
Distributed Txn Management, 2003 Lecture 6 / 25.11.

Distributed Transaction
Management – 2003

Jyrki Nummenmaa
http://www.cs.uta.fi/~dtm

jyrki@cs.uta.fi

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Adding new subtxns to a txn

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Growing the txn
Centralised commit protocols use a coordinator.
The coordinator can be initiated when the txn starts.
After that the sub-txns on each site are joined in the
txn as the txn needs to access data on different
servers.
The coordinator knows all sub-txns.
Before commit, the sub-txns can be locally aborted,
so they do not need to know of the other txns.
Remember that in a commit protocol the coordinator
is to send a participant list to all participants (which
can be used in termination and recovery).

Distributed Txn Management, 2003 Lecture 6 / 25.11.

How does the coordinator know
where to grow the txn?

There could be a dictionary, which tells,
where data is replicated/situated.
This could also be based on a hashing rule
(Books from A to C are on Server 1, from D to
E on Server 2, …)
In a performance-critical system, there could
be a dedicated server for this (with a
continuously updated backup server).
Sometimes it is also possible to replicate the
distribution information to all sites (but this
gives more distributed data to manage…)

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Nested (Hierarchical)
Transactions

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Nested txns – what?

In a nested txn, first a top-level txn is created.
The top-level txn can create child txns.
The child txns can create their child txns up to
any level of nesting.
The child txns are called subtxns.
The child txn starts after its parent and
finishes before its parent. (Its lifetime is
completely included in the parent’s lifetime.)
Siblings can run concurrently.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Example

T1

T1.1 T1.2

T1.1.1 T1.1.2 T1.1.3 T1.2.3

T1.1.3.1

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Provisional commit

A child txn makes an independent commit
decision: The txn may either decide to abort,
in which case it is just rolled back, or it may
decide to provisionally commit.
Provisional commit means, that the subtxn is
ready to do a final commit, if it is requested by
the parent txn.
If a subtxn informs its parent that it decides to
abort, the parent does not necessarily need
to abort – it adjusts its actions depending on
the situation.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Example

T1

T1.1 T1.2

Assume T1.2 is a payment
and T1.1 is collecting the
money for that payment.
Even if T.1.1.2 aborts,
there may be enough
money and
T1
may
decide
to commit.

T1.1.1 T1.1.2 T1.1.3 T1.2.3

T1.1.3.1

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Nested txn commit

The parent tells the provisionally committed
subtxns to commit, if it decides to commit.
This should be done with 2PC, as the subtxns
may have got into trouble and aborted.
One way to do it is to use nested 2PC – the
top txns coordinator sends VoteReq-
commands to its child txns, they run a vote on
their subtree and return the result.
The Commit/Abort decisions are sent
recursively down the tree.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Flat txn commit

As an alternative, the subtxns may tell their
parents their provisional commit decision with
a list of the subtxn ids and their servers.
Of course, they would not include the subtxns
that are aborted.
This way, the root txn will eventually get all
provisionally committed txns and can perform
a flat (normal) 2PC.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Locking in nested txns

A basic solution would be to let all txns do
their locking as separate txns.
This simplifies correct serialisation.
Another possibility is to treat the sub-txns as
the same txn

E.g. give them access to same new written values.
Note that if the subtxn which wrote a new value
aborts, then so should the other subtxns, which
have read the value. -> Complications, and we
omit further discussion.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP (Transaction Internet
Protocol)

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Internet Commerce -
Distributed Application Example Area

To exemplify the potential risks in safety
and credibility of distributed systems,
we will discuss an example application
area.

Internet commerce is a good example
area, because it deals with money and
there is a lot of interest in application
development.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

RentalRental
CompaniesCompanies’’
Web SitesWeb Sites

Exhibition HallExhibition Hall’’ss
Web siteWeb site

standsstands

BrokerageBrokerage
serviceservice

ExhibitorExhibitorPC Web browserPC Web browser

Internet Commerce Example

computerscomputers communicationscommunications furniturefurniture

Distributed Txn Management, 2003 Lecture 6 / 25.11.

So what has changed?

Internet commerce
Transient sets of
companies, maybe
with brokers.
Protocols are
Internet standards
The customer drives
the dialogue from a
general-purpose
Web browser.

