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1 Introduction

A real-time database system(RTDBS) is a database system providing all features
on traditional database system such as data independence and concurrency con-
trol, while at the same time enforces real-time constraintsthat applications may
have [13]. Like a traditional database system, a RTDBS functions as a repository
of data, provides efficient storage, and performs retrievaland manipulation of in-
formation. However, as a part of a real-time system, tasks have time constraints, a
RTDBS has the added requirement to ensure some degree of confidence in meet-
ing the system’s timing requirements [51]. A real-time database is a database in
which transactions have deadlines or timing constraints [82]. Real-time databases
are commonly used in real-time computing applications thatrequire timely ac-
cess to data. And, usually, the definition of timeliness is not quantified; for some
applications it is milliseconds, and for others it is minutes [96].

Traditional database systems differ from a RTDBS in many aspects. Most
important RTDBSs have different performance goal, correctness criteria, and as-
sumptions about the applications. Unlike a traditional database system a RTDBS
may be evaluated based on how often transactions miss they deadlines, the av-
erage lateness or tardiness of late transactions, the cost incurred in transactions
missing their deadlines, data external consistency and data temporal consistency.



For example, a stock market changes very rapidly and is dynamic. The graphs
of the different markets appear to be very unstable and yet a database has to keep
track of current values for all of the markets of the Stock Exchange.

Numerous real-word applications contain time-constrained access to data as
well as access to data that has temporal validity [77]. Consider for example a tele-
phone switching system, network management, navigation systems, stock trading,
and command and control systems. Moreover consider the following tasks within
these environments: looking up the ”800 directory”, obstacle detection and avoid-
ance, radar tracking and recognition of objects. All of these entail gathering data
from the environment, processing information in the context of information ob-
tained in the past, and contributing timely response. Another characteristic of
these examples is that they entail processing both temporaldata, which loses its
validity after a certain time intervals, as well as historical data.

Traditional databases, hereafter referred to as databases, deal with persistent
data. Transactions access this data while preserving its consistency. The goal
of transaction and query processing approaches chosen in databases is to get a
good throughput or response time. In contrast, real-time systems can also deal
with temporal data, i.e., data that becomes outdated after acertain time. Due to
the temporal character of the data and the response-time requirements forced by
the environment, tasks in real-time systems have time constraints, e.g. periods or
deadlines. The important difference is that the goal of real-time systems is to meet
the time constraints of the tasks.

One of the most important points to remember here is that real-time does not
just mean fast [96]. Furthermore, real-time does not mean timing constraints that
are in nanoseconds or microseconds. Real-time means the need to manageexplicit
time constraints in a predictable fashion, that is, to use time-cognizant methods to
deal with deadlines or periodicity constraints associatedwith tasks. Databases are
useful in real-time applications because they combine several features that facil-
itate (1) the description of data, (2) the maintenance of correctness and integrity
of the data, (3) efficient access to the data, and (4) the correct executions of query
and transaction execution in spite of concurrency and failures [81].

Previous work on real-time databases in general has been based on simulation.
However, several prototypes of general-purpose real-timedatabases has been in-
troduced. One of the first real-time database implementations was the disk-based
transaction processing testbed, RT-CARAT [43]. Some of theearly prototype
projects are the REACH (Real-time Active and Heterogeneousmediator system
project [15], the STRIP (Stanford Real-time Information Processor) project [6].

Kim and Son [53] have presented a StarBase real-time database architec-
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ture. This architecture has been developed over a real-timemicrokernel oper-
ating system and it is based on relational model. Wolfe & al. [106] have imple-
mented a prototype of object-oriented real-time database architecture RTSORAC.
Their architecture is based on open OODB architecture with real-time extensions.
Database is implemented over a thread-based POSIX-compliant operating system.
Additionally, DeeDS project at the University of Skövde [10] and the BeeHive
project at the University of Virginia [98] are examples of more recent RTDBS
prototype projects.

Another object oriented architecture is presented by Cha & al. [17]. Their
M2RTSS-architecture is a main-memory database system. It provides classes,
that implement the core functionality of storage manager, real-time transaction
scheduling, and recovery. Real-Time Object-Oriented Database Architecture for
Intelligent Networks (RODAIN) [55], is an architecture fora real-time, object-
oriented, and fault-tolerant database management system.The RODAIN proto-
type system is a main-memory database, which uses priority and criticality based
scheduling and optimistic concurrency control.

At the same time, commercial “real-time” database system products have
started to appear in the marked such as Eaglespeed-RTDB [20], Clustra [44],
Timesten [19], Empress [], eXtremeDB [76], and SolidDB [78]. Although these
products may not be considered true RTDBS from the view-point of many re-
searchers in the RTDB community since most of them only have very limited
real-time features, they represent a significant step forward the success of RTDB.
Most of these products use main-memory database techniquesto achieve a better
real-time performance. Additionally, some of them includefeatures for real-time
transaction management.

Several research angles emerge from real-time databases: real-time concur-
rency control (e.g. [57, 23, 66]), buffer management (e.g. [21]), disk scheduling
(e.g. [49, 18]), system failure and recovery (e.g. [90, 89]), overload management
(e.g. [22, 31, 28]), sensor data [48], security (e.g. [46, 30, 93]), and distributed
real-time database systems (e.g. [37, 64, 63, 62, 71, 29, 72,104]).

