
Distributed Txn Management, 2003 Lecture 5 / 18.11.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Concurrency control
optimisations

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Locking means preparing for the
worst

The basic locking techniques are seen as
pessimistic – they prepare for the worst.
However, in practice conflicts can be rare.
For instance a bank can have a huge number
of txns in a second. However, the number of
accounts is much bigger, and most txns do
not conflict with any other txns.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Drawbacks of locking

Locking uses resources.
The computational effort needed for locking
does not in practice depend on the number of
actual lock conflicts.
Locking makes deadlock possible. Deadlock
management requires further resources or
damages performance.
To avoid cascading rollbacks, locks are
usually only released at the end of the txn.
This further reduces concurrency.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Optimistic lock management

By Kung and Robertson (1981)
A txn will write all data into its private tentative
copies of the data.
All reads are performed either on its own
tentative copies, if they exist, or on the
(standard) last updated and committed value
in the database. This means that no dirty data
is being read, apart from the txns own data.
The updates are validated and executed at
the end of the txn.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Txn lifecycle

The txn lifecycle contains three phases:
1. Working phase
2. Validation phase
3. Update phase
The txns are given txn ids, which also order
them by age.
Validation needs to be done in the order of
ids (if a younger txn finishes its working
phase earlier than some older txns, it must
wait for the older txns to finish, before it can
be validated).

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example

working validation update

working validation update

working validation

T1

T2

T3

T4 working

Q: What to check in each validation?

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Txn validation

Suppose we are validating a txn T
against a txn T’.
For this to be necessary, the lifetimes of
T and T’ must overlap.
All of the following are not allowed:
T reads data objects written by T’.
T’ reads data objects written by T.
T and T’ write same data objects.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Read sets and write sets

To simplify checking, it is useful to maintain a read
set (data objects read) and a write set (data objects
written) for each txn.
When validating T against T’, there is a conflict, if the
write set of T overlaps either the write set or the read
set of T’ or the write set of T’ overlaps either the read
set or the write set of T.
Suppose we write after validation. If we allow (on one
site) only one txt to be in validation & write state at
one time, then write data set conflicts can not occur
and we do not need to compare a write set with a
write set.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Backward validation

Validation is processed in txn id order.
Assume we are validating T.
Therefore, all earlier txns’ validation is done
and, as a consequence, also their read
operations are completed before the
validation of T. Therefore, we only need to
compare the read set of T with the write sets
of these earlier txns.
If we use backward validation and T has not
read any data, no validation checks are
needed.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Forward validation

Now we compare the write set of the txn T to
be validated against the read sets of all active
txns.
Notice that after validation it does not matter if
the read sets of the active txns change.
If T conflicts with some active txns, then as
none of these has committed, we may roll
back alternatively T or all conflicting active
txns.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Backward validation algorithm

StartTMax is the biggest txn id of any committed txn
when T started
FinishTMax is the biggest assigned txn id, when T
entered validation.
boolean valid=true;
for (all txns T’ from StartTMax+1 to

FinishTMax)
if (read set of T intersects write set of T’)
valid = false; // and T will be rolled back

Now the write sets of committed txns must be kept as
long as overlapping txns are alive, to make validation
possible.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Forward validation algorithm

ActiveTMin is the smallest txn id of any active
txn, when validation starts
ActiveTMax is the greatest txn id of any active
txn, when validation starts.
boolean valid=true;
for (all txns T’ from ActiveTMin to

ActiveTMax)
if (write set of T intersects read set of T’)
valid = false; // some txn(s) are rolled

back

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Comparison

Backward validation requires us to store write
sets of committed txns.
Forward validation allows more flexibility on
which txn to roll back. However, this may lead
into some txn not making progress.
Read sets are typically larger than write sets.
Forward validation involves more large sets.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Synchronised validation

We made a simplified assumption that only
one txn is validated at one time.
This is easily broken, if we have validations
running on different servers.
Synchronising the validations slows down
processing.
Suppose T completes before T’ on S1 and T’
before T on S2. Then, a straightforward
validation requires T to be validated before T’
on S1 and T’ before T on S2. This deadlocks
the system with synchronisation.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Parallel validation

