
Using Importance of Transactions and Optimistic Concurrency Control in Firm
Real-Time Databases

Jan Lindström
�

University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki,Finland

jan.lindstrom@cs.Helsinki.FI

Kimmo Raatikainen
kimmo.raatikainen@cs.Helsinki.FI

Abstract

In a real-time database system, it is difficult to meet all tim-
ing constraints due to the consistency requirements of the
underlying database. However, when the transactions in the
system are heterogeneous, they are not of the same impor-
tance - some are of greater importance than others. In this
paper, we propose a new optimistic concurrency control pro-
tocol called OCC-PDATI which uses information about the
importance of the transactions in the conflict resolution. Per-
formance studies of our protocol have been carried out in
the prototype real-time database system. The results clearly
indicate that OCC-PDATI meets the goal of favoring trans-
actions of high importance.

1 Introduction

A real-time database system (RTDBS) is a database system
that must process transactions within definite time bounds,
usually defined as a deadline. Failure to complete transac-
tions before their deadlines greatly decreases the usefulness
of the transactions. Deadlines may be lost due to problems
in scheduling or transaction data contention. Considerable
research has been devoted to designing concurrency control
algorithms for RTDBSs and to evaluating their performance
Most of these algorithms use serializability as correctness
criteria and are based on one of the two basic concurrency
control mechanisms: 2PL [4, 6, 12, 13, 16, 21] or optimistic
concurrency control (OCC) [9, 7, 3, 2, 13, 10, 11]. However,

�

This work is partially funded by Nokia Telecommunications, Solid In-
formation Technology Ltd., and the National Technology Agency Finland.

2PL has some inherent problems such as the possibility of
deadlocks as well as long and unpredictable blocking times.
These problems appear to be serious in real-time transaction
processing since real-time transactions need to meet their
timing constraints, in addition to consistency requirements
[20].

Optimistic concurrency control [9, 5] protocols have the
properties of non-blocking and deadlock-free which make
them especially attractive for RTDBS. As conflict resolu-
tion between the transactions is delayed until a transaction
is near completion, there will be more information available
for making the choice in resolving the conflict. However,
the problem with these real-time optimistic concurrency con-
trol protocols is the late conflict detection, which makes the
restart overhead heavy as some near-to-complete transac-
tions have to be restarted. Since transactions in a real-time
database are time-constrained, it is essential that any con-
currency control algorithm must minimize the waste of re-
sources [21]. In this paper we concentrate on firm deadlines
for real-time transactions. We propose a new optimistic con-
currency control protocol called OCC-PDATI, which uses
information about the importance of the transactions in the
conflict resolution.

The rest of the paper is organized as follows. In Section 2
we discuss recent related work and introduce some notation
for the rest of the paper. In Section 3 we introduce the basic
mechanisms of the proposed optimistic concurrency control.
In Section 4 we describe how the importance of the trans-
action is taken into account in the OCC-PDATI algorithm.
Results from experiments are reported in Section 5.



2 Using Priorities in Concurrency Control

In real-time database systems, the conflict resolution should
take into account the importance of the transactions. This
is especially true in the case of heterogeneous transactions.
Some transactions are more important or valuable than oth-
ers. Therefore, the goal of any real-time system should be to
maximize the value or importance of the completed transac-
tions. In most of the previous approaches the value or im-
portance of a transaction has been equalized to the schedul-
ing priority of a transaction. Unfortunately, that is a very
serious restriction if the target is to maximize the value or
importance of the completed transactions.

Below we characterize the four typified problems:

� wasted restart: A wasted restart occurs if a higher
priority transaction aborts a lower priority transaction
and later the higher priority transaction is discarded
when it misses its deadline.� wasted wait: A wasted wait occurs if a lower prior-
ity transaction waits for the commit of higher priority
transaction and later the higher priority transaction is
discarded when it misses its deadline.� wasted execution: A wasted execution occurs when
a lower priority transaction in the validation phase is
restarted due to a conflicting higher priority transac-
tion which has not finished yet.� unnecessary restart: An unnecessary restart occurs
when a transaction in the validation phase is restarted
even when the history would be serializable.

Traditional two-phase locking suffers from the problem of
wasted restart and wasted wait. Optimistic protocols suffer
the problems of wasted execution and unnecessary restart.