While developing RTDB systems that provide the required timeliness of the
data and transactions, there are several issues that must beconsidered. Below is a
list of some of the issues that have been the subject of research in this field [84].

• Data, transactions and system characteristics: A RTDB must maintain not
only the logical consistency of the data and transactions, it must also main-
tain transaction timing properties as well as temporal consistency of the
data. These issues will be presented in more detail in Section 2.
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• Scheduling and transaction processing: Scheduling and transaction pro-
cessing issues that consider data and transaction featureshave been a major
part of the research that have been performed in the field of RTDB. These
issues will be discussed in more detail in Section 3.

• Managing I/O and Buffers: While the scheduling of CPU and data resources
have been studied extensively, other resources like disk I/O and buffers has
begun only recently [21, 84]. Work presented on [94, 16, 4, 18, 52, 49] has
shown that transaction priorities must be considered in thebuffer manage-
ment and Disk I/O.

• Concurrency control: Concurrency control has been one of the main re-
search areas in RTDBSs. This issue will be discussed in Section 4.

• Distribution: Many applications that require RTDB are not located on a
single computer. Instead, they are distributed and may require that real-time
data be distributed as well. Issues involved with distributing data include
deadline assignment [71, 104, 48, 108], distributed database architectures
[10], distributed resource management [38] data replication [72], replication
consistency [109] distributed transaction processing [102, 50, 62, 64], and
distributed concurrency control [86, 63].

• Quality of service and quality of data: Maintaining logical consistency of
the database and the temporal consistency of the data is hard[47]. There-
fore, there must be a trade-off made to decide with is more important [9,
103].

2 Real-Time Database Model

A real-time system consists of acontrolling systemand acontrolled system[82].
The controlled system is the environment with which the computer and its soft-
ware interacts. The controlling system interacts with its environment based on the
data read from various sensors, e.g., distance and speed sensors. It is essential that
the state of the environment is consistent with the actual state of the environment
to a high degree of accuracy. Otherwise, the actions of the controlling systems
may be disastrous. Hence, timely monitoring of the environment as well as timely
processing of the information from the environment is necessary. In many cases
the read data is processed to derive new data [25].
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This section discusses the characteristics of data and characteristics of trans-
actions in real-time database systems.

2.1 Data and Consistency

In addition to the timing constraints that originate from the need to continuously
track the environment, timing correctness requirements ina real-time database
system also surface because of the need to make data available to the control-
ling system for its decision-making activities [26]. The need to maintain consis-
tency between the actual state of the environment and the state as reflected by the
contents of the database leads to the notion oftemporal consistency. Temporal
consistency has two components [91]:

• Absolute consistency: Data is only valid between absolute points in time.
This is due to the need to keep the database consistent with the environment.

• Relative consistency: Different data items that are used to derive new data
must be temporally consistent with each other. This requires that a set of
data items used to derive a new data item form arelative consistency setR.

Data itemd is temporally consistentif and only if d is absolutely consistent
and relatively consistent [82]. Every data item in the real-time database consists
of the current state of the object (i.e. current value storedin that data item), and
two timestamps. These timestamps represent the time when this data item was last
accessed by the committed transaction. These timestamps are used in the concur-
rency control method to ensure that the transaction reads only from committed
transactions and writes after the latest committed write. Formally,

Definition 2.1 a Data item in the real-time database is denoted byd : (value,
RTS, WTS, avi), wheredvalue denotes the current state ofd, dRTS denotes when
the last committed transaction has read the current state ofd, dWTS denotes when
the last committed transaction has writtend, i.e., when the observation relating
to d was made, anddavi denotesd’s absolute validity interval, i.e., the length of
the time interval followingRWTS during whichd is considered to have absolute
validity.

A set of data items used to derive a new data item form a relative consistency
setR. Each such setR is associated with arelative validity interval. Assume that
d ∈ R. d has a correct state if and only if [82]:
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1. dvalue is logically consistent, i.e., satisfies all integrity constraints.

2. d is temporally consistent:

• Data itemd ∈ R is absolutely consistent if and only if
(current time − dobservationtime) ≤ dabsolutevalidityinterval.

• Data items are relatively consistent if and only if
∀d

′

∈ R|dtimestamp − d
′

timestamp| ≤ Rrelativevalidityinterval.

In this section we do not consider temporal data or temporal constraints. A
good book on temporal databases can be found in [99]. A discussion on integra-
tion of temporal and real-time database systems can be foundfrom [85]. Finally,
temporal consistency maintenance is discussed in [107, 110].

2.2 Transactions in Real-Time Database System

In this section, transactions are characterized along three dimensions; the man-
ner in which data is used by transactions, the nature of time constraints, and the
significance of executing a transaction by its deadline, or more precisely, the con-
sequence of missing specified time constraints [1].

To reason about transactions and about the correctness of the management
algorithms, it is necessary to define the concept formally. For the simplicity of the
exposition, it is assumed that each transaction reads and writes a data item at most
once. From now on the abbreviationsr, w, a andc are used for the read, write,
abort, and commit operations, respectively.