One option is to use global txn ids to order
the validation on all servers.This, of course,
will delay the validation and therefore commit
of some txns.
Another option is to validate first locally, and
then check globally that the validation orders
are the same on each servers.Now, of
course, extra effort is needed for global
validation and sorting out the problems.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Timestamp ordering
In a way, timestamp ordering can be seen as an
optimistic technique.
In timestamping, operations are executed unless
conflict rules forbid them.
Conflict rules
1. Ti may not write X, if some Tj, i<j, has read X.
2. Ti may not read X, if some Tj, i<j, has written X.
Rule number 2 can be relaxed, if old versions of X
are kept, as then we just let Ti read an old version of
X. If Rule 1 is triggered, a txn must be rolled back.
Additionally, Ti may not write X, if some Tj, i<j, has
written X. (Now we just skip the write.)

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example

T1
- Read X
- Read Y
- Write X
- Read Z
- Write Z
- Commit

T2
- Read Y
- Read Z
- Write X
- Write Y
- Commit

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example –scheduled / 1

T1.Read X
T1.Read Y
T1.Write X
T1.Read Z
T2.Read Y
T1.Write Z
T2.Read Z
T2.Write X
T2.Write Y
T1: Commit
T2: Commit

This is a serializable
schedule, equal to the
serial schedule where
T1 is executed first and
T2 after T1.
In all conflicting
operation parts T1’s
operation comes first.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example –scheduled / 2

T1.Read X
T1.Read Y
T1.Write X
T1.Read Z
T2.Read Y
T2.Read Z
T2.Write X
T2.Write Y
T1.Write Z
T1.Commit
T2.Commit

T1 reads X before T2
writes X. So T1 must be
before T2.
T2 reads Z, which is not
written by T1, therefore
T2 must be before T1.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example –scheduled / 2

T1.Read X
T1.Read Y
T1.Write X
T1.Read Z
T2.Read Y
T2.Read Z
T2.Write X
T2.Write Y
T1.Write Z
T1.Commit
T2.Commit

T1 reads X before T2
writes X. So T1 must be
before T2.
T2 reads Z, which is not
written by T1, therefore
T2 must be before T1.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example – distributed, no replication

S1: T.Read X
S1: T.Read Y
S1: T.Write X
S2: T.Read Z
S1: T’.Read Y
S2: T’.Read Z
S1: T’.Write X
S1: T’.Write Y
S2: T.Write Z
T1.Commit
T2.Commit

Even though this is
globally not serializable,
the local
subtransactions are, on
Site S1: T,T’
Site S2: T’,T
This means that
distribution provides
extra challenge (e.g.
globally ordering ids will
do the trick).

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Avoiding restart/rollback with
timestamps

We can avoid restart/rollback by delaying the
operations until preceding operations (in
timestamp order) have been performed.
How do we know in a distributed system, if
more preceding writes are expected?
If operations come in timestamp order from
other servers, then by examining the
timestamps we know what timestamps are
still to be expected.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Avoiding restart/rollback with
timestamps

What if a server has got no operations to
send to some other server for some time? We
would not want this to block progress.
Solution: send empty (null) operations with
just timestamps either regularly or when the
other servers request them. However, this
increases network traffic.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Transaction classes
A problem with the optimisations this far is that they
delay unnecessarily, even when the data sets are not
going to conflict.
We may benefit from knowing in advance the data
items each txn reads and writes.
We say that txn T belongs to class C, if the write set
of T is a subset of write set of C and the read set of T
is a subset of read set of C.
We identify at startup time a class with each server.
Then, we only need to wait for operations from such
servers that they may have conflicting operations
based on their read and write sets.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example – distributed
S1: T1.Read X
S1: T1.Read Y
S1: T1.Write X
S2: T1.Read Z
S1: T2.Read Y
S2: T2.Read Z
-> Wait for S2!
S1: T2.Write X
S1: T2.Write Y
S2: T1.Write Z
T1.Commit
T2.Commit

Now the read set and
write set of T1 both
contain X and Y and the
read set of T2 contains
just X.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Integrated methods

Let us consider integration of locking and
timestamping.
Suppose we want to use 2-phase locking to
synchronise reads and writes and
timestamping to synchronise writes.
While we execute the txns, we take locks to
stop reads and writes from conflicting.
We need a way by which the locks and
timestamps can interact. For this, it is
possible to give timestamps for locks.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