Electronic commerce
Fixed set of
participating
companies
Proprietary, special-
purpose protocols.
Specialist agent
drives the dialogue,
with special-purpose
software

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Internet Commerce

A person, running a web browser on a
desktop computer, electronically purchases a
set of goods or services from several vendors
at different web sites.

This person wants either the complete set
of purchases to go through, or none of
them.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Technical Problems with
Internet Commerce

Security
Failure
Multiple sites
Protocol problems
Server product limitations
Response time

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Security: some solutions
Confidentiality: Encryption.
Authentication: Certification.
Integrity: Digitally signed message
digest codes.
Non-repudiation: Receipts containing a
digital signature.
You can do these through SSL/TLS or
using the Java APIs.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP: Transaction Internet Protocol

Proposed as an Internet Standard.
Backed by Microsoft and Tandem.

Heterogeneous Transaction Managers
can implement TIP to communicate with
each other.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

‘Conventional’ vs. Internet
Transaction Processing

Internet:
‘Open’: TIP?
Two-pipe?:

inter-application
communication via
some other protocol.

Conventional:
OSI TP
One-pipe:

the application may
only use the
communications
services supported
by the transaction
protocol.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP: Two-pipe model

Site ASite A

ApplicationApplication
ProgramProgram

TIP APITIP API

TIP TIP txntxn
managermanager

Site BSite B

ApplicationApplication
ProgramProgram

TIP APITIP API

TIP TIP txntxn
managermanager

Pipe 1Pipe 1

Pipe 2Pipe 2

TIP commit protocolTIP commit protocol

Distributed Txn Management, 2003 Lecture 6 / 25.11.

A Browsing Transaction

User’s
Web
Browser

Server
A

Server
B

Server
C

(1) Initiate txn

(2) txn URL

(5) PULL
txn

(4) txn
URL

(3) PUSH
txn

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP Security

Requires Secure-HTTP/SSL/TLS with
encryption and
end-to-end authentication.

Operator intervention is needed when
the commit protocol fouls up.

How will this work on the Internet?

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP URLs and Txn Ids

TIP URL:
tip://<transaction manager
address>?<transaction string>
E.g. a TIP Txn Id
tip://123.123.123.123/?transid1

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP Connection

Only one end (primary) can send
commands to the other one (secondary)
The primary and the secondary may
swap roles in some special cases.
We will go through the participant states
and commands.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP Commands
All commands and responses consist of one line of
ASCII text.
Each line can be split up into one or more "words”.
Extra white space (spaces etc) is ignored.
The first word of each line indicates the type of
command or response.
All defined commands and responses consist of
upper-case letters only.
For some commands and responses, subsequent
words convey parameters for the command or
response; each command and response takes a fixed
number of parameters.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

ERROR Command

This command is valid in any state.
It informs the secondary that a previous
response was not recognized or was
badly formed.
A secondary should not respond to this
command.
The connection enters Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

MULTIPLEX Command
MULTIPLEX <protocol-identifier> This command is
only valid in the Idle state. The command seeks
agreement to use the connection for a multiplexing
protocol that will supply a large number of
connections on the existing connection. We will skip
furter details.
Possible responses to the MULTIPLEX command
are:

MULTIPLEXING The secondary party agrees to use the
specified multiplexing protocol. The connection enters the
Multiplexing state.
CANTMULTIPLEX The secondary party cannot support (or
refuses to use) the specified multiplexing protocol. The
connection remains in the Idle state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TLS Command
TLS This command is valid only in the Initial state. A
primary uses this command to attempt to establish a
secured connection using TLS (a secure protocol for
Internet communication). We skip further details of
this.
Possible responses to the TLS command are:

TLSING The secondary party agrees to use the TLS
protocol. The connection enters the Tls state, and all
subsequent communication is as defined by the TLS
protocol.
CANTTLS The secondary party cannot support (or refuses
to use) the TLS protocol. The connection remains in the
Initial state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

IDENTIFY Command
IDENTIFY <lowest protocol version> <highest protocol version>
<primary transaction manager address> | "-" <secondary
transaction manager address>
This command is valid only in the Initial state. The primary party
informs the secondary party of:
(1) the lowest and highest protocol version supported (all
versions between the lowest and highest must be supported;
(2) optionally, an identifier for the primary party at which the
secondary party can re-establish a connection if ever needed
(the primary transaction manager address); and
(3) an identifier which may be used by intermediate proxy
servers to connect to the required TIP transaction manager (the
secondary transaction manager address).
If a primary transaction manager address is not supplied, the
secondary party will respond with ABORTED or READONLY to
any PREPARE commands.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

IDENTIFY Command
Possible responses are:

IDENTIFIED <protocol version> The secondary party has been
successfully contacted and has saved the primary transaction
manager address. The response contains the highest protocol
version supported by the secondary party. All future communication
is assumed to take place using the smaller of the protocol versions
in the IDENTIFY command and the IDENTIFIED response. The
connection enters the Idle state.
NEEDTLS The secondary party is only willing to communicate over
TLS secured connections. The connection enters the Tls state, and
all subsequent communication is as defined by the TLS protocol
(and not discussed here). If the primary party cannot support (or
refuses to use) the TLS protocol, it closes the connection.
ERROR The command was issued in the wrong state, or was
malformed. This response also occurs if the secondary party does
not support any version of the protocol in the range supported by
the primary party. The connection enters the Error state. The
primary party should close the connection.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

PUSH Command
PUSH <superior's transaction identifier> This command is valid only
in the Idle state. It seeks to establish a superior/subordinate
relationship in a transaction with the primary as the superior.
Possible responses are:

PUSHED <subordinate's transaction identifier> The relationship has
been established, and the identifier by which the subordinate knows the
transaction is returned. The transaction becomes the current transaction
for the connection, and the connection enters Enlisted state.
ALREADYPUSHED <subordinate's transaction identifier> The
relationship has been established, and the identifier by which the
subordinate knows the transaction is returned. However, the subordinate
already knows about the transaction, and is expecting the two-phase
commit protocol to arrive via a different connection. In this case, the
connection remains in the Idle state.
NOTPUSHED The relationship could not be established. The connection
remains in the Idle state.
ERROR The command was issued in the wrong state, or was
malformed. The connection enters Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

PULL Command
PULL <superior's transaction identifier> <subordinate's transaction
identifier>
This command is only valid in Idle state. This command seeks to
establish a superior/subordinate relationship in a transaction, with
the primary party of the connection as the subordinate.
Possible responses are:

PULLED The relationship has been established. Upon receipt of this
response, the specified transaction becomes the current transaction of
the connection, and the connection enters Enlisted state. Additionally,
the roles of primary and secondary become reversed. (That is, the
superior becomes the primary for the connection.)
NOTPULLED The relationship has not been established (possibly,
because the secondary party no longer has the requested
transaction). The connection remains in Idle state.
ERROR The command was issued in the wrong state, or was
malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

BEGIN Command
This command is valid only in the Idle state. It asks
the secondary to create a new transaction and
associate it with the connection. The newly created
transaction will be completed with a one-phase
protocol.
Possible responses are:

BEGUN <transaction identifier> A new transaction has been
successfully begun, and that transaction is now the current
transaction of the connection. The connection enters Begun
state.
NOTBEGUN A new transaction could not be begun; the
connection remains in Idle state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

PREPARE Command
Valid only in the Enlisted state; Requests the secondary to
prepare the transaction for commitment (2PC).
Possible responses are:

PREPARED The subordinate has prepared the transaction; the
connection enters PREPARED state.
ABORTED The subordinate has vetoed committing the transaction.
The connection enters the Idle state. After this response, the
superior has no responsibilities to the subordinate with respect to
the transaction.
READONLY The subordinate no longer cares whether the
transaction commits or aborts. The connection enters the Idle state.
After this response, the superior has no responsibilities to the
subordinate with respect to the transaction.
ERROR The command was issued in the wrong state, or was
malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

ABORT Command

This command is valid in the Begun, Enlisted,
and Prepared states.
It informs the secondary that the current
transaction of the connection will abort.
Possible responses are:

ABORTED The transaction has aborted; the
connection enters Idle state.
ERROR The command was issued in the wrong
state, or was malformed. The connection enters
the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

COMMIT Command
Valid in the Begun, Enlisted or Prepared states.
In the Begun or Enlisted state, it asks the secondary
to attempt to commit the transaction.
In the Prepared state, it informs the secondary that
the transaction has committed.

Note that in the Enlisted state this command represents a
one-phase protocol, and should only be done when the
sender has 1) no local recoverable resources involved in the
transaction, and 2) only one subordinate (the sender will not
be involved in any transaction recovery process).

Distributed Txn Management, 2003 Lecture 6 / 25.11.

COMMIT Command /2
Possible responses are:

ABORTED This response is possible only from the Begun
and Enlisted states. It indicates that some party has vetoed
the commitment of the transaction, so it has been aborted
instead of committing. The connection enters the Idle state.
COMMITTED This response indicates that the transaction
has been committed, and that the primary no longer has any
responsibilities to the secondary with respect to the
transaction. The connection enters the Idle state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters the Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

QUERY Command
QUERY <superior's transaction identifier> This
command is valid only in the Idle state.
A subordinate uses this command to determine
whether a specific transaction still exists at the
superior.
Possible responses are:

QUERIEDEXISTS The transaction still exists. The
connection remains in the Idle state.
QUERIEDNOTFOUND The transaction no longer exists. The
connection remains in the Idle state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

RECONNECT Command
RECONNECT <subordinate's transaction identifier>
This command is valid only in the Idle state.
A superior uses the command to re-establish a
connection for a transaction, when the previous
connection was lost during Prepared state.
Possible responses are:

RECONNECTED The subordinate accepts the reconnection.
The connection enters Prepared state.
NOTRECONNECTED The subordinate no longer knows
about the transaction. The connection remains in Idle state.
ERROR The command was issued in the wrong state, or
was malformed. The connection enters Error state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Initial state

Start state. When a connection is
initiated, the initiating party becomes
primary and the other secondary.
The primary can send Identify or TLS
commands. (Both are related to the
connection, not to a txn).

Commands will be explained later.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Idle state

The primary and the secondary have
agreed on the protocol version.
There is no txn yet associated with the
connection.
From this state, the primary can send
any of the following commands: BEGIN,
MULTIPLEX, PUSH, PULL, QUERY
and RECONNECT.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Begun state

The connection is associated with an active
transaction, which can only be completed by
a one-phase protocol (coordinator simply
saying ABORT or COMMIT).
A BEGUN response to a BEGIN command
places a connection into this state.
Failure of a connection in Begun state implies
that the transaction will be aborted.
From this state, the primary can send an
ABORT, or COMMIT command.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Enlisted state

The connection is associated with an active
transaction, which can be completed by a
one-phase or, two-phase protocol.
A PUSHED response to a PUSH command,
or a PULLED response to a PULL command,
places the connection into this state.
Failure of the connection in Enlisted state
implies that the transaction will be aborted.
From this state, the primary can send an
ABORT, COMMIT, or PREPARE command.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Prepared state
The connection is associated with a transaction that
has been prepared (for commit).
A PREPARED response to a PREPARE command,
or a RECONNECTED response to a RECONNECT
command places a connection into this state.
Unlike other states, failure of a connection in this
state does not cause the transaction to automatically
abort.
From this state, the primary can send an ABORT, or
a COMMIT command.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Multiplexing state

The connection is being used by a
multiplexing protocol, which provides its own
set of connections.
No TIP commands are possible on the
connection. (Of course, TIP commands are
possible on the connections supplied by the
multiplexing protocol.)
The connection can never leave this state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Tls state

The connection is being used by the
TLS protocol, which provides its own
secured connection.
No TIP commands are possible on the
connection. (Of course, TIP commands
are possible on the connection supplied
by the TLS protocol.) The connection
can never leave this state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Error state

A protocol error has occurred, and the
connection is no longer useful.
The connection can never leave this
state.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

A Browsing Transaction

User’s
Web
Browser

Server
A

Server
B

Server
C

(1) Initiate txn

(2) txn URL

(5) PULL
txn

(4) txn
URL

(3) PUSH
txn

Distributed Txn Management, 2003 Lecture 6 / 25.11.

AA

CC

PUSH PUSH ‘‘txn1atxn1a’’

PUSH PUSH ‘‘txn1ctxn1c’’

DD

PUSH PUSH ‘‘txn1btxn1b’’

BB

PUSH PUSH ‘‘txn1atxn1a’’

Multiple inclusions of a site

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP vulnerability

Communication is pairwise point-to-
point.
Vulnerable to single link failures.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

TIP Security

Requires Secure-HTTP/SSL/TLS with
encryption and
end-to-end authentication.

