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Theorem: The snapshot algorithm
selects a consistent cut

Proof. Let ei and ej be events, which occurred on 
sites Si and Sj and ej <H ei. Assume that ei was in the 
cut produced by the snapshot algorithm. We want to 
show that also ej is in the cut. If Si = Sj , this is clear. 
Assume that Si ≠ Sj.
Assume, now, for contradiction, that ej was not in 

the cut. Consider the sequence of messages m1 m2
…mk by which ej <H ei. By the way snap markers are
sent and received, a snap marker message has
reached Sj before each m1 m2 …mk and Si has
therefore recorded its state before ej. Therefore, ei is 
not in the cut. This is a contradiction, and we are
done.
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A picture relating to the theorem

Si Sj
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ei

ej <H ei

Assume for 
contradiction ->

Conclusion: Si
must have
recorded its
state before ej
and ei can not
be in the cut ->
A contradiction.

…
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Some observations on the example
LockManager implementation
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Example lock management 
implementation - concurrency

A lock manager uses threads to serve incoming
connections. 
As threads access the lock manager’s services
concurrently, those methods are qualified to be
synchronized.There may actually be an overkill, as it
seems to be enough to synchronize the public
methods (xlock/slock/unlock). I will still have a look at 
that.
An interactive client uses a single thread, but this is 
just to access the sleep method. There is no 
concurrent data access and consequently no 
synchronized methods.
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Example lock management 
implementation – input/output

Each LMMultiServerThread talks with only one client.
Each client talks to several servers
(LMMultiServerThreads).
An interactive client talks also listens to a client
controller, but it does not read standard input (this
would block, or if you just check input with .ready() 
then user input is not echoed on the screen :(
A client controller only sends reads standard input 
and sends the messages to an interactive client. 
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Example lock management 
implementation – server efficiency
It would be more efficient to pick threads from a pool
of idle threads rather than always creating a new one.
The data structures are not optimized. As there
typically is a large number of data items and only
some unpredictable number of them is locked at any
one moment, a hashing data structure might be
suitable for the lock table (like HashTable, but a hash
function must exist for the hash data type, e.g. 
Integer is ok).
It would be ok to connect a lock request queue (e.g. a 
linked list) for each lock item in the lock table with a 
direct reference.
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Example lock management 
implementation – txn ids

Currently integers are used.
Giving global txn ids sequentially (over all
sites) is either complicated or needs a 
centralised server -> it is better to use a local
(site-id, local-txn-id) pair to construct the txn
ids. If the sites are known in advance, they
can be numbered.
We only care about txns accessing some
resource manager’s services and there may
be a fixed set of them -> ask the first server to 
talk with for an id (server-id, local-txn-id).
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How distributed txns are born?

Distributed database management systems: 
a client contacts local server, which takes
care of transparent distribution – the client
does not need to know about the other sites.
Alternative: a client contacts all local resource
managers directly.
Alternative: separate client programs are
started on all respective sites.
Typically the client executing on the first site
acts as a coordinator communicating with the 
other clients. 
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Distributed Commit
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Ending the transaction

Finally, a txn is to either commit, in which
case its updates are made permanent on all
sites, or the txn is rolled back, in which case 
none of its updates are made permanent.
The servers must agree on the fate of the 
transaction. For this, the servers negotiate
(vote).
The local servers participating in the commit
process are called participants.
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Failure model – servers / 1
In our work on atomic commitment protocols, we 
make the assumption that a server is either working 
correctly or not at all.
In our model, a server never performs incorrect 
actions.  Of course, in reality servers do produce 
incorrect behaviour.
A partial failure is a situation where some servers are 
operational while others are down.
Partial failures can be tricky because operational 
servers may be uncertain about the status of failed 
servers.
The operational servers may become  blocked,  i.e. 
unable to commit or roll back a txn until such 
uncertainty is resolved.
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Failure model – servers / 1
The reason why partial failures are so tricky to handle 
is that operational servers may be uncertain about 
the state of the servers on failed sites. An operational 
server may become blocked, unable to commit or 
rollback the txn.  Thus it will have to hold locks on the 
data items that have been accessed by the txn, 
thereby preventing other txns from progressing.
Not surprisingly, an important design goal for atomic 
commitment protocols is to minimise the effect of one 
site's failure on another site's ability to continue 
processing.
A crashed site may recover.



Distributed Txn Management, 2003 Lecture 3 / 4.11.

Failure model – network

Messages may get lost.
Messages may be delayed.
Messages are not changed.
Communication between two sites may not
be possible for some time. This is called
network partitioning and this assumption is 
sometimes relaxed, since it creates hard
problems (more on this later).
The network partitioning may get fixed.
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Detecting Failures by Timeouts

We assume that the only way that  server A 
can discover that it cannot communicate with 
server B is through the use of timeouts. 
A sends a message to B and waits for a reply 
within the timeout period.
If a reply arrives then clearly A and B can 
communicate.
If the timeout period elapses and A has not 
received a reply then A concludes that it 
cannot communicate with B.
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Detecting Failures by Timeouts

Choosing a reasonable value for the timeout 
period can be tricky.  
The actual time  that it takes to communicate 
will depend on many hard-to-quantify 
variables, including the physical 
characteristics of the servers and the 
communication lines, the system load and the 
message routing techniques.
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An atomic commit protocol

An  atomic commit protocol (`ACP') ensures 
consistent termination even in the presence 
of partial failures.
It is not enough if the coordinator just tells the 
other participants to commit.
For example, one of the participants may 
decide to roll back the txn.
This fact must be communicated to the other 
participants because they, too, must roll back.