Definition 2.2 A transactionTi is partial order with an ordering relation≺i

where [11]:

1. Ti ⊆ {ri[x], wi[x] | x is a data item} ∪ {ai, ci};

2. ai ∈ Ti if and only ifci /∈ Ti;

3. if t is ci or ai, for any other operationp ∈ Ti, p ≺i t; and

4. if ri[x], wi[x] ∈ Ti, then eitherri[x] ≺i wi[x] or wi[x] ≺i ri[x].
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Informally, (1) a transaction is a subset of read, write and abort or commit
operations. (2) If the transaction executes an abort operation, then the transaction
is not executing a commit operation. (3) if a certain operation t is abort or commit
then the ordering relation defines that for all other operations precede operationt
in the execution of the transaction. (4) if both read and write operation are exe-
cuted to the same data item, then the ordering relation defines the order between
these operations.

A real-time transactionis a transaction with additional real-time attributes.
We have added additional attributes for areal-time transaction. These attributes
are used by the real-time scheduling algorithm and concurrency control method.
Additional attributes are the following [51]:

• Timing constraints - e.g. deadline is a timing constraint associated with the
transaction.

• Criticalness - It measures how critical it is that a transaction meets its timing
constraints. Different transactions have different criticalness. Furthermore,
criticalness is a different concept from deadline because atransaction may
have a very tight deadline but missing it may not cause great harm to the
system.

• Value function - Value function is related to a transaction’s criticalness. It
measures how valuable it is to complete the transaction at some point in
time after the transaction arrives.

• Resource requirements - Indicates the number of I/O operations to be exe-
cuted, expected CPU usage, etc.

• Expected execution time. Generally very hard to predict butcan be based
on estimate or experimentally measured value of worst case execution time.

• Data requirements - Read sets and write sets of transactions.

• Periodicity - If a transaction is periodic, what its period is.

• Time of occurrence of events - In witch point in time a transaction issues a
read or write request.

• Other semantics - Transaction type (read-only, write-only, etc.).
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Based on the values of the above attributes, the availability of the information,
and other semantics of the transactions, a real-time transaction can be character-
ized as follows [54]:

• Implication of missing deadline:hard, critical, or soft (firm)real-time

• Arrival pattern:periodic, sporadic, or aperiodic.

• Data access pattern: predefined (read-only, write-only, or update) or ran-
dom

• Data requirement:knownor unknown

• Runtime requirement i.e. pure processor or data access time: knownor
unknown

• Accessed data type:continuous, discrete, or both

The real-time database system apply all three types of transactions discussed
in the database literature [8]:

• Write-only transactionsobtain the state of the environment and write into
the database.

• Update transactionsderive a new data item and store it in the database.

• Read-only transactionsread data from the database and transmit that data
or derived actions based on that data to the controlling system.

The above classification can be used to tailor the appropriate concurrency con-
trol methods [51]. Some transaction-time constraints comefrom temporal consis-
tency requirements and some come from requirements imposedon system reac-
tion time. The former typically take the form of periodicityrequirements. Trans-
actions can also be distinguished based on the effect of missing a transaction’s
deadline.

Transaction processing and concurrency control in a real-time database system
should be based on priority and criticalness of the transactions [97]. Traditional
methods for transaction processing and concurrency control used in a real-time
environment would cause some unwanted behavior. Below the four typified prob-
lems are characterized and priority is used to denote eitherscheduling priority or
criticality of the transaction:
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• wasted restart: A wasted restart occurs if a higher priority transaction
aborts a lower priority transaction and later the higher priority transaction is
discarded when it misses its deadline.

• wasted wait: A wasted wait occurs if a lower priority transaction waits
for the commit of a higher priority transaction and later thehigher priority
transaction is discarded when it misses its deadline.

• wasted execution:A wasted execution occurs when a lower priority trans-
action in the validation phase is restarted due to a conflicting higher priority
transaction which has not finished yet.

• unnecessary restart:An unnecessary restart occurs when a transaction in
the validation phase is restarted even when history would beserializable.

Traditional two-phase locking methods suffer from the problem of wasted
restart and wasted wait. Optimistic methods suffer the problems of wasted ex-
ecution and unnecessary restart [67].

3 Transaction Processing in the Real-Time Database
System

This section presents several characteristics of transaction and query processing.
Transactions and queries have time constraints attached tothem and there are
different effects of not satisfying those constraints [82]. A key issue in transaction
processing ispredictability [95]. If a real-time transaction misses its deadline, it
can have catastrophic consequences. Therefore, it is necessary to able topredict
that such transactions will complete before their deadlines. This prediction will
be possible only if the worst-case execution time of a transaction and the data and
resource needs of the transaction is known.

In a database system, several sources of unpredictability exist [82]:

• Dependence of the transaction’s execution sequence on datavalues

• Data and resource conflicts

• Dynamic paging and I/O

• Transactions abort and the resulting rollbacks and restarts
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• Communication delays and site failures on distributed databases

Because a transaction’s execution path can depend on the values of the data
items it accessed, it may not be possible to predict the worst-case execution time of
the transaction. Similarly, it is better to avoid using unbounded loops and recursive
or dynamically created data structures in real-time transactions. Dynamic paging
and I/O unpredictability can be solved by using main memory databases [2]. Addi-
tionally, I/O unpredictability can be decreased using deadlines and priority-driven
I/O controllers (e.g. [4, 94]).

