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1 Introduction

A real-time database systefRTDBS) is a database system providing all features
on traditional database system such as data independedamacurrency con-
trol, while at the same time enforces real-time constraims$ applications may
have [13]. Like a traditional database system, a RTDBS fanstas a repository
of data, provides efficient storage, and performs retriaaal manipulation of in-
formation. However, as a part of a real-time system, taske hae constraints, a
RTDBS has the added requirement to ensure some degree aferoediin meet-
ing the system’s timing requirements [51]. A real-time daise is a database in
which transactions have deadlines or timing constrairk [Real-time databases
are commonly used in real-time computing applications thqtiire timely ac-
cess to data. And, usually, the definition of timeliness isqu@ntified; for some
applications it is milliseconds, and for others it is mirsuf@6].

Traditional database systems differ from a RTDBS in manyeeisp Most
important RTDBSs have different performance goal, coness criteria, and as-
sumptions about the applications. Unlike a traditionahtlase system a RTDBS
may be evaluated based on how often transactions miss tlaajinkes, the av-
erage lateness or tardiness of late transactions, thereastreéd in transactions
missing their deadlines, data external consistency araltdatporal consistency.



For example, a stock market changes very rapidly and is dyndrhe graphs
of the different markets appear to be very unstable and yatabdse has to keep
track of current values for all of the markets of the StocklEame.

Numerous real-word applications contain time-constiiaecess to data as
well as access to data that has temporal validity [77]. Qlardbr example a tele-
phone switching system, network management, navigatistes\s, stock trading,
and command and control systems. Moreover consider tranfiolf tasks within
these environments: looking up the "800 directory”, obigt@etection and avoid-
ance, radar tracking and recognition of objects. All of thestail gathering data
from the environment, processing information in the conténformation ob-
tained in the past, and contributing timely response. A@ootiharacteristic of
these examples is that they entail processing both temgatal which loses its
validity after a certain time intervals, as well as histatidata.

Traditional databases, hereafter referred to as databadeaiswith persistent
data. Transactions access this data while preserving itsistency. The goal
of transaction and query processing approaches chosertabages is to get a
good throughput or response time. In contrast, real-tinsesys can also deal
with temporal data, i.e., data that becomes outdated aftertain time. Due to
the temporal character of the data and the response-tinugeatents forced by
the environment, tasks in real-time systems have time @ingt, e.g. periods or
deadlines. The important difference is that the goal oftiea¢ systems is to meet
the time constraints of the tasks.

One of the most important points to remember here is thattiaal does not
just mean fast [96]. Furthermore, real-time does not meaimgj constraints that
are in nanoseconds or microseconds. Real-time means tiémeanagexplicit
time constraints in a predictable fashion, that is, to use{cognizant methods to
deal with deadlines or periodicity constraints associatia tasks. Databases are
useful in real-time applications because they combineraéfeatures that facil-
itate (1) the description of data, (2) the maintenance ofextness and integrity
of the data, (3) efficient access to the data, and (4) the darecutions of query
and transaction execution in spite of concurrency andries|(81].

Previous work on real-time databases in general has beed basimulation.
However, several prototypes of general-purpose real-tiatabases has been in-
troduced. One of the first real-time database implememsiticas the disk-based
transaction processing testbed, RT-CARAT [43]. Some ofdady prototype
projects are the REACH (Real-time Active and Heterogeneoediator system
project [15], the STRIP (Stanford Real-time Informatiom&essor) project [6].

Kim and Son [53] have presented a StarBase real-time daadrahitec-
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ture. This architecture has been developed over a realttimeokernel oper-

ating system and it is based on relational model. Wolfe & 206 have imple-

mented a prototype of object-oriented real-time databagetacture RTSORAC.
Their architecture is based on open OODB architecture w#htime extensions.
Database is implemented over a thread-based POSIX-carhpparating system.
Additionally, DeeDS project at the University of ®kde [10] and the BeeHive
project at the University of Virginia [98] are examples of mmaecent RTDBS
prototype projects.

Another object oriented architecture is presented by Cha. §1&]. Their
M2RTSS-architecture is a main-memory database systemrovides classes,
that implement the core functionality of storage manageal-time transaction
scheduling, and recovery. Real-Time Object-Oriented Bagta Architecture for
Intelligent Networks (RODAIN) [55], is an architecture farreal-time, object-
oriented, and fault-tolerant database management sysiém RODAIN proto-
type system is a main-memory database, which uses priorityaticality based
scheduling and optimistic concurrency control.

At the same time, commercial “real-time” database systeauymts have
started to appear in the marked such as Eaglespeed-RTDB (Ad§tra [44],
Timesten [19], Empress [], eXtremeDB [76], and SolidDB [78]though these
products may not be considered true RTDBS from the view{poirmany re-
searchers in the RTDB community since most of them only harg {imited
real-time features, they represent a significant step fiahtvee success of RTDB.
Most of these products use main-memory database techrigjaesieve a better
real-time performance. Additionally, some of them incldeatures for real-time
transaction management.

Several research angles emerge from real-time databasastime concur-
rency control (e.g. [57, 23, 66]), buffer management (e2d.])} disk scheduling
(e.q. [49, 18]), system failure and recovery (e.g. [90, 8&Erload management
(e.q. [22, 31, 28]), sensor data [48], security (e.g. [46,9]])), and distributed
real-time database systems (e.g. [37, 64, 63, 62, 71, 29042).

While developing RTDB systems that provide the requirecktiness of the
data and transactions, there are several issues that mashdidered. Below is a
list of some of the issues that have been the subject of idseathis field [84].

e Data, transactions and system characteristidBsRTDB must maintain not
only the logical consistency of the data and transactiamsust also main-
tain transaction timing properties as well as temporal istexscy of the
data. These issues will be presented in more detail in Se2tio
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Scheduling and transaction processin§cheduling and transaction pro-
cessing issues that consider data and transaction featavedeen a major
part of the research that have been performed in the field 8BThese
issues will be discussed in more detail in Section 3.

Managing I/O and BuffersWhile the scheduling of CPU and data resources
have been studied extensively, other resources like dslamd buffers has
begun only recently [21, 84]. Work presented on [94, 16, 45P349] has
shown that transaction priorities must be considered irbtler manage-
ment and Disk I/O.

Concurrency control Concurrency control has been one of the main re-
search areas in RTDBSs. This issue will be discussed inddesti

Distribution: Many applications that require RTDB are not located on a
single computer. Instead, they are distributed and mayinethat real-time
data be distributed as well. Issues involved with distifidata include
deadline assignment [71, 104, 48, 108], distributed da®laachitectures
[10], distributed resource management [38] data repbodii 2], replication
consistency [109] distributed transaction processin@[B0, 62, 64], and
distributed concurrency control [86, 63].

Quality of service and quality of dataMaintaining logical consistