
Distributed Txn Management, 2003 Lecture 4 / 11.11.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Blocking and non-blocking
commit protocols

Based on the paper ”Nonblocking
Commit Protocols” by Dale Skeen

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Two-Phase Commit Blocks

(1) COMMIT
sent

(2) C crashes

C

(3) P1 crashes (4) P2 is blocked

YES YES

P1 P2

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Failure model

Our Blocking Theorem from last week states that if
network partitioning is possible, then any distributed
commit protocol may block.
Let’s assume now that the network can not partition.
Then we can consult other processes to make
progress.
However, if all participants fail, then we are, again,
blocked.
Let’s further assume that total failure is not possible
ie. not all participants are inoperational at the same
time.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Automata representation

We model the participants with finite state
automata (FSA).
The participants move from one state to
another as a result of receiving one or several
messages or as a result of a timeout event.
Having received these messages, a
participant may send some messages before
executing the state transition.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Commit Protocol Automata

Final states are divided into Abort states and Commit
states (finally, either Abort or Commit takes place).
Once an Abort state is reached, it is not possible to
do a transition to a non-Abort state. (Abort is
irreversible). Similarly for Commit states (Commit is
also irreversible).
The state diagram is acyclic.
We denote the initial state by q, the terminal states
are a (an abort/rollback state) and c (a commit state).
Often there is a wait-state, which we denote by w.
Assume the participants are P1,…,Pn. Possible
coordinator is P0, when the protocol starts.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

2PC Coordinator

q

w

a c

A commit-request from application
VoteReq to P1,…,Pn

Timeout or No from one of P1,.., Pn
Abort to P1,…Pn

Yes from all P1,..,Pn
Commit to P1,…,Pn

Distributed Txn Management, 2003 Lecture 4 / 11.11.

2PC Participant

q

w a

c

VoteReq from P0
No to P0

Commit from P0
-

Abort from P0
-

VoteReq from P0
Yes to P0

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Commit Protocol State Transitions

In a commit protocol, the idea is to inform
other participants on local progress.
In practice commit protocols exchange data
on their progress.
The results given later in this lecture cover
also commit protocols, for which this is not
true.
However, in known protocols it is customary
to send messages to other participants about
any change of state (unless it is a change into
a terminal state).

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Concurrency set

A concurrency set of a state s is the set
of possible states among all
participants, if some participant is in
state s.
In other words, the concurrency set of
state s is the set of all states that can
co-exist with state s.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

2PC Concurrency Sets

q

w

a c

Commit-req.
VoteReq to All

Timeout or a No
Abort to all

Yes from all
Commit to all

q

w a

c

VoteReq from P0
No to P0

Abort from P0
-

VoteReq from P0
Yes to P0

Concurrency_set(q) = {q,w,a}, Concurrency_set(a) = {q,w,a}
Concurrency_set(w) = {q,w,a,c}, Concurrency_set(c) = (w,c)

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Committable states

We say that a state is committable, if
the existence of a participant in this
state means that everyone has voted
Yes.
If a state is not committable, we say that
it is non-committable.
In 2PC, c is the only committable state.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

How can a site terminate when there
is a timeout?

Either (1) one of the operational sites knows
the fate of the transaction, or (2) the
operational sites can decide the fate of the
transaction.
Knowing the fate of the transaction means, in
practice, that there is a participant in a
terminal state.
Start by considering a single participant s.
Participant s must infer the possible states of
other participants from its own state. This can
be done using concurrency sets.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

When can’t a single participant
unilaterally abort?

Suppose a participant is in a state,
which has a commit state in its
concurrency set. Then, it is possible that
some other participant is in a commit
state.
A participant in a state, which has a
commit state in its concurrency set,
should not unilaterally abort.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

When can’t a single participant
unilaterally commit?

Suppose a participant is in a state, which has
an abort state in its concurrency set. Then,
some participant may be in an abort state.
A participant in a state, which has an abort
state in its concurrency set, should not
unilaterally commit.
Also, a participant that is not in a committable
state should not commit.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

The Fundamental Non-Blocking
Theorem

A protocol is non-blocking, if and only if
it satisfies the following conditions:
(1) There exists no local state such that
its concurrency set contains both an
abort and a commit state, and
(2) there exists no noncommittable
state, whose concurrency set contains a
commit state.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Showing the Fundamental Non-
Blocking Theorem

From our discussion above it follows
that Conditions (1) and (2) are
necessary.
We discuss their sufficiency later by
showing how to terminate a commit
protocol fulfilling conditions (1) and (2).