Operator intervention is needed when
the commit protocol fouls up.

How will this work on the Internet?

Distributed Txn Management, 2003 Lecture 6 / 25.11.

SSL/TLS does NOT solve all of
the problems

TIP with TLS does not ensure non-
repudiation.
Various Denial-of-Service attacks are
possible.
A rogue participant could block progress
by refusing to commit.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Denial-of-Service

PULL-based:
A rogue company that knows the
transaction ID sends a PULL to a site then
closes the connection.

PUSH-based
Flood a sites with PUSHes so that it cannot
service legitimate requests.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Broken connection

If a site loses its connection to its
superior, the rogue sites sends it a
RECONNECT command and tells it the
wrong result of the commit.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Repudiation

General point about how to repudiate:

The site that wants to repudiate a
transaction can always cause itself to
crash and then recover, meanwhile
losing all information that was in
vulnerable storage.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Repudiation

Interaction of 2PC and authenticated
protocol messages

The semantics of the authenticated
messages only apply if the txn is
committed.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Repudiation

If a message from A to B is part of a
2PC protocol, then B’s possession of
the digital signature proves nothing.

A can claim: Yes, that was sent, but the
action was rolled back.
B must prove that the action was
committed. B must also prove that the
message was part of that txn.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Implications for Internet Commerce

Existing protocols are inappropriate for the
way people expect to be able to do
business on the Internet.
The TIP approach looked promising, but
was not really accepted.
For particular business sectors, a detailed
analysis of likely transaction behavior will
be needed.
Market opportunities for brokerage
companies.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

When should one use distributed
txn processing

Distributed Txn Management, 2003 Lecture 6 / 25.11.

When to user transactional services

We have primarily talked about
traditional data management, but our
opening lecture slides have also other
examples.
There is a number of useful criteria for
when transactional services should
really be used.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Commit Protocols - when?
Answer: MTBAP properties.

[M] Multiple Participants,
at least one of which makes some durable
data changes.

[T] Tentativeness
The Participants can tentatively establish
of feasibility, but external circumstances
can render the changes infeasible.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Commit Protocols - when?
Answer: MTBAP properties.

[B1 B2] Before the Participant votes,
(1) external circumstances can render the
changes infeasible at any time and
(2) the computation context or Coordinator
can force the Participant to abort at any
time.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Commit Protocols - when?
Answer: MTBAP properties.

[A1 A2] After the Participant votes
feasible,

(1) only a catastrophic failure can render
the changes infeasible and
(2) the Coordinator's decision determines
whether the Participant commits or aborts.

[P] Permanence
A Participant that is required to make
changes cannot undo its changes.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

MTBAP Example 1

A single client is purchasing CDs from a
single business.
No A2 (No coordinator needed)

Once the customer has ordered, the
business site can unilaterally decide the
fate of the transaction.

This type of transactions is clearly
dominant at present.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

MTBAP Example 2

A flight booking system
Reservation decrements the number of
seats available.
At transaction rollback, a compensating
transaction increments the number of seats
available.

No P (permanence) because of the
compensating transactions

No distributed commit protocol is required.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Barrier Synchronisation - When?
Answer: MFAG properties

[M] Multiple independent Participants
are involved in the computation.
[F] Fluid state of the world

The Participant does not have the ability to
freeze the state of a part of the outside
world to obtain a consistent snapshot.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Barrier Synchronisation - When?
Answer: MFAG properties

[A] Asynchronicity
There is no global time and the
computations have no direct control over
the precise moment at which a Participant
takes a reading from the outside world.

[G] Globally-consistent state
The computation's Participants need to see
snapshots of the world that are consistent
with each other.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

MFAG Example

Consider again customers buying books
from a bookstore with all server objects
executing on the same machine
The servers’ view of the availability of
books is synchronised via the local
operations.
No A (asynchronicity) property, thus no
barrier synchronisation is required.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Practical distributed txn
management issues

Distributed Txn Management, 2003 Lecture 6 / 25.11.

How to implement the
transactional services?