Transaction rollbacks also reduce predictability. Therefore, it is advisable to
allow a transaction to write only to its own memory area and after the transaction
is guaranteed to commit write the transaction’s changes to the database [67].

3.1 Scheduling Real-Time Transactions

A transaction scheduling policydefines how priorities are assigned to individual
transactions [1]. The goal of transaction scheduling is that as many transactions
as possible will meet their deadlines. Numerous transaction scheduling policies
are defined in the literature. Only a few examples are quoted here.

Transactions in a real-time database can often be expressedastasksin a real-
time system [1]. Scheduling involves the allocation of resources and time to tasks
in such a way that certain performance requirements are met.A typical real-time
system consists of several tasks, which must be executed concurrently. Each task
has avalue, which is gained to the system if a computation finishes in a specific
time. Each task also has adeadline, which indicates a time limit, when a result of
the computing becomes useless.

In this section, the termshard, soft, andfirm are used to categorize the trans-
actions [1]. This categorization tells thevalue imparted to the system when a
transaction meets its deadline. In systems which use priority-driven scheduling
algorithms, value and deadline are used to derive the priority [33, 100].

A characteristic of most real-time scheduling algorithms is the use of prior-
ity based scheduling [1]. Here transactions are assigned ’priorities’, which are
implicit or explicit functions of their deadlines orcriticality or both. The criti-
cality of a transaction is an indication of its level of importance. However, these
two requirements sometimes conflict with each other. That is, transactions with
very short deadlines might not be very critical, and vice versa [12]. Therefore,
the criticality of the transactions is used in place of the deadline in choosing the
appropriate value to priority. This avoid the dilemma of priority scheduling, yet
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integrates criticality and deadline so that not only the more critical transactions
meet their deadlines. The overall goal is to maximize the networth of the exe-
cuted transactions to the system.

Whereas arbitrary types of value functions can be associated with transactions
[14, 36, 45], the following simple functions occur more often (see also Figure 1):

• Hard deadline transactions are those which may result in a catastrophe if the
deadline is missed. One can say that a large negativevalueis imparted to the
system if a hard deadline is missed. These are typically safety-critical ac-
tivities, such as those that respond to life or environment-threatening emer-
gency situations (e.g. [75, 60]).

• Softdeadline transactions have some value even after their deadlines. Typ-
ically, the value drops to zero at a certain point past the deadline (e.g.
[42, 50]).

• Firm deadline transactions impart no value to the system once their dead-
lines expire, i.e., the value drops to zero at the deadline (e.g. [22, 36]).

Value

-

Time

Hard 

Firm

Soft

Deadlines to be met

Figure 1: The deadline types.
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3.2 Scheduling Paradigms

Several scheduling paradigms emerge, depending on a) whether a system per-
forms a schedulability analysis, b) if it does, whether it isdone statically or dy-
namically, and c) whether the result of the analysis itself produces a schedule or
plan according to which tasks are dispatched at run-time. Based on this the fol-
lowing classes of algorithms can be identified [83]:

• Static table-driven approaches: These perform a static schedulability analy-
sis and the resulting schedule is used at run time to decide when a task must
begin execution.

• Static priority-driven preemptive approaches: These perform a static schedu-
lability analysis but unlike the previous approach, no explicit schedule is
constructed. At run time, tasks are executed using a highestpriority first
policy.

• Dynamic planning-based approaches: The feasibility is checked at run time,
i.e., a dynamically arriving task is accepted for executiononly if it is found
feasible.

• Dynamic best effort approaches: The system tries to do its best to meet
deadlines.

In theearliest deadline first(EDF) [75] policy, the transaction with the earliest
deadline has the highest priority. Other transactions willreceive their priorities in
descending deadline order. In theleast slack first(LSF) [1] policy, the transaction
with the shortest slack time is executed first. The slack timeis an estimate of how
long the execution of a transaction can be delayed and still meet its deadline. In
the highest value(HV) [33] policy, transaction priorities are assigned according
to the transaction value attribute. A survey of transactionscheduling policies can
be found in [1].

3.3 Priority Inversion

In a real-time database environment resource control may interfere with CPU
scheduling [3]. When blocking is used to resolve a resource allocation such as
in 2PL [24], apriority inversion[2] event can occur if a higher priority transac-
tion gets blocked by a lower priority transaction.
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Figure 2 illustrates an execution sequence, where a priority inversion occurs.
A taskT3 executes and reserves a resource. A higher priority taskT1 pre-empts
taskT3 and tries to allocate a resource reserved by taskT3. Then, taskT2 becomes
eligible and blocksT3. BecauseT3 cannot be executed the resource remains re-
served suppressingT1. Thus,T1 misses its deadline due to the resource conflict.

Start of task execution

Completion of task

Context switch

Lock resource and continue

Try to lock resource and wait

Time
T3

T2

T1

deadline of T1

Figure 2: Priority inversion example.

In [87], apriority inheritanceapproach was proposed to address this problem.
The basic idea of priority inheritance protocols is that when a task blocks one or
more higher priority task the lower priority transaction inherits the highest priority
among conflicting transactions.

Figure 3 illustrates, how a priority inversion problem presented in figure 2 can
be solved with the priority inheritance protocol. Again, task T3 executes and re-
serves a resource, and a higher priority taskT1 tries to allocate the same resource.
In the priority inheritance protocol taskT3 inherits the priority ofT1 and executes.
Thus, taskT2 cannot pre-empt taskT3. WhenT3 releases the resource, the priority
of T3 returns to the original level. NowT1 can acquire the resource and complete
before its deadline.
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priority

T1

T3

T2

deadline of T1

Time

Start of task execution

Completion of task

Context switch

Lock resource and continue

Try to lock resource and wait

Release resource

Inherit

priority

of T1

Return

original

Figure 3: Priority inheritance example.

4 Concurrency Control in Real-Time Databases

A Real-Time Database System(RTDBS) processes transactions with timing con-
straints such as deadlines [82]. Its primary performance criterion is timeliness,
not average response time or throughput. The scheduling of transactions is driven
by priority order. Given these challenges, considerable research has recently been
devoted to designing concurrency control methods for RTDBSs and to evaluating
their performance (e.g. [2, 35, 40, 43, 61, 58] Most of these methods are based on
one of the two basic concurrency control mechanisms:locking [24] or optimistic
concurrency control(OCC) [56].

In real-time database systems transactions are scheduled according to their
timing constraints. Task scheduler assigns a priority for atask based on its tim-
ing constraints or criticality or both [82]. Therefore, high priority transactions
are executed before lower priority transactions. This is true only if a high prior-
ity transaction has some database operation ready for execution. If no operation
from a higher priority transaction is ready for execution, then an operation from a
lower priority transaction is allowed to execute its database operation. Therefore,
the operation of the higher priority transaction may conflict with the already ex-
ecuted operation of the lower priority transaction. In non-pre-emptive methods a
higher priority transaction must wait for the release of theresource. This is the
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priority inversion problem presented earlier. Therefore,data conflicts in concur-
rency control should also be based on transaction priorities or criticalness or both.
Hence, numerous traditional concurrency control methods have been extended to
the real-time database systems.

There are many ways in which the schedulers can be classified [11]. One obvi-
ous classification criterion is the mode of database distribution. Some schedulers
that have been proposed require a fully replicated database, while others can op-
erate on partially replicated or partitioned databases. The schedulers can also be
classified according to network topology. The most common classification crite-
rion however is the synchronization primitive, i.e. those methods that are based
on mutually exclusive access to shared data and those that attempt to order the ex-
ecution of the transactions according to a set of rules [80].There are two possible
views: the pessimistic view that many transactions will conflict with each other,
or the optimistic view that not too many transactions will conflict with each other.
Pessimistic methods synchronize the concurrent executionof transactions early in
their execution and optimistic methods delay the synchronization of transactions
until their terminations [105]. Therefore, the basic classification is as follows:

• Pessimistic Methods

– Timestamp Ordering Methods [79, 101]

– Serialization Graph Testing [11]

– Locking Methods [88, 41, 7, 62, 39, 63]

• Optimistic Methods

– Backward Validation Methods [32]

– Forward Validation Methods [34, 58, 59, 111, 68]

– Serialization Graph Testing [11, 79, 70]

– Hybrid Methods [69]

• Hybrid Methods [40, 92, 112, 27, 61]

In the locking-based methods, the synchronization of transactions is acquired
by using physical or logical locks on some portion or granuleof the database.
The timestamp ordering method involves organizing the execution order of trans-
actions so that they maintain mutual and internal consistency. This ordering is
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maintained by assigning timestamps to both the transactions and the data that are
stored in the database [80].

The state of a conventional non-versioning database represent the state of a
system at a single moment of time. Although the contents of the database change
as new information is added, these changes are viewed as modification to the state.
The current contents of the database may be viewed as a snapshot of the system.
Additionally, conventional DBSs provide no guarantee of transaction completion
times.

In the following sections recent related work on locking andoptimistic meth-
ods for real-time databases are presented.

4.1 Locking Methods in Real-Time Databases

In this section we present some well known pessimistic concurrency control meth-
ods. Most of these methods are based on 2PL.

2PL High Priority In the 2PL-HP (2PL High Priority) concurrency control
method [2, 5, 41] conflicts are resolved in favor of the higherpriority transactions.
If the priority of the lock requester is higher than the priority of the lock holder,
the lock holder is aborted, rolled back and restarted. The lock is granted to this
requester and the requester can continue its execution. If the priority of the lock
requester is lower than that of the lock holder, the requesting transaction blocks to
wait for the lock holder to finish and release its locks. High Priority concurrency
control may lead to the cascading blocking problem, a deadlock situation, and
priority inversion.

2PL Wait Promote In 2PL-WP (2PL Wait Promote) [3, 41] the analysis of con-
currency control method is developed from [2]. The mechanism presented uses
shared and exclusive locks. Shared locks permit multiple concurrent readers. A
new definition is made - the priority of a data object, which isdefined to be the
highest priority of all the transactions holding a lock on the data object. If the data
object is not locked, its priority is undefined.

A transaction can join in the read group of an object if and only if its prior-
ity is higher than the maximum priority of all transactions in the write group of
an object. Thus, conflicts arise from incompatibility of locking modes as usual.
Particular attention is given to conflicts that lead to priority inversions. A priority
inversion occurs when a transaction of high priority requests and blocks for an
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object which has lesser priority. This means that all the lock holders have lesser
priority than the requesting transaction. This same methodis also called 2PL-PI
(2PL Priority Inheritance) [41].

2PL Conditional Priority Inheritance Sometimes High Priority may be too
strict policy. If the lock holding transactionTh can finish in the time that the lock
requesting transactionTr can afford to wait, that is within the slack time ofTr, and
let Th proceed to execution andTr wait for the completion ofTh. This policy is
called 2PL-CR (2PL Conditional Restart) or 2PL-CPI (2PL Conditional Priority
Inheritance) [41].

Priority Ceiling Protocol [86, 87] the focus is to minimize the duration of
blocking to at most one lower priority task and prevent the formation of dead-
locks. A real-time database can often be decomposed into sets of database objects
that can be modeled as atomic data sets. For example, two radar stations track
an aircraft representing the local view in data objectsO1 andO2. These objects
might include e.g. the current location, velocity, etc. Each of these objects forms
an atomic data set, because the consistency constraints canbe checked and val-
idated locally. The notion of atomic data sets is especiallyuseful for tracking
multiple targets.

A simple locking method for elementary transactions is the two-phase locking
method; a transaction cannot release any lock on any atomic data set unless it has
obtained all the locks on that atomic data set. Once it has released its locks it
cannot obtain new locks on the same atomic data set, however,it can obtain new
locks on different data sets. The theory of modular concurrency control permits
an elementary transaction to hold locks across atomic data sets. This increases the
duration of locking and decreases preemptibility. In this study transactions do not
hold locks across atomic data sets.

Priority Ceiling Protocol minimizes the duration of blocking to at most one
elementary lower priority task and prevents the formation of deadlocks [86, 87].
The idea is that when a new higher priority transaction preempts a running trans-
action its priority must exceed the priorities of all preempted transactions, taking
the priority inheritance protocol into consideration. If this condition cannot be
met, the new transaction is suspended and the blocking transaction inherits the
priority of the highest transaction it blocks.

The priority ceiling of a data object is the priority of the highest priority trans-
action that may lock this object [86, 87]. A new transaction can preempt a lock-
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holding transaction if and only if its priority is higher than the priority ceilings of
all the data objects locked by the lock-holding transaction. If this condition is not
satisfied, the new transaction will wait and the lock-holding transaction inherits
the priority of the highest transaction that it blocks. The lock-holder continues
its execution, and when it releases the locks, its original priority is resumed. All
blocked transactions are awaked, and the one with the highest priority will start
its execution.

The fact that the priority of the new lock-requesting transaction must be higher
than the priority ceiling of all the data objects that it accesses, prevents the for-
mation of a potential deadlock. The fact that the lock-requesting transaction is
blocked only at most the execution time of one lower prioritytransaction guaran-
tees, the formation of blocking chains is not possible [86, 87].

Read/Write Priority Ceiling The Priority Ceiling Protocol is further advanced
in [88], where the Read/Write Priority Ceiling Protocol is introduced. It contains
two basic ideas. The first idea is the notion of priority inheritance. The second
idea is a total priority ordering of active transactions. A transaction is said to
be active if it has started but not completed its execution. Thus, a transaction
can execute or wait caused by a preemption in the middle of itsexecution. Total
priority ordering requires that each active transaction execute at a higher priority
level than the active lower priority transaction, taking priority inheritance and
read/write semantics into consideration.

4.2 Optimistic Methods in Real-Time Databases

Optimistic Concurrency Control(OCC) [32, 56], is based on the assumption that
conflict is rare, and that it is more efficient to allow transactions to proceed without
delays. When a transaction desires to commit, a check is performed to determine
whether a conflict has occurred. Therefore, there are three phases to an optimistic
concurrency control method:

• Read phase: The transaction reads the values of all data items it needs from
the database and stores them in local variables. Concurrency control sched-
uler stores identity of these data items to a read set. However, writes are ap-
plied only to local copies of the data items kept in the transaction workspace.
Concurrency control scheduler stores identity of all written data items to a
write set.
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• Validation phase: The validation phase ensures that all the committed trans-
actions have executed in a serializable fashion. For a read-only transaction,
this consists of checking that the data values read are stillthe current values
for the corresponding data items. For a transaction that haswrites, the vali-
dation consists of determining whether the current transaction has executed
serializable way.

• Write phase: This follows the successful validation phase for transactions
including write operations. During the write phase, all changes made by the
transaction are permanently stored into the database.

In the following we introduce some well known optimistic methods for real-
time database systems.

Broadcast Commit For RTDBSs, a variant of the classical concurrency control
method is needed. In Broadcast Commit, OPT-BC [35], when a transaction com-
mits, it notifies other running transactions that conflict with it. These transactions
are restarted immediately. There is no need to check a conflict with commit-
ted transactions since the committing transaction would have been restarted in
the event of a conflict. Therefore, a validating transactionis always guaranteed
to commit. The broadcast commit method detects the conflictsearlier than the
conventional concurrency control mechanism, resulting inearlier restarts, which
increases the possibility of meeting the transaction deadlines [35].

