasible in
practice, like making a process request all of its
resources at the start of execution.
For transaction processing systems with
timestamps, the following scheme can be
implemented (like in centralised world):

When a process blocks, its timestamp is compared
to the timestamp of the blocking process.
The blocked process is only allowed to wait if it has
a higher timestamp.
This avoids any cyclic dependency.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Wound-wait and wound-die

In the wound-wait approach, if an older
process requests a lock to an item held by a
younger process, it wounds the younger
process and effectively kills it.
In the wait-die approach, if a younger process
requests a lock to an item held by an older
process, the younger process commits suicide.
Both of these approaches kill transactions
blindly. There does not need to be a deadlock.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Further considerations for
wound-wait and wound-die

To reduce the number of unnecessarily
aborted transactions, it is possible to use the
cautious waiting rule:

”You are always allowed to wait for a
process, which is not waiting for another
process.”

The aborted processes are re-started with their
original timestamps, to guarantee liveness.
Otherwise, a transaction may not make
progress if it gets aborted over and over again.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Local waits-for graphs
Each resource manager can maintain its local `waits-
for' graph.
A coordinator maintains a global waits-for graph.
When the coordinator detects a deadlock, it selects a
victim process and kills it (thereby causing its resource
locks to be released), breaking the deadlock.
Problem: The information about changes must be
transmitted to the coordinator. The coordinator knows
nothing about change information that is in transit.
Thus, in practice, many of the deadlocks that it thinks it
has detected will be what they call in the trade
`phantom deadlocks'.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Waits-for graph

Centralised: a cycle in the waits-for
graph means a deadlock

T1 T2

T3

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Local vs Global

Distributed: collect the local graphs and
create a global waits-for graph.

T1

T3

Site 1

T1

T2

Site 2 T3

T2T1

T3

Global waits-for graph

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Global state

We assume that between each pair
(Si,Sj) of sites there is a reliable order-
preserving communication channel C{i,j},
whose contents is a list of messages
L{i,j}=m1(i,j),m2(i,j), ..., mk(i,j).
Let L={L{i,j}} be the collection of all
message lists and K the collection of all
local states. We say that the pair G=(K,L)
is the global state of the system.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Consistent cut

We say that a global state G=(K,L) is a
consistent cut, if for each event e in G, G
contains all events e’ such that e’ <H e.
That is, there are no events missing from
G such that they have happened before
e.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Which lines cut a consistent cut?

T T’ T’’ T’’’

m3m2

m5m4

m6
m7

m9
m8

m1

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed snapshots

We denote the state of Site i by Si.
A state of a site at one time is called a
snapshot.
There is no way we can take the
snapshots simultaneously. If we could,
that would solve the deadlock detection.
Therefore, we want to create a snapshot
that reflects a consistent cut.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Computing a distributed snapshot /
Assumptions and requirements

If we form a graph with sites as nodes
and communication channels as edges,
we assume that the graph is connected.
Neither channels nor processes fail.
Any site may initiate snapshot
computation.
There may be several simultaneous
snapshot computations.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Computing a distributed snapshot / 1

As a site Sj initiates snapshot collection,
it records its state and sends snapshot
token to all sites it communicates with.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Computing a distributed snapshot / 2

If a site Si, i ≠ j, receives a snapshot
token for the first time, and it receives it
from Sk, it does the following:

1. Stops processing messages.
2. Makes L(k,i) the empty list.
3. Records its state.
4. Sends a snapshot token to all

sites it communicates with.
5. Continues to process messages.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Computing a distributed snapshot / 3

If a site Si receives a snapshot token
from Sk and it has received a snaphost
token also earlier on or i = j, then the list
L(k,i) is the list of messages Si has
received from Sk after recording its state.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Distributed snapshot example

S1 S2 S3

snap
m3m2

S4

m5 m4

m1

Assume connection set { (S1,S2), (S2,S3), (S3,S4) }

snap

snapsnap
snap

snap

L(1,2) = { m1 }, L(3,2) = {}, L(4,3) = { m3, m4 }.
Effects of m2 are included in the state of S4.
Message m5 takes place entirely after the snapshot computation.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Termination of the snapshot
algorithm

Termination is, in fact, straightforward to
see.
Since the graph of sites is connected,
and the local processing and message
delivery between any two sites takes
only a finite time, all sites will be
reached and processed within a finite
time.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Theorem: The snapshot algorithm
selects a consistent cut

Proof. Let ei and ej be events, which occurred on
sites Si and Sj and ej <H ei. Assume that ei was in the
cut produced by the snapshot algorithm. We want to
show that also ej is in the cut. If Si = Sj , this is clear.
Assume that Si ≠ Sj.
Assume, now, for contradiction, that ej was not in

the cut. Consider the sequence of messages m1 m2
…mk by which ej <H ei. By the way markers are sent
and received, a marker message has reached Sj
before each m1 m2 …mk and Si has therefore
recorded its state before ej. Therefore, ei is not in the
cut. This is a contradiction, and we are done.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Several simultaneous snapshot
computations

The snapshot markers have to be
different and sites just manage each
separate snapshot computation
separately.

Distributed Txn Management, 2003 Lecture 2 / 21.10.

Snapshots and deadlock detection

Apparently, in this case the state to be
recorded is the waits-for graph and lock
request / lock release messages.
After the snapshot computation, the waits-for
graphs are collected to a site, say, the initiator
of the snapshot computation.
For this, the snap messages should include
the initiator of the snapshot computation.

	Distributed Transaction Management – 2003
	Physical clock synchronisation
	Coordinated universal time
	Reasons for and problems in clock synchronisation
	External and Internal Synchronisation
	Cristian’s synchronisation method
	Accuracy of Cristian’s synchronisation
	Problems and improvements
	Further improvements
	Applications of clocks
	Alternative Mutual Exclusion Protocols
	Token-based algorithms for resource management
	Perpetuum mobile
	Token-asking algorithms
	Analysis of token-based algorithms
	Logical clocks
	Logical order
	What kind of events we can use to compute a logical order?
	The happens-before relation
	Happens-before example
	The happens-before graph
	Happens-before graph
	Lamport timestamps
	Find the logical order of events.
	Use Lamport timestamps
	Lamport timestamps - properties
	Assigning vector timestamps
	Vector timestamps
	Vector timestamp order
	Vector timestamps - properties
	Distributed Deadlock Management
	Deadlock - Introdcution
	Deadlock (continued)
	Distributed deadlock ”management” approaches
	Ignore deadlocks?
	Distributed Deadlock Prevention and Avoidance
	Wound-wait and wound-die
	Further considerations for wound-wait and wound-die
	Local waits-for graphs
	Waits-for graph
	Local vs Global
	Global state
	Consistent cut
	Which lines cut a consistent cut?
	Distributed snapshots
	Computing a distributed snapshot / Assumptions and requirements
	Computing a distributed snapshot / 1
	Computing a distributed snapshot / 2
	Computing a distributed snapshot / 3
	Distributed snapshot example
	Termination of the snapshot algorithm
	Theorem: The snapshot algorithm selects a consistent cut
	Several simultaneous snapshot computations
	Snapshots and deadlock detection