Distributed Txn Management, 2003 Lecture 3 / 4.11.

An atomic commit protocol

An  atomic commit protocol is an algorithm for 
the coordinator and participants such that 
either the coordinator and all of the 
participants commit the txn or they all roll it 
back.
The coordinator has to find out if the 
participants can all commit the txn.  It asks 
the participants to vote on this.
The ACP should have the following 
properties.
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Requirements for distributed 
commit (1-4)

(1) A participant can vote Yes or No and 
may not change the vote.
(2) A participant can decide either Abort or
Commit and may not change it.
(3) If any participant votes No, then the 
global decision must be Abort.
(4) It must never happen that one
participant decides Abort and another
decides Commit. 
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Requirements for distributed 
commit (5-6)

(5) All participants, which execute
sufficiently long, must eventually decide, 
regardless whether they have failed earlier
or not.
(6) If there are no failures or suspected
failures and all participants vote Yes, then
the decision must not be Abort. 

The participants are not allowed to 
create artificial failures or suspicion.
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Observations

Having voted No, a participant may
unilaterally rollback. (One No vote implies
global rollback.)
However, having voted Yes, a participant
may not unilaterally commit. (Somebody else
may have voted No and then rolled back.)
Note that it is possible that all participants 
vote to Commit, and yet the decision is to 
Rollback.
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Observations

Note that condition AC1 does not require that 
all participants reach a decision: some 
servers may fail and never recover.
We do not even require that all participating 
servers that remain operational reach a 
decision.
However, we do require that all participating 
servers be able to reach a decision once 
failures are repaired 
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Uncertainty period
The period between voting to commit and receiving 
information about the overall decision is called the 
uncertainty period for the participating server.
During that period, we say that the participant is 
uncertain.
Suppose that a failure in the interconnection network 
disables communication between a participant, P, 
and all other participants and the coordinator, while P 
is uncertain. Then P cannot reach a decision until 
after the network failure has been repaired.
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Distributed Two-Phase
Commit Protocol (2PC)
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Basic 2PC

Many DBMS products use the  two-phase 
commit protocol (2PC) as the process by which 
txns that use multiple Servers commit in a 
consistent manner.
Typically, the majority of txns in an application 
do not use multiple servers.  Such txns are 
unaffected by 2PC.
Txns that write-access data on multiple servers 
commit in two phases: a voting phase and a  
decision phase.
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Basic 2PC

First, all of the servers vote on the txn, 
indicating whether they are able to commit or 
not.
A server may vote No if, for example, it has run 
out of disk space or if it must pre-emptively 
rollback the txn to break a deadlock.
If all of the votes are Yes, the decision is made 
to commit, and all of the servers are told to 
commit.
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2PC for Distributed Commit

Coordinator
Vote-Request

Yes or No votes

Multicast decision: Commit, if all
voted Yes, otherwise Abort.

Participants



Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Coordinator

Initiate voting by sending Vote-Req to all
participants and enters a wait-state.
Having received one No or a timeout in wait-
state, decides Abort and sends the decision
to all participants.
Having received a Yes from all in wait-state
(before timing out), decides Commit and 
sends the decision to all participants.
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2PC Participant

Having received a Vote-Req, either
- sends a No and decides Rollback locally
- sends a Yes and enters a wait-state.
If in wait-state receives either Rollback or
Commit, decides accordingly. If it times out in 
wait-state, it concludes that the coordinator is 
down and starts a termination protocol –
more on this soon.
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Multicast ABORT

Coordinator
Vote-Request

Timeout occurs
Yes or No votes

Participants

2PC - a timeout occurs
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Centralised vs. Decentralised

There is also a version of 2PC whereby there
is no coordinator and the servers all send
messages to each other. This is called
decentralised 2PC. 
2PC with a coordinator is called centralised
2PC.
We shall exemplify their behaviour with a 
simulation applet at 
http://www.cs.uta.fi/utacsoft/discosim

http://www.cs.uta.fi/utacsoft/discosim
http://www.cs.uta.fi/utacsoft/discosim
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Timeout actions

We assume that the participants and the 
coordinator try to detect failures with timeouts.
If a participant times out before Vote-Req, it
can decide to Rollback.
If the coordinator times out before sending out 
the outcome of the vote to anyone, it can
decide to rollback.
If a participant times out after voting Yes, it
must use a termination protocol.



Distributed Txn Management, 2003 Lecture 3 / 4.11.

