
Distributed Txn Management, 2003 Lecture 3 / 4.11.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Theorem: The snapshot algorithm
selects a consistent cut

Proof. Let ei and ej be events, which occurred on
sites Si and Sj and ej <H ei. Assume that ei was in the
cut produced by the snapshot algorithm. We want to
show that also ej is in the cut. If Si = Sj , this is clear.
Assume that Si ≠ Sj.
Assume, now, for contradiction, that ej was not in

the cut. Consider the sequence of messages m1 m2
…mk by which ej <H ei. By the way snap markers are
sent and received, a snap marker message has
reached Sj before each m1 m2 …mk and Si has
therefore recorded its state before ej. Therefore, ei is
not in the cut. This is a contradiction, and we are
done.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

A picture relating to the theorem

Si Sj

m1

m2

mk

ej

ei

ej <H ei

Assume for
contradiction ->

Conclusion: Si
must have
recorded its
state before ej
and ei can not
be in the cut ->
A contradiction.

…

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Some observations on the example
LockManager implementation

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Example lock management
implementation - concurrency

A lock manager uses threads to serve incoming
connections.
As threads access the lock manager’s services
concurrently, those methods are qualified to be
synchronized.There may actually be an overkill, as it
seems to be enough to synchronize the public
methods (xlock/slock/unlock). I will still have a look at
that.
An interactive client uses a single thread, but this is
just to access the sleep method. There is no
concurrent data access and consequently no
synchronized methods.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Example lock management
implementation – input/output

Each LMMultiServerThread talks with only one client.
Each client talks to several servers
(LMMultiServerThreads).
An interactive client talks also listens to a client
controller, but it does not read standard input (this
would block, or if you just check input with .ready()
then user input is not echoed on the screen :(
A client controller only sends reads standard input
and sends the messages to an interactive client.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Example lock management
implementation – server efficiency
It would be more efficient to pick threads from a pool
of idle threads rather than always creating a new one.
The data structures are not optimized. As there
typically is a large number of data items and only
some unpredictable number of them is locked at any
one moment, a hashing data structure might be
suitable for the lock table (like HashTable, but a hash
function must exist for the hash data type, e.g.
Integer is ok).
It would be ok to connect a lock request queue (e.g. a
linked list) for each lock item in the lock table with a
direct reference.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Example lock management
implementation – txn ids

Currently integers are used.
Giving global txn ids sequentially (over all
sites) is either complicated or needs a
centralised server -> it is better to use a local
(site-id, local-txn-id) pair to construct the txn
ids. If the sites are known in advance, they
can be numbered.
We only care about txns accessing some
resource manager’s services and there may
be a fixed set of them -> ask the first server to
talk with for an id (server-id, local-txn-id).

Distributed Txn Management, 2003 Lecture 3 / 4.11.

How distributed txns are born?

Distributed database management systems:
a client contacts local server, which takes
care of transparent distribution – the client
does not need to know about the other sites.
Alternative: a client contacts all local resource
managers directly.
Alternative: separate client programs are
started on all respective sites.
Typically the client executing on the first site
acts as a coordinator communicating with the
other clients.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Distributed Commit

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Ending the transaction

Finally, a txn is to either commit, in which
case its updates are made permanent on all
sites, or the txn is rolled back, in which case
none of its updates are made permanent.
The servers must agree on the fate of the
transaction. For this, the servers negotiate
(vote).
The local servers participating in the commit
process are called participants.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Failure model – servers / 1
In our work on atomic commitment protocols, we
make the assumption that a server is either working
correctly or not at all.
In our model, a server never performs incorrect
actions. Of course, in reality servers do produce
incorrect behaviour.
A partial failure is a situation where some servers are
operational while others are down.
Partial failures can be tricky because operational
servers may be uncertain about the status of failed
servers.
The operational servers may become blocked, i.e.
unable to commit or roll back a txn until such
uncertainty is resolved.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Failure model – servers / 1
The reason why partial failures are so tricky to handle
is that operational servers may be uncertain about
the state of the servers on failed sites. An operational
server may become blocked, unable to commit or
rollback the txn. Thus it will have to hold locks on the
data items that have been accessed by the txn,
thereby preventing other txns from progressing.
Not surprisingly, an important design goal for atomic
commitment protocols is to minimise the effect of one
site's failure on another site's ability to continue
processing.
A crashed site may recover.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Failure model – network