The main reason for the good performance of locking in a conventional DBMS
is that the blocking-based conflict resolution policy results in conservation of re-
sources, while the optimistic method with its restart-based conflict resolution pol-
icy wastes more resources [35]. But in a RTDBS environment, where conflict
resolution is based on transaction priorities, the OPT-BC policy effectively pre-
vents the execution of a low priority transaction that conflicts with a higher prior-
ity transaction, thus decreasing the possibility of further conflicts and the waste of
resources is reduced. Conversely, 2PL-HP loses some of the basic 2PL blocking
factor due to the partially restart-based nature of the HighPriority scheme.

The delayed conflict resolution of optimistic methods aids in making better
decisions since more information about the conflicting transactions is available at
this stage [35]. Compared to 2PL-HP, a transaction could be restarted by, or wait
for, another transaction which is later discarded. Such restarts or waits are useless
and cause performance degradation. OPT-BC guarantees the commit and thus the
completion of each transaction that reaches the validationstage. Only validating
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transactions can cause the restart of other transactions, thus, all restarts generated
by the OPT-BC method are useful.

First of all, OPT-BC has a bias against long transactions (i.e. long transac-
tions are more likely to be aborted if there is conflicts), like in the conventional
optimistic methods [35]. Second, as the priority information is not used in the
conflict resolution, a committing lower priority transaction can restart a higher
priority transaction very close to its validation stage, which will cause missing the
deadline of the restarted higher priority transaction [34].

OPT-SACRIFICE In the OPT-SACRIFICE [34] method, when a transaction
reaches its validation phase, it checks for conflicts with other concurrently run-
ning transactions. If conflicts are detected and at least oneof the conflicting trans-
actions has a higher priority, then the validating transaction is restarted, i.e. sac-
rificed in favor of the higher priority transaction. Although this method prefers
high priority transactions, it has two potential problems.Firstly, if a higher pri-
ority transaction causes a lower priority transaction to berestarted, but fails in
meeting its deadline, the restart was useless. This degrades the performance. Sec-
ondly, if priority fluctuations are allowed, there may be themutual restarts prob-
lem between a pair of transactions (i.e. both transactions are aborted). These two
drawbacks are analogous to those in the 2PL-HP method [34].

OPT-WAIT and WAIT-X When a transaction reaches its validation phase, it
checks if any of the concurrently running other transactions have a higher priority.
In the OPT-WAIT [34] case the validating transaction is madeto wait, giving
the higher priority transactions a chance to make their deadlines first. While a
transaction is waiting, it is possible that it will be restarted due to the commit of
one of the higher priority transactions. Note that the waiting transaction does not
necessarily have to be restarted. Under the broadcast commit scheme a validating
transaction is said to conflict with another transaction, ifthe intersection of the
write set of the validating transaction and the read set of the conflicting transaction
is not empty. This result does not imply that the intersection of the write set of the
conflicting transaction and the read set of the validating transaction is not empty
either [34].

The WAIT-50 [34] method is an extension of the OPT-WAIT - it contains the
priority wait mechanism from the OPT-WAIT method and a wait control mech-
anism. This mechanism monitors transaction conflict statesand dynamically de-
cides when and for how long a low priority transaction shouldbe made to wait for
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the higher priority transactions. In WAIT-50, a simple 50 percent rule is used - a
validating transaction is made to wait while half or more of its conflict set is com-
posed of transactions with higher priority. The aim of the wait control mechanism
is to detect when the beneficial effects of waiting are outweighed by its drawbacks
[34].

We can view OPT-BC, OPT-WAIT and WAIT-50 as being special cases of
a general WAIT-X method, where X is the cutoff percentage of the conflict set
composed of higher priority transactions. For these methods X takes the values
infinite, 0 and 50 respectively.

4.3 Validation Methods

The validation phase ensures that all the committed transactions have executed
in a serializable fashion [56]. Most of the validation methods use the following
principles to ensure serializability. If a transactionTi is before transactionTj in the
serialization graph( i.e.Ti ≺ Tj), the following two conditions must be satisfied
[67]:

1. No overwriting. The writes ofTi should not overwrite the writes ofTj.

2. No read dependency. The writes ofTj should not affect the read phase of
Ti.

Generally, condition 1 is automatically ensured in most optimistic methods
because I/O operations in the write phase are required to be done sequentially in
the critical section [67]. Thus most validation schemes consider only condition
2. During the write phase, all changes made by the transaction are permanently
installed into the database. To design an efficient real-time optimistic concurrency
control method, three issues have to be considered [67]:

1. which validation scheme should be used to detect conflictsbetween trans-
actions;

2. how to minimize the number of transaction restarts; and

3. how to select a transaction or transactions to restart when a nonserializable
execution is detected.
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In Backward Validation[32], the validating transaction is checked for conflicts
against (recently) committed transactions. Conflicts are detected by comparing the
read set of the validating transaction and the write sets of the committed transac-
tions. If the validating transaction has a data conflict withany committed transac-
tions, it will be restarted. The classical optimistic method in [56] is based on this
validation process.

In Forward Validation[32], the validating transaction is checked for conflicts
against other active transactions. Data conflicts are detected by comparing the
write set of the validating transaction and the read set of the active transactions.
If an active transaction has read an object that has been concurrently written by
the validating transaction, the values of the object used bythe transactions are not
consistent. Such a data conflict can be resolved by restarting either the validating
transaction or the conflicting transactions in the read phase. Optimistic methods
based on this validation process are studied in [32]. Most ofthe proposed opti-
mistic methods are based on Forward Validation.