2.1 Real-Time Transactions

A real-time transaction object includes the attributes priority,
deadline, and importance. Priority and deadline attributes
are normal object attributes. Therefore the values of the
priority and the deadline attributes can be different in ev-
ery instance of the transaction class. Additionally deadline
and priority attributes can be the same for several transac-
tion class instances. The priority attribute can even change
in time when a transaction is executed. However, when the
transactions in the system are heterogeneous, they are not of
the same importance - some are of greater importance than
others. Importance attribute is a class attribute, therefore it is
the same for all instances of the same transaction class. The

importance of the transaction does not depend on the arrival
time of the transaction as the deadline attribute does.

A characteristic of most previous real-time concurrency con-
trol algorithms is the use of priority based conflict resolution.
Here transactions are assigned ’priorities’, which are implicit
or explicit functions of their deadlines or criticalness or both.
The criticalness of a transaction is an indication of its level
of importance. However, in actuality, these two requirements
sometimes conflict with each other. That is, transactions with
very short deadlines might not be very critical, and vice versa
[1].

Therefore we use importance (or criticalness) of the trans-
actions in place of the priority in the conflict resolution of
optimistic concurrency control. This avoids the dilemma of
priority based conflict resolution, yet integrates criticalness
and deadline such that, not only do the more critical transac-
tions meet their deadlines, but the overall goal is to maximize
the net worth of the executed transactions to the system. An
importance attribute is used in the real-time scheduler and
the concurrency controller in the new proposed algorithm.
These extensions were not used in our earlier OCC-DATI
[15] algorithm.

3 OCC-PDATI

We have developed an optimistic concurrency control proto-
col called OCC-PDATI (Optimistic Concurrency Control us-
ing Importance of the Transaction and Dynamic Adjustment
of Serialization Order). OCC-PDATI is based on forward
validation [5] and the earlier optimistic OCC-DATI [15] pro-
tocol. The difference is in the conflict resolution. The con-
flict resolution of OCC-PDATI uses the importance of the
transaction found from transaction object attributes. This
section outlines new parts of OCC-PDATI when compared
to OCC-DATI. Suppose we have a validating transaction

���
and a set of active transactions

�����	��
���������	���	�����
. There

are three possible types of data conflicts which can cause a
serialization order between

���
and

���
:

1) ��� ����� ��!#" � �$���%�'&
)(
(read-write conflict)

A read-write conflict between
� �

and
� �

can be re-
solved by adjusting the serialization order between

� �
and

� �
. When

� �+* � �
, then the reads in

� �
cannot

be affected by writes in
� �

. This type of serialization
adjustment is called forward ordering or forward ad-
justment.
Transactions of high importance should not be
restarted because of data conflict with transaction of
low importance. We should offer greater chances for a



transactions of high importance to complete before its
deadline. Therefore, if a dynamic adjustment of the
serialization order would cause transactions of high
importance to be restarted, we restart transactions of
lower importance. This is a wasted execution, but it
is required to ensure execution of transactions of high
importance.

2)
" � �$��� � ! � � �$���%�'&
)(

(write-read conflict)
A write-read conflict between

� �
and

���
can be re-

solved by adjusting the serialization order between
���

and
���

as
��� * ���

. It means that the read phase of� �
is placed before the writes of

� �
. This type of se-

rialization adjustment is called backward ordering or
backward adjustment.
Again, we must ensure serializable (or another correct
order of) execution. We do not know what an active
transaction is going to do in the future. These fu-
ture reads or writes may lead to an empty timestamp
interval if we make backward adjustments. There-
fore transactions of high importance should not be
backward adjusted, but conflicting transactions having
lower importance should be restarted. This is wasted
execution and unnecessary restart, which must be ac-
ceptable when we favor transactions of high impor-
tance. We could make backward adjustment of a trans-
action of high importance if the transaction is not to be
restarted due to an empty timestamp. This, however,
implies that a transaction of high importance should
not be allowed to read or write new data objects that
belong to a new database state after a backward adjust-
ment. In other words, future read or write operations
could reduce the timestamp interval of the transaction.