Messages may get lost.
Messages may be delayed.
Messages are not changed.
Communication between two sites may not
be possible for some time. This is called
network partitioning and this assumption is
sometimes relaxed, since it creates hard
problems (more on this later).
The network partitioning may get fixed.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Detecting Failures by Timeouts

We assume that the only way that server A
can discover that it cannot communicate with
server B is through the use of timeouts.
A sends a message to B and waits for a reply
within the timeout period.
If a reply arrives then clearly A and B can
communicate.
If the timeout period elapses and A has not
received a reply then A concludes that it
cannot communicate with B.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Detecting Failures by Timeouts

Choosing a reasonable value for the timeout
period can be tricky.
The actual time that it takes to communicate
will depend on many hard-to-quantify
variables, including the physical
characteristics of the servers and the
communication lines, the system load and the
message routing techniques.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

An atomic commit protocol

An atomic commit protocol (`ACP') ensures
consistent termination even in the presence
of partial failures.
It is not enough if the coordinator just tells the
other participants to commit.
For example, one of the participants may
decide to roll back the txn.
This fact must be communicated to the other
participants because they, too, must roll back.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

An atomic commit protocol

An atomic commit protocol is an algorithm for
the coordinator and participants such that
either the coordinator and all of the
participants commit the txn or they all roll it
back.
The coordinator has to find out if the
participants can all commit the txn. It asks
the participants to vote on this.
The ACP should have the following
properties.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Requirements for distributed
commit (1-4)

(1) A participant can vote Yes or No and
may not change the vote.
(2) A participant can decide either Abort or
Commit and may not change it.
(3) If any participant votes No, then the
global decision must be Abort.
(4) It must never happen that one
participant decides Abort and another
decides Commit.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Requirements for distributed
commit (5-6)

(5) All participants, which execute
sufficiently long, must eventually decide,
regardless whether they have failed earlier
or not.
(6) If there are no failures or suspected
failures and all participants vote Yes, then
the decision must not be Abort.

The participants are not allowed to
create artificial failures or suspicion.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Observations

Having voted No, a participant may
unilaterally rollback. (One No vote implies
global rollback.)
However, having voted Yes, a participant
may not unilaterally commit. (Somebody else
may have voted No and then rolled back.)
Note that it is possible that all participants
vote to Commit, and yet the decision is to
Rollback.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Observations

Note that condition AC1 does not require that
all participants reach a decision: some
servers may fail and never recover.
We do not even require that all participating
servers that remain operational reach a
decision.
However, we do require that all participating
servers be able to reach a decision once
failures are repaired

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Uncertainty period
The period between voting to commit and receiving
information about the overall decision is called the
uncertainty period for the participating server.
During that period, we say that the participant is
uncertain.
Suppose that a failure in the interconnection network
disables communication between a participant, P,
and all other participants and the coordinator, while P
is uncertain. Then P cannot reach a decision until
after the network failure has been repaired.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Distributed Two-Phase
Commit Protocol (2PC)

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Basic 2PC

Many DBMS products use the two-phase
commit protocol (2PC) as the process by which
txns that use multiple Servers commit in a
consistent manner.
Typically, the majority of txns in an application
do not use multiple servers. Such txns are
unaffected by 2PC.
Txns that write-access data on multiple servers
commit in two phases: a voting phase and a
decision phase.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Basic 2PC

First, all of the servers vote on the txn,
indicating whether they are able to commit or
not.
A server may vote No if, for example, it has run
out of disk space or if it must pre-emptively
rollback the txn to break a deadlock.
If all of the votes are Yes, the decision is made
to commit, and all of the servers are told to
commit.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC for Distributed Commit

Coordinator
Vote-Request

Yes or No votes

Multicast decision: Commit, if all
voted Yes, otherwise Abort.

Participants

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Coordinator

Initiate voting by sending Vote-Req to all
participants and enters a wait-state.
Having received one No or a timeout in wait-
state, decides Abort and sends the decision
to all participants.
Having received a Yes from all in wait-state
(before timing out), decides Commit and
sends the decision to all participants.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Participant

Having received a Vote-Req, either
- sends a No and decides Rollback locally
- sends a Yes and enters a wait-state.
If in wait-state receives either Rollback or
Commit, decides accordingly. If it times out in
wait-state, it concludes that the coordinator is
down and starts a termination protocol –
more on this soon.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Multicast ABORT

Coordinator
Vote-Request

Timeout occurs
Yes or No votes

Participants

2PC - a timeout occurs

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Centralised vs. Decentralised

There is also a version of 2PC whereby there
is no coordinator and the servers all send
messages to each other. This is called
decentralised 2PC.
2PC with a coordinator is called centralised
2PC.
We shall exemplify their behaviour with a
simulation applet at
http://www.cs.uta.fi/utacsoft/discosim

http://www.cs.uta.fi/utacsoft/discosim
http://www.cs.uta.fi/utacsoft/discosim

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Timeout actions

We assume that the participants and the
coordinator try to detect failures with timeouts.
If a participant times out before Vote-Req, it
can decide to Rollback.
If the coordinator times out before sending out
the outcome of the vote to anyone, it can
decide to rollback.
If a participant times out after voting Yes, it
must use a termination protocol.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Termination protocol

If a participant times out having voted Yes, it
must consult the others about the outcome.
Say, P is consulting Q.
If Q has received the decision from the
coordinator, it tells it to P.
If Q has not yet voted, it can decide to
Rollback.
If Q does not know, it can’t help.
If no-one can help P, P is blocked.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Recovery

When a crashed participant recovers, it checks
its log.
P can recover independently, if P recovers

having received the outcome from the coordinator,
not having voted, or
having decided to rollback.

Otherwise, P must consult the others, similarly
as in the termination protocol.
Note: the simulation applet does not contain
termination and recovery!

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Analysis

(1) A participant can vote Yes or No and
may not change the vote.
- This should be clear.
(2) A participant can decide either Abort
or Commit and may not change it.
- This should also be clear.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Analysis

(3) If any participant votes No, then the global
decision must be Abort.
- Note that the global decision is Commit only
when everyone votes Yes, and since no-one
votes both Yes and No, this should be clear.
(4) It must never happen that one participant
decides Abort and another decides Commit.
- On similar lines than (3).

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Analysis
(5) All participants, which execute sufficiently long,
must eventually decide, regardless whether they
have failed earlier or not.
- Only holds, if we assume that failed sites always
recover and they do it for sufficiently long so that the
2PC recovery can make progress.
(6) If there are no failures or suspected failures and
all participants vote Yes, then the decision must not
be Abort. The participants are not allowed to create
artificial failures or suspicion.
- Ok.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

2PC Analysis

Sometimes there is intereste towards
the number of messages exchanged. In
the simplest case, the 2PC involves 3N
messages.
Recovery and termination change these
figures.
However, the assumption is that most
txns terminate normally.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

What does the coordinator write
to a log?

When the coordinator sends Vote-req, it writes
a start-2PC record and a list containing the
identities of the participants to its log. It also
sends this list to each participant at the same
time as the Vote-req message.
Before the coordinator sends Commit to the
participants, it writes a commit record in the
log.
If the coordinator sends rollback to the
participants, it writes a rollback to the log.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

What does a participant write to a
log?

If a participant votes Yes, it writes a yes record
to its log before sending yes to the coordinator.
This log record contains the name of the
coordinator and the list of the participants.
If this participant votes No, it writes a rollback
record to the log and then sends the No vote to
the coordinator.
After receiving Commit (or Rollback, a
participant writes a commit (or a rollback
record into the log.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

How to recover using the log?