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Observations on 2PC

As the participants exchange messages as
they progress, they progress in a
synchronised fashion.
In fact, there is always at most one step
difference between the states of any two live
participants.
We say that the participants keep a one-step
synchronisation.
It is easy to see by Fundamental Nonblocking
Theorem that 2PC is blocking.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

One-step synchronisation and non-
blocking property

If a commit protocol keeps one-step
synchronisation, then the concurrency
set of state s consists of s and the
states adjacent to s.
By applying this observation and the
Fundamental Non-blocking Theorem,
we get a useful Lemma:

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Lemma

A protocol that is synchronous within
one state transition is non-blocking, if
and only if
(1) it contains no state adjacet to both a
Commit and an Abort state, and
(2) it contains non non-committable
state that is adjacet to a commit state.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

How to improve 2PC to get a non-
blocking protocol

It is easy to see that the state w is the
problematic state – and in two ways:
- it has both Abort and Commit in its
concurrency set, and
- it is a non-committable state, but it has
Commit in its concurrency set.
Solution: add an extra state between w and c
(adding between w and a would not do –
why?)
We are primarily interested in the centralised
protocol, but similar decentralised
improvement is possible.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

3PC Coordinator
q

w

a

c

A commit-request from application
VoteReq to P1,…,Pn

Timeout or No from one of P1,.., Pn
Abort to P1,…Pn

Yes from all P1,..,Pn
Prepare to P1,…,Pn

p
Ack from all P1,..,Pn
Commit to P1,…,Pn

Distributed Txn Management, 2003 Lecture 4 / 11.11.

3PC Participant
q

w a

c

VoteReq from P0
No to P0

Prepare from P0
Ack to P0

Abort from P0
-

VoteReq from P0
Yes to P0

p
Commit from P0

-

Distributed Txn Management, 2003 Lecture 4 / 11.11.

3PC Concurrency sets (cs)
q

w

a

c

A commit-request
VoteReq to all

Timeout or one No
Abort to all

Yes from all
Prepare to all

p
Ack from all

Commit to all

q

w a

c

VoteReq from P0
No to P0

Abort from P0
-

VoteReq from P0
Yes to P0

p
Commit from P0

-

Prepare from P0
Ack to P0

cs(p) = {w,p,c},
cs(w) = {q,a,w,p},
etc.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

3PC and failures
If there are no failures, then clearly 3PC is correct.
In the presence of failures, the operational
participants should be able to terminate their
execution.
In the centralised case, a need for termination
protocol implies that the coordinator is no longer
operational.
We discuss a general termination protocol. It makes
the assumption that at least one participant remains
operational and that the participants obey the
Fundamental Non-Blocking Theorem.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Termination

Basic idea: Choose a backup coordinator B –
vote or use some preassigned ids.
Backup Coordinator Decision Rule:
If the B’s state contains commit in its
concurrency set, commit the transaction. Else
abort the transaction.
Reasoning behind the rule: If B’s state
contains commit in the concurrency set, then
it is possible that some site has performed
commit – otherwise not.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Re-executing termination

It is, of course, possible the backup
coordinator fails.
For this reason, the termination protocol
should be executed in such a way that it
can be re-executed.
In particular, the termination protocol
must not break the one-step
synchronisation.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Implementing termination

To keep one-step synchronisation, the
termination protocol should be executed in
two steps:
1. The backup coordinator B tells the others
to make a transition to B’s state. Others
answer Ok. (This is not necessary if B is in
Commit or Abort state.)
2. B tells the others to commit or abort by the
decision rule.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

What can happen, if we break one-
step synchronisation?

p

p

p

w

w

The circles are live participants and the letters are their
states. Suppose that the coordinator is not alive and not
in the picture.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

p

p

p

w

w

The backup coordinator sends others Abort messages
and unilaterally rolls back (according to decision rule).
The messages are lost and the backup coordinator crashes.

The backup
coordinator.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Now the one-step synchronisaton is
lost

p

p

p

w

a

By the decision rule, the second backup coordinator
decides Commit.

Second backup
coordinator

First backup
coordinator

Distributed Txn Management, 2003 Lecture 4 / 11.11.

…final result.

c

c

c

c

a

This is incorrect.