2PL and timestamps
Each data item X has a lock timestamp Lts(X).
When a txn locks a data item X, it receives Lts(X).
When T has taken all locks, its timestamp ts(T) is made to be
larger than that of any lock timestamp for its locks.
When T releases a lock on X, X is made to be max(ts(T),
Lts(X)).
These timestamps are consistent with the order of transactions
given by two-phase locking.
The reads and writes are synchronised using locking while the
txn is running (e.g. 1 lock to read, n to write).
When writes are made permanent at the end, the writes are
synchronised using timestamps by just ignoring the writes that
are late.
This way a writelock never conflicts with a writelock.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Optimising deadlock detection

The methods proposed earlier require all of
the waits-for graph to be transmitted from one
server to another.
Consider, again, a bank with a large number
of txns, out of which very few are likely to
have lock conflicts.
It is known that a typical deadlock involves
just two transactions.
Under these circumstances, transporting
huge waits-for graphs seems like a waste of
resources.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Chandy-Misra-Haas Algorithm

The idea is to just chase the edges in the
waits-for graph, which are suspected in
participating a cycle.
A suspected edge on server S is such that
some txn T waits for U, and U waits for a data
item held at some other server S’.
- Local waits do not initiate such suspicion.
- If T is not waiting for some waiting txn U, it
can not participate in a deadlock.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Initiating the deadlock detection
If we suspect that T->U is part of a waits-for cycle, we
send a probe with graph <T->U> to the server, where
U waits.
If U waits for V, then U->V is added to the graph. This
way, the graph grows (now
< T->U, U->V >) and is transmitted further.
Because of shared locks, a txn may in fact wait for
several txns. All these waits imply potential edges in
the graph.
In fact, the probe could be given to one (coordinating)
local txn, which then forwards it.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Example

A

B

C

T2:
- holds C on S2
- waits for A at S3

T3: holds A at S3, waits for B at S1

T1:
- holds a lock on B
at S1

- waits for C at S2

S1

S2

S3

<T1->T2>
<T1->T2, T2->T3>

Detects
deadlock

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Detecting deadlocks

If at some point it is found out that the
graph contains a cycle, it indicates a
deadlock.
It may happen that the same deadlock
is detected on several servers.
To minimize the number of rolled back
txns (and to guarantee progress) it is a
good idea to roll back the youngest txn.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Storing probes

When a server receives a probe message, it
may be that there are no edges by which the
probe graph is grown and sent further.
However, it may be that such a new wait is
initiated that it should be added to the graph.
Then the probe messages are also sent
forward.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

Phantom deadlocks
If 2-phase locking is not used, txns releasing locks
may cause phantom deadlocks to be detected.
Some txn may participate in another deadlock and be
aborted simultaneously as some other txn is aborted
to solve another deadlock, although one txn might
have ben used both aborts.
In fact in all deadlock detection schemes the
following may happen:
- It may be that one of the txns in the cycle is aborted
for some local reason on some of the sites, and this
information is not available soon enough to cancel
finding a deadlock.

Distributed Txn Management, 2003 Lecture 5 / 18.11.

2PC Implementation

We will have a look at the example
implementation (and it will be made
available after the lecture).

	Distributed Transaction Management – 2003
	Concurrency control optimisations
	Locking means preparing for the worst
	Drawbacks of locking
	Optimistic lock management
	Txn lifecycle
	Example
	Txn validation
	Read sets and write sets
	Backward validation
	Forward validation
	Backward validation algorithm
	Forward validation algorithm
	Comparison
	Synchronised validation
	Parallel validation
	Timestamp ordering
	Example
	Example –scheduled / 1
	Example –scheduled / 2
	Example –scheduled / 2
	Example – distributed, no replication
	Avoiding restart/rollback with timestamps
	Avoiding restart/rollback with timestamps
	Transaction classes
	Example – distributed
	Integrated methods
	2PL and timestamps
	Optimising deadlock detection
	Chandy-Misra-Haas Algorithm
	Initiating the deadlock detection
	Example
	Detecting deadlocks
	Storing probes
	Phantom deadlocks
	2PC Implementation