3)
" � �$��� � ! " � �$���%� &
 (

(write-write conflict)
A write-write conflict between

� �
and

���
can be re-

solved by adjusting the serialization order between
���

and
���

. When
��� * ���

, then the writes of
� �

cannot
overwrite the writes of

���
’.

This case is the same as in the read-write conflict.

Figure 1 depicts an implementation outline of a deferred dy-
namic adjustment of the serialization order using timestamp
intervals and information about the importance of the trans-
actions.

We use a conflict resolution table mechanism
�

to implement
an optimistic protocol as proposed in [7]. In the selected
mechanism the system maintains a system-wide conflict res-
olution table to take care of book keeping data access by all
concurrently executing transactions. These entries are not

�

This data structure is similar to locking mechanisms. In this data struc-
ture there is no waiting for access grants.

forward_adjustment(
�������	�
���������������

)�
if � � ��� ������	����� �!
�#"%$&������������ �' (*)+( � � � !-,

else�#"%$.�#" � ���
!+,
�#"/$0�#" � � � !2143 �65 � � � !	798:��;<3 ,
=?> �A@�B ( � ���C!ED @�B ( � ���
!F!=?> � �#"G$H$.IJ!

K � ����� K � � � � !-, /* Validation ends here /*

������	����� �' (
����L � � � �������#"�!�MN!+,
M

backward_adjustment(
� � ��� � �O�������������

)�
if � ��� � ������	����� �!
�#"%$&������������ �' (*)+( � � � !-,

else�#"%$.�#" � � � !+,
�#"/$0�#" � ���
!2143 PC�Q�65 � ���C!SRT8-U
=?> �A@�B ( � � � !ED @�B ( � � � !F!

K � ����� K � � � � !-, /* Validation ends here /*

������	����� �' (
����L � � � � � ���#"�!�MN!+,
M

Figure 1. Backward and Forward adjustment
for OCC-PDATI.

traditional locks, instead entries are only for book keeping.
Generally, the validation process is carried out by check-
ing the entry compatibility with the conflict resolution table.
Such entry-based implementation of the validation test is ef-
ficient because its complexity does not depend on the num-
ber of active transactions. There are two possible implemen-
tations of the write phase: serial validation-write (OCCL-
SVW) and parallel validation-write (OCCL-PVW) [7]. We
selected the parallel validation-write because our implemen-
tation is based on a multiprocess server.

4 Results from Experiments

We have carried out a set of experiments in order to ex-
amine the feasibility of the OCC-PDATI algorithm in prac-
tice. The prototype system used is based on the Real-Time
Object-Oriented Database Architecture for Intelligent Net-
works (RODAIN) specification [14, 8, 17], which is an ar-
chitecture for a real-time, object-oriented, and fault-tolerant
database management system. The RODAIN prototype sys-
tem is a main-memory database, which uses priority and im-



portance based scheduling and optimistic concurrency con-
trol. All experiments were executed in the RODAIN proto-
type database running on Pentium Pro 200MHz and 64 MB
of main memory with the Chorus/ClassiX operating system
[18].

In the test environment, transactions arrive to a specific user
interface subsystem (URIS) that receives the arriving trans-
actions from an off-line generated test file. Every test session
contains

���������
transactions and is repeated at least 20 times.

The reported values are the means of the repetitions. In the
experiments, we examined how well our OCC-PDATI algo-
rithm performs when compared to the OCC-DATI algorithm
[15].

The test database represents a typical Intelligent Network
(IN) service. The size of the database is � ������� objects. We
used four different transactions R1, R2, W1 and W2. Trans-
actions R1 and R2 are a read-only service provision transac-
tion. The transaction R1 reads one user profile. The transac-
tion R2 represents abbreviated dialing or call forwarding ser-
vices [19]. Transactions W1 and W2 are update service pro-
vision transactions. The transaction W1 implements man-
agement service of the customer in IN CS-1. The transac-
tion W2 implements updates to abbreviated dialing or call
forwarding services in IN CS-1. All transactions are firm
real-time transactions.