Second Backup
Coordinator –
decided Commit

First Backup
Coordinator –
decided Abort

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Fundamental Non-Blocking
Theorem Proof - Sufficiency

The basic termination procedure and
decision rule is valid for any protocol
that fulfills the conditions given in the
Fundamental Non-Blocking Theorem.
The existence of a termination protocol
completes the proof.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Discussion

Clearly, an Abort decision can be reached in
3PC similarly as in 2PC in the straightforward
case.
However, Commit requires extra messages.
The bad thing here is that in practice nearly
all of the txns end doing a Commit. This way,
nearly all of the commits require extra
messages.
Unfortunately, we can not create a non-
blocking protocol by adding a “pre-abort”
state instead of the “pre-commit” state.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Back to real world

For the creation of non-blocking protocols,
Skeen’s work is based on the assumption that
the network may not partition.
However, in reality it is possible that the
network partitions.
In 2PC this means simply blocking.
Let’s see what 3PC does, if the network
blocks.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Assume the following situation…

p

p

p

w

w

The circles are participants and the letters are their states.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

…then the network partitions…

p

p

p

w

w

The circles are participants and the letters are their states.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

…3PC termination kicks in…

p

p

p

w

w

Termination starts in both sets, as they think that the non-
responsive sites have failed.

Backup
Coordinator 1 –
decides Commit

Backup
Coordinator 2 –
decides Abort

Distributed Txn Management, 2003 Lecture 4 / 11.11.

…final result.

c

c

a

a

a

Conclusion: We achieved non-blocking if the network does
not partition. If it does, the protocol is no longer correct.

Backup
Coordinator 1 –
decides Commit

Backup
Coordinator 2 –
decides Abort

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Usefulness of 3PC
The previous example suggests that 3PC is in fact
not useful at all in practice. Can we find a fix?
Possibility 1: Allow a group to elect a backup
coordinator and terminate only, if they contain a
majority of the original sites.
Possibility 2: Allow a group to recover only, if it
contains two different states (and there can be at
most 2). This may have further practical
complications.
Note that Possibilities 1 and 2 are not compatible.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Possibilities 1 and 2 used at the same
time

p

w

w

w

w

Group on left contains two different states, group on right
contains a majority of the original sites.

Backup
Coordinator 1 –
decides Commit

Backup
Coordinator 2 –
decides Abort

Distributed Txn Management, 2003 Lecture 4 / 11.11.

3PC Recovery

Similarly as in 2PC, a recovering
participant needs to consult the
operational participants and ask about
the fate of the txn.
Also, the participants need to write logs
as in 2PC – details are left as an
exercise.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Conclusions on 3PC

3PC can in practice be used to solve some
situations, where 2PC would block.
The costs are increased communication
and implementation complexity.
Also, one needs to understand when
termination is possible in practice.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

PRACTICAL DISTRIBUTED
COMMIT

Based on paper “Practical
distributed commit in modern

environments” by Nummenmaa
and Thanisch

Distributed Txn Management, 2003 Lecture 4 / 11.11.

2PC for Distributed Commit

Coordinator
Vote-Request

Yes or No votes

Multicast decision: Commit, if all
voted Yes, otherwise Abort.

Participants

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Multicast ABORT

2PC - a timeout occurs
Coordinato
r Vote-Request

Timeout occurs
Yes or No votes

Q: Is this good? A: (as we will see): Maybe

Participants

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Why would the timeout
mechanism be good?

Because it may be that some of the
participating processes are holding
resources, which are needed for other
transactions.

Holding these resources may reduce
throughput of transaction processing,
which, of course, is a bad thing.
Timeout mechanism may help to find out
that something is wrong.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Why would the timeout
mechanism not be good? / 1

Because, given the different types of
failures, it may extremely difficult to
figure out a ”good” timeout period, even
with dynamically adjustable statistics.

This is, assuming that timeout is meant to
be used to detect failures.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Why would the timeout
mechanism not be good? / 2

Because it may be that none of the
participating processes are holding
resources, which are needed for other
transactions.

In this case, we should allow the processes to
hold their locks for resources.
Rolling the transaction back will only lead to
either unnecessarily repeating some
processing or a lost transaction.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Why would the timeout
mechanism not be good? / 3

Because it may be that some of the
participating processes are holding
resources, which are needed for other
transactions, and the timeout comes too
late to save the performance.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Why is this happening?

The traditional problem definition for atomic
distributed commit is not really related to
overall system performance.
The impractical problem definition gives
impractical protocols.
Currently, the protocols now first try to reach
a commit decision, and after a timeout they
will try to reach an abort decision, regardless
of other factors.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Traditional problem definition for
distributed atomic commit /1

(1) A participant can vote Yes or No and
may not change the vote.
(2) A participant can decide either Abort or
Commit and may not change it.
(3) If any participant votes No, then the
global decision must be Abort.
(4) It must never happen that one
participant decides Abort and another
decides Commit.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Traditional problem definition for
distributed atomic commit / 2

(5) All participants, which execute
sufficiently long, must eventually decide,
regardless whether they have failed earlier
or not.
(6) If there are no failures or suspected
failures and all participants vote Yes, then
the decision must not be Abort.