Forward Validation is preferable for the real-time database systems because
Forward Validation provides flexibility for conflict resolution [32]. Either the val-
idating transaction or the conflicting active transactionsmay be chosen to restart.
In addition to this flexibility, Forward Validation has the advantage of early detec-
tion and resolution of data conflicts. In recent years, the use of optimistic methods
for concurrency control in real-time databases has received more and more atten-
tion. Different real-time optimistic methods have been proposed.

Forward Validation (OCC-FV) [32] is based on the assumptionthat the se-
rialization order of transactions is determined by the arriving order of the trans-
actions at the validation phase. Thus the validating transaction, if not restarted,
always precedes concurrently running active transactionsin the serialization or-
der. A validation process based on this assumption can causerestarts that are not
necessary to ensure data consistency. These restarts should be avoided.

The major performance problem with optimistic concurrencycontrol methods
is the late restart [67]. Sometimes the validation process using the read sets and
write sets erroneously concludes that a nonserializable execution has occurred,
even though it has not done so in actual execution [92] (see Example 1). There-
fore, one important mechanism to improve the performance ofan optimistic con-
currency control method is to reduce the number of restartedtransactions.

Example 1 Consider the following transactionsT1, T2 and historyH1:
T1: r1[x]c1

T2: w2[x]c2
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H1: r1[x]w2[x]c2

Based on the OCC-FV method [32],T1 has to be restarted. However, this is
not necessary, because whenT1 is allowed to commit such as:

H2 : r1[x]w2[x]c2c1,
then the schedule ofH2 is equivalent to the serialization orderT1 → T2 as the

actual write ofT2 is performed after its validation and after the read ofT1. There
is no cycle in their serialization graph andH2 is serializable.

One way to reduce the number of transaction restarts is to dynamically ad-
just the serialization order of the conflicting transactions [67]. Such methods are
calleddynamic adjustment of the serialization order[67]. When data conflicts be-
tween the validating transaction and active transactions are detected in the valida-
tion phase, there is no need to restart conflicting active transactions immediately.
Instead, a serialization order of these transactions can bedynamically defined.

Definition 4.1 Suppose there is a validating transactionTv and a set of active
transactionsTj(j = 1, 2, ..., n). There are three possible types of data conflicts
which can cause a serialization order betweenTv andTj [67, 73, 92]:

1. RS(Tv) ∩ WS(Tj) 6= ∅ (read-write conflict)
A read-write conflict betweenTv and Tj can be resolved by adjusting the
serialization order betweenTv and Tj as Tv → Tj so that the read ofTv

cannot be affected byTj ’s write. This type of serialization adjustment is
called forward ordering or forward adjustment.

2. WS(Tv) ∩ RS(Tj) 6= ∅ (write-read conflict)
A write-read conflict betweenTv and Tj can be resolved by adjusting the
serialization order betweenTv andTj asTj → Tv. It means that the read
phase ofTj is placed before the write ofTv. This type of serialization ad-
justment is called backward ordering or backward adjustment.

3. WS(Tv) ∩ WS(Tj) 6= ∅ (write-write conflict)
A write-write conflict betweenTv andTj can be resolved by adjusting the
serialization order betweenTv andTj asTv → Tj such that the write ofTv

cannot overwriteTj ’s write (forward ordering).
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OCC-TI The OCC-TI [67, 65] method resolves conflicts using the timestamp
intervals of the transactions. Every transaction must be executed within a specific
time slot. When an access conflict occurs, it is resolved using the read and write
sets of the transaction together with the allocated time slot. Time slots are adjusted
when a transaction commits.

OCC-DA OCC-DA [58] is based on the Forward Validation scheme [32]. The
number of transaction restarts is reduced by using dynamic adjustment of the seri-
alization order. This is supported with the use of a dynamic timestamp assignment
scheme. Conflict checking is performed at the validation phase of a transaction.
No adjustment of the timestamps is necessary in case of data conflicts in the read
phase. In OCC-DA the serialization order of committed transactions may be dif-
ferent from their commit order.

OCC-DATI Optimistic Concurrency Control with Dynamic Adjustment using
Timestamp Intervals (OCC-DATI) [74]. OCC-DATI is based on forward valida-
tion. The number of transaction restarts is reduced by dynamic adjustment of the
serialization order which is supported by similar timestamp intervals as in OCC-
TI. Unlike the OCC-TI method, all checking is performed at the validation phase
of each transaction. There is no need to check for conflicts while a transaction
is still in its read phase. As the conflict resolution betweenthe transactions in
OCC-DATI is delayed until a transaction is near completion,there will be more
information available for making the choice in resolving the conflict. OCC-DATI
also has a new final timestamp selection method compared to OCC-TI.

5 Summary

The field of real-time database research has evolved greatlyover the relatively
short time of its existence. The future of RTDB research is dependent of contin-
ues progress of this evolution. Research on this field shouldcontinue to pursue
state-of-the-art applications and apply both existing techniques to them as well as
develop a new ones when needed.
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[101] Ö. Ulusoy and G. Belford. Real-time transaction schedulingin database
systems.Information Systems, 18(6):559–580, 1993.
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