Termination protocol

If a participant times out having voted Yes, it
must consult the others about the outcome. 
Say, P is consulting Q.
If Q has received the decision from the 
coordinator, it tells it to P.
If Q has not yet voted, it can decide to 
Rollback.
If Q does not know, it can’t help.
If no-one can help P, P is blocked.
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Recovery

When a crashed participant recovers, it checks
its log.
P can recover independently, if P recovers

having received the outcome from the coordinator,
not having voted, or
having decided to rollback.

Otherwise, P must consult the others, similarly
as in the termination protocol.
Note: the simulation applet does not contain
termination and recovery!
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2PC Analysis

(1) A participant can vote Yes or No and 
may not change the vote. 
- This should be clear.
(2) A participant can decide either Abort
or Commit and may not change it.
- This should also be clear.
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2PC Analysis

(3) If any participant votes No, then the global
decision must be Abort.
- Note that the global decision is Commit only
when everyone votes Yes, and since no-one
votes both Yes and No, this should be clear.
(4) It must never happen that one participant
decides Abort and another decides Commit.
- On similar lines than (3).
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2PC Analysis
(5) All participants, which execute sufficiently long, 
must eventually decide, regardless whether they
have failed earlier or not.
- Only holds, if we assume that failed sites always
recover and they do it for sufficiently long so that the 
2PC recovery can make progress. 
(6) If there are no failures or suspected failures and 
all participants vote Yes, then the decision must not
be Abort. The participants are not allowed to create
artificial failures or suspicion.
- Ok.



Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Analysis

Sometimes there is intereste towards
the number of messages exchanged. In 
the simplest case, the 2PC involves 3N 
messages. 
Recovery and termination change these
figures. 
However, the assumption is that most
txns terminate normally.
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What does the coordinator write
to a log?

When the coordinator sends Vote-req, it writes
a start-2PC record and a list containing the 
identities of the participants to its log.  It also
sends this list to each participant at the same
time as the Vote-req message.
Before the coordinator sends Commit to the 
participants, it writes a commit record in the 
log.
If the coordinator sends rollback to the 
participants, it writes a rollback to the log.
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What does a participant write to a 
log?

If a participant votes Yes, it writes a yes record
to its log before sending yes to the coordinator.  
This log record contains the name of the 
coordinator and the list of the participants.
If this participant votes No, it writes a rollback
record to the log and then sends the No vote to 
the coordinator.
After receiving Commit (or Rollback, a 
participant writes a commit (or a rollback
record into the log.
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How to recover using the log?

If the log of S contains a start-2PC,
record then S  was the host of the 
coordinator.  If it also contains a commit
or rollback record, then the coordinator
had decided before the failure occurred.  
If neither record is found in the log then
the coordinator can now unilaterally
decide to Rollback by inserting a rollback
record in the log.
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How to recover using the log / 2

If the log does not contain a start-2PC record, 
then S was the host of a participant.  There are
three cases to consider:
(1) The log contains a commit or rollback
record. Then the participant had reached its
decision before failure.
(2) The log does not contain a yes record.  
Then either the participant failed before voting
or voted No (but did not write a rollback record
before failing.)  (This is why the Yes record
must be written before Yes is sent.) -> Rollback
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How to recover using the log / 3

(3) The log contains a yes but not commit
or rollback record.  Then the participant
failed while in this uncertainty period.
It can try to reach a decision using the 
termination protocol. 
A yes record includes the names of the 
coordinator and participants; these are
needed for the termination protocol.
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Garbage collection

Eventually, it will become necessary to 
garbage collect the space in the log.  There are
two principles to adopt:
[GC1:] A site cannot delete log records of a 
txn, T, from its log until at least after the 
resource manager has processed the commit
or the rollback for T.
[GC2:] At least one site must not delete the 
records of T from its log until that site has
received messages indicating that the resource
managers at all other sites have processed the 
commit or rollback of T.
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Blocking
We say that a participant is blocked, if it must await 
the repair of a fault before it is able to proceed.
A txn may remain unterminated, holding locks, for 
arbitrarily long periods of time at the blocked server.
Suppose that participant, S, fails whilst it is uncertain. 
When S recovers, it cannot reach a decision on its 
own. It must communicate with the other participants 
to find out what  was decided.
We say that a commitment protocol is non-blocking if 
it permits termination without waiting for the recovery 
of failed servers.
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Two-Phase Commit Blocks
C

(3) P1 crashes

COMMIT COMMIT

P1 P2

(2) C  crashes(1) COMMIT 
sent

(4) P2 is blocked 
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Blocking Theorem
Theorem 1: If it is possible for the network to 
partition, then any Atomic Commit Protocol may 
cause processes to become blocked.
Sketch of proof. Assume two sites, A and B, and a 
protocol. Assume that Kth message M is the one 
after which commit decision can be made. Assume 
that A can commit having sent M to B, but not before. 

If network partitions just before the Kth message, B is 
blocked. (Does not know, if A sent it and committed, 
or did not send it, in which case it might have decided 
abort.)
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