Traditionally, the distributed DBMS provided
transactional services.
Implementing the services yourself is difficult.
Java 2 Enterprise Edition (J2EE) and
Microsoft Transaction Server offer the
application programmer an API for
implementing the participant while relying on
the conventional system services for
coordination and communication.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Heterogeneous systems and
commit protocols

If a business transaction consists of a
set of distributed transactions on
heterogeneous systems / platforms,
these must be coordinated.
Implementing 2PC or using e.g the
Transaction Internet Protocol is not
very complicated.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Heterogeneous systems and
commit protocols / Coordination

Implementation of a 2PC protocol is easy, but
local/global coordination may be complicated.
Suppose we use a database - we cannot
commit first locally, since the global outcome
may be abort.
If we vote Yes, then we must be sure that our
transaction is still alive, if we get a Commit
decision our transaction locally.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Heterogeneous systems and
commit / Sub-txn management
1: Write your own local txn processing (with
data mangement etc.)

This is quite complicated.
2: The txn-managent (e.g. database) should
provide a provisional-commit stage, where
only a catastrophic failure aborts the txn.

The txn can not participate in deadlock but some
approximate deadlock management schemes may
abort it.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Coursework

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Coursework

Implement distributed data
management.

This far, we have just implemented a lock
manager, which of course contains much
of the required functionality.
You may manage, e.g. an integer vector,
but you may also choose a more
complicated data structure, if you feel like
it.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Functionalities

Client takes read, write, rollback and commit
commands, and calls the services from a txn
coordinator.
The txn coordinator (like LockClient in the
example implementation) takes the locks
from the servers and, having got them,
performs the read/update operation.
The resource manager (like LockManager)
includes locking, deadlock management,
2PC, and commit/rollback of txns.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

More coursework instrucions

More coursework instructions are going
to be available through course web
pages.
Deadlines will be set separately by each
department.

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Exam

Distributed Txn Management, 2003 Lecture 6 / 25.11.

Exam

No material will be allowed in the exam.
Some technical details may be given as
a part of examination material.

	Distributed Transaction Management – 2003
	Adding new subtxns to a txn
	Growing the txn
	How does the coordinator know where to grow the txn?
	Nested (Hierarchical) Transactions
	Nested txns – what?
	Example
	Provisional commit
	Example
	Nested txn commit
	Flat txn commit
	Locking in nested txns
	TIP (Transaction Internet Protocol)
	Internet Commerce -Distributed Application Example Area
	Internet Commerce Example
	So what has changed?
	Internet Commerce
	Technical Problems with Internet Commerce
	Security: some solutions
	TIP: Transaction Internet Protocol
	‘Conventional’ vs. Internet Transaction Processing
	TIP: Two-pipe model
	A Browsing Transaction
	TIP Security
	TIP URLs and Txn Ids
	TIP Connection
	TIP Commands
	ERROR Command
	MULTIPLEX Command
	TLS Command
	IDENTIFY Command
	IDENTIFY Command
	PUSH Command
	PULL Command
	BEGIN Command
	PREPARE Command
	ABORT Command
	COMMIT Command
	COMMIT Command /2
	QUERY Command
	RECONNECT Command
	Initial state
	Idle state
	Begun state
	Enlisted state
	Prepared state
	Multiplexing state
	Tls state
	Error state
	A Browsing Transaction
	Multiple inclusions of a site
	TIP vulnerability
	TIP Security
	SSL/TLS does NOT solve all of the problems
	Denial-of-Service
	Broken connection
	Repudiation
	Repudiation
	Repudiation
	Implications for Internet Commerce
	When should one use distributed txn processing
	When to user transactional services
	Commit Protocols - when? Answer: MTBAP properties.
	Commit Protocols - when? Answer: MTBAP properties.
	Commit Protocols - when? Answer: MTBAP properties.
	MTBAP Example 1
	MTBAP Example 2
	Barrier Synchronisation - When?Answer: MFAG properties
	Barrier Synchronisation - When?Answer: MFAG properties
	MFAG Example
	Practical distributed txn management issues
	How to implement the transactional services?
	Heterogeneous systems and commit protocols
	Heterogeneous systems and commit protocols / Coordination
	Heterogeneous systems and commit / Sub-txn management
	Coursework
	Coursework
	Functionalities
	More coursework instrucions
	Exam
	Exam