In the first set of experiments we used a fixed fraction of
write transactions. The arrival rate of transactions was the
varying parameter. As expected, there is some overhead
when information about the importance of the transaction is
used in dynamic adjustment of serialization order. As Figure
2 indicates the overhead using additional information from
the transactions is quite low. The miss-ratio of the transac-
tions when using the OCC-PDATI algorithm is only slightly
higher than in the OCC-DATI.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 150 200 250 300 350 400 450 500

T
ra

ns
ac

tio
n 

m
is

s 
ra

tio

Arrival rate trans/s

OCC-DATI
OCC-PDATI

(a) 20% writes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 150 200 250 300 350 400 450 500

T
ra

ns
ac

tio
n 

m
is

s 
ra

tio

Arrival rate trans/s

OCC-DATI
OCC-PDATI

(b) 40% writes

Figure 2. Comparison with varying transaction
arrival rate.

Figure 3 shows the miss-ratio of transactions of high impor-
tance. Figure 3 demonstrates how the OCC-PDATI favors
transactions of high importance. OCC-PDATI clearly offers
better chances for high priority transactions to complete ac-
cording to their deadlines. The results clearly indicate that
OCC-PDATI meets the goal of favoring transactions of high
importance.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100 150 200 250 300 350 400 450 500

M
is

s 
ra

tio
 o

f t
ra

ns
ac

tio
ns

 o
f h

ig
h 

im
po

rt
an

ce

Arrival rate trans/s

OCC-DATI
OCC-PDATI

(a) 20% writes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100 150 200 250 300 350 400 450 500

M
is

s 
ra

tio
 o

f t
ra

ns
ac

tio
ns

 o
f h

ig
h 

im
po

rt
an

ce

Arrival rate trans/s

OCC-DATI
OCC-PDATI

(b) 40% writes

Figure 3. Miss ratio of transaction of high im-
portance.

Finally, we have compared performance of the OCC-PDATI
to OCC-DATI, OCC-DA, and OCC-TI. Figure 4(a) demon-
strates that the performance of the OCC-PDATI is better
than OCC-TI and similar to OCC-DA. Similarly Figure 4(b)
demonstrates how the OCC-PDATI favors transactions of
high importance. The miss-ratio of transactions of high im-
portance is clearly lower in OCC-PDATI when compared
with OCC-DATI, OCC-DA, and OCC-TI.

0

0.02

0.04

0.06

0.08

0.1

0.12

100 150 200 250 300 350 400 450 500

T
ra

ns
ac

tio
n 

m
is

s 
ra

tio

Arrival rate trans/s

OCC-DATI
OCC-PDATI

OCC-DA
OCC-TI

(a) 30% writes

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

100 150 200 250 300 350 400 450 500

M
is

s 
ra

tio
 o

f h
ig

h 
pr

io
rit

y 
tr

an
sa

ct
io

ns

Arrival rate trans/s

OCC-DATI
OCC-PDATI

OCC-DA
OCC-TI

(b) 30% writes

Figure 4. OCC-PDATI compared with OCC-
DATI, OCC-DA, and OCC-TI.



5 Conclusions

Although the optimistic approach has been shown to have a
better performance than locking protocols in firm real-time
database systems, it has problems of unnecessary restarts and
a high restart overhead. In this paper, we have proposed an
optimistic concurrency control protocol called OCC-PDATI
that takes into account the importance of transactions. It has
several advantages over the other concurrency control proto-
cols. The protocol maintains all the nice properties of for-
ward validation, a high degree of concurrency, freedom from
deadlock, and early detection and resolution of conflicts, re-
sulting in less waste of resources as well as a smaller number
of restarts. All of these are important to the performance of
RTDBSs and contribute to greater chances of meeting trans-
action deadlines.

An efficient method was designed to adjust the serialization
order dynamically amongst the conflicting transactions in
order to reduce the number of restarted transactions. The
method also incorporates the importance of the transaction
in conflict resolution. When compared with the OCC-DATI
protocol that uses dynamic serialization order adjustment,
the OCC-PDATI protocol offers the same efficiency and the
overhead is only slightly larger. The most important feature
of the OCC-PDATI is that it clearly offers better chances
for the transactions of high importance to complete before
their deadlines when compared to the OCC-DATI. The re-
sults clearly indicate that OCC-PDATI meets the goal of fa-
voring transactions of high importance.

Acknowledgments

We would like to thank Tiina Niklander, Lea Kutvonen,
Jaakko Kurhila and Matti Luukkainen from the University
of Helsinki for fruitful discussion during this research.