The participants are not allowed to
create artificial failures or suspicion.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

What kind of protocols does the
traditional problem definition give?

First, the protocols try to reach a commit
decision, regardless of overall system
performance.
After a timeout, the protocols will try to
reach an abort decision, regardless of
overall system performance (again).

Distributed Txn Management, 2003 Lecture 4 / 11.11.

What should be changed in the
problem definition?

(1) A participant can vote Yes or No.
Having voted, it can try to change its vote.
(6) If the transaction can be committed
and it is feasible to do so for overall
efficiency, the decision must be Commit.

If this is not the case and it is still
possible to abort the transaction, the
decision must be Abort.

Earlier version of (6) was about failures.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Multicast ABORT

Interactive 2PC
Coordinato
r Vote-Request

If the Coordinator gets a Cancel message before
multicasting a decision, it decides to abort.

A Cancel message,
initiated by a local
resource manager

Participants
Yes or No votes

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Interactive 2PC - Observations

There is no need for timeouts for
participant failure (only for coordinator).
There is no need to estimate the
transaction duration.
The mechanism works regardless of the
duration of the transaction.
It is possible to adjust the opinion about
the feasibility of the transaction based on
the changing situation with lock requests.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Interactive 2PC - Termination

If a participant gets fed up waiting for
the coordinator, it has better check up
that the coordinator is still alive – the
coordinator may just not have been able
to decide and therefore has not sent
any messages.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Multicast ABORT

2PC with deadlines
Coordinator

Vote-Request

Timeout occurs based on deadlines.

Yes (with deadline) or No votes

Along with the commit votes, the participants tell how long they
are willing to wait, based on local resource manager estimation.

Participants

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Number of messages

The deadline protocol does not imply
extra messages.
The interactive protocol only implies
extra messages for cancel.

The need for extra messages is low.
If the information about the abort (due to a
Cancel message) reaches some
participants before they have voted, then
the overall number of messages may drop.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Overall performance

It is easy to see that the new protocols
provide more flexibility, which supports
overall performance.
The more often the example situations
occur, the more the overall performance
improves.

Distributed Txn Management, 2003 Lecture 4 / 11.11.

Conclusions

The interactive protocol provides gives
most flexibility.
There is no real advantage of using basic
2PC over Interactive 2PC (I2PC).
To benefit from I2PC, the dialogue
between the local resource manager and
the local participant needs to be improved.
If you want to use timeouts, it might be
better to set them based on deadlines.

	Distributed Transaction Management – 2003
	Blocking and non-blocking commit protocols
	Two-Phase Commit Blocks
	Failure model
	Automata representation
	Commit Protocol Automata
	2PC Coordinator
	2PC Participant
	Commit Protocol State Transitions
	Concurrency set
	2PC Concurrency Sets
	Committable states
	How can a site terminate when there is a timeout?
	When can’t a single participant unilaterally abort?
	When can’t a single participant unilaterally commit?
	The Fundamental Non-Blocking Theorem
	Showing the Fundamental Non-Blocking Theorem
	Observations on 2PC
	One-step synchronisation and non-blocking property
	Lemma
	How to improve 2PC to get a non-blocking protocol
	3PC Coordinator
	3PC Participant
	3PC Concurrency sets (cs)
	3PC and failures
	Termination
	Re-executing termination
	Implementing termination
	What can happen, if we break one-step synchronisation?
	
	Now the one-step synchronisaton is lost
	…final result.
	Fundamental Non-Blocking Theorem Proof - Sufficiency
	Discussion
	Back to real world
	Assume the following situation…
	…then the network partitions…
	…3PC termination kicks in…
	…final result.
	Usefulness of 3PC
	Possibilities 1 and 2 used at the same time
	3PC Recovery
	Conclusions on 3PC
	PRACTICAL DISTRIBUTED COMMIT
	2PC for Distributed Commit
	2PC - a timeout occurs
	Why would the timeout mechanism be good?
	Why would the timeout mechanism not be good? / 1
	Why would the timeout mechanism not be good? / 2
	Why would the timeout mechanism not be good? / 3
	Why is this happening?
	Traditional problem definition for distributed atomic commit /1
	Traditional problem definition for distributed atomic commit / 2
	What kind of protocols does the traditional problem definition give?
	What should be changed in the problem definition?
	Interactive 2PC
	Interactive 2PC - Observations
	Interactive 2PC - Termination
	2PC with deadlines
	Number of messages
	Overall performance
	Conclusions