If the log of S contains a start-2PC,
record then S was the host of the
coordinator. If it also contains a commit
or rollback record, then the coordinator
had decided before the failure occurred.
If neither record is found in the log then
the coordinator can now unilaterally
decide to Rollback by inserting a rollback
record in the log.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

How to recover using the log / 2

If the log does not contain a start-2PC record,
then S was the host of a participant. There are
three cases to consider:
(1) The log contains a commit or rollback
record. Then the participant had reached its
decision before failure.
(2) The log does not contain a yes record.
Then either the participant failed before voting
or voted No (but did not write a rollback record
before failing.) (This is why the Yes record
must be written before Yes is sent.) -> Rollback

Distributed Txn Management, 2003 Lecture 3 / 4.11.

How to recover using the log / 3

(3) The log contains a yes but not commit
or rollback record. Then the participant
failed while in this uncertainty period.
It can try to reach a decision using the
termination protocol.
A yes record includes the names of the
coordinator and participants; these are
needed for the termination protocol.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Garbage collection

Eventually, it will become necessary to
garbage collect the space in the log. There are
two principles to adopt:
[GC1:] A site cannot delete log records of a
txn, T, from its log until at least after the
resource manager has processed the commit
or the rollback for T.
[GC2:] At least one site must not delete the
records of T from its log until that site has
received messages indicating that the resource
managers at all other sites have processed the
commit or rollback of T.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Blocking
We say that a participant is blocked, if it must await
the repair of a fault before it is able to proceed.
A txn may remain unterminated, holding locks, for
arbitrarily long periods of time at the blocked server.
Suppose that participant, S, fails whilst it is uncertain.
When S recovers, it cannot reach a decision on its
own. It must communicate with the other participants
to find out what was decided.
We say that a commitment protocol is non-blocking if
it permits termination without waiting for the recovery
of failed servers.

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Two-Phase Commit Blocks
C

(3) P1 crashes

COMMIT COMMIT

P1 P2

(2) C crashes(1) COMMIT
sent

(4) P2 is blocked

Distributed Txn Management, 2003 Lecture 3 / 4.11.

Blocking Theorem
Theorem 1: If it is possible for the network to
partition, then any Atomic Commit Protocol may
cause processes to become blocked.
Sketch of proof. Assume two sites, A and B, and a
protocol. Assume that Kth message M is the one
after which commit decision can be made. Assume
that A can commit having sent M to B, but not before.

If network partitions just before the Kth message, B is
blocked. (Does not know, if A sent it and committed,
or did not send it, in which case it might have decided
abort.)

	Distributed Transaction Management – 2003
	Theorem: The snapshot algorithm selects a consistent cut
	A picture relating to the theorem
	Some observations on the example LockManager implementation
	Example lock management implementation - concurrency
	Example lock management implementation – input/output
	Example lock management implementation – server efficiency
	Example lock management implementation – txn ids
	How distributed txns are born?
	Distributed Commit
	Ending the transaction
	Failure model – servers / 1
	Failure model – servers / 1
	Failure model – network
	Detecting Failures by Timeouts
	Detecting Failures by Timeouts
	An atomic commit protocol
	An atomic commit protocol
	Requirements for distributed commit (1-4)
	Requirements for distributed commit (5-6)
	Observations
	Observations
	Uncertainty period
	Distributed Two-Phase Commit Protocol (2PC)
	Basic 2PC
	Basic 2PC
	2PC for Distributed Commit
	2PC Coordinator
	2PC Participant
	2PC - a timeout occurs
	Centralised vs. Decentralised
	Timeout actions
	Termination protocol
	Recovery
	2PC Analysis
	2PC Analysis
	2PC Analysis
	2PC Analysis
	What does the coordinator write to a log?
	What does a participant write to a log?
	How to recover using the log?
	How to recover using the log / 2
	How to recover using the log / 3
	Garbage collection
	Blocking
	Two-Phase Commit Blocks
	Blocking Theorem