References

[1] S. R. Biyabani, J. A. Stankovic, and K. Ramamritham. The integration
of deadline and criticalness in hard real-time scheduling. In Proc. of
the Real-Time System Symposium, 1988.

[2] A. Datta and S. H. Son. A study of concurrency control in real-time
active database systems. Tech. report, Department of MIS, University
of Arizona, Tucson, 1996.

[3] A. Datta, I. R. Viguier, S. H Son, and V. Kumar. A study of prior-
ity cognizance in conflict resolution for firm real time database sys-
tems. In Proc. of the Second International Workshop on Real-Time
Databases: Issues and Applications, March 7-8, 1997.

[4] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions
of consistency and predicate locks in a database system. Communica-
tions of the ACM, 19(11):624–633, November 1976.

[5] T. Härder. Observations on optimistic concurrency control schemes.
Information Systems, 9(2):111–120, 1984.

[6] J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time optimistic
concurrency control. In Proc. of the 11th Real-Time Symposium, pages
94–103, 1990.

[7] J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley. Ex-
perimental evaluation of real-time optimistic concurrency control
schemes. In G. M. Lohman, A. Sernadas, and R. Camps, editors,
Proc. of the 17th VLDB Conference, pages 35–46, September 1991.

[8] J. Kiviniemi, T. Niklander, P. Porkka, and K. Raatikainen. Transaction
processing in the RODAIN real-time database system. In A. Bestavros
and V. Fay-Wolfe, editors, Real-Time Database and Information Sys-
tems, pages 355–375, 1997.

[9] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213–226, June
1981.

[10] K.-W. Lam, K.-Y. Lam, and S. Hung. An efficient real-time opti-
mistic concurrency control protocol. In Proc. of the First Interna-
tional Workshop on Active and Real-Time Database Systems, pages
209–225, June 1995.

[11] K.-W. Lam, K.-Y. Lam, and S. Hung. Real-time optimistic concur-
rency control protocol with dynamic adjustment of serialization order.
In Proc. of IEEE Real-Time Technology and Application Symposium,
pages 174–179, May 1995.

[12] J. Lee and S. H. Son. Using dynamic adjustment of serialization order
for real-time database systems. In Proc. of the 14th IEEE Real-Time
Systems Symposium, pages 66–75, 1993.

[13] J. Lee and S. H. Son. Performance of concurrency control algorithms
for real-time database systems. In V. Kumar, editor, Performance of
Concurrency Control Mechanisms in Centralized Database Systems,
pages 429–460. 1996.

[14] J. Lindström, T. Niklander, P. Porkka, and K. Raatikainen. A dis-
tributed real-time main-memory database for telecommunication. In
Databases in Telecommunications, Lecture Notes in Computer Sci-
ence, 1819, pages 158–173, 1999.

[15] J. Lindström and K. Raatikainen. Dynamic adjustment of serialization
order using timestamp intervals in real-time databases. In Proc. of
6th International Conference on Real-Time Computing Systems and
Applications, 1999.

[16] D. Menasce and T. Nakanishi. Optimistic versus pessimistic concur-
rency control mechanisms in database management systems. Informa-
tion Systems, 7(1):13–27, 1982.

[17] T. Niklander, J. Kiviniemi, and K. Raatikainen. A real-time database
for future telecommunication services. In D. Ga �̈ ��� editor, Intelligent
Networks and Intelligence in Networks, pages 413–430, 1997. Chap-
man & Hall.

[18] Dick Pountain. The Chorus microkernel. Byte, pages 131–138, Jan-
uary 1994.

[19] K. E. E. Raatikainen. Information aspects of services and service fea-
tures in intelligent network capability set 1. Report C-1994-45, Uni-
versity of Helsinki, Dept. of Computer Science, Helsinki, Finland,
September 1994.

[20] K. Ramamritham. Real-time databases. Distributed and Parallel
Databases, 1:199–226, 1993.

[21] P. S. Yu, K.-L. Wu, K.-J. Lin, and S. H. Son. On real-time databases:
Concurrency control and scheduling. Proc. of the IEEE, 82(1):140–
157, January 1994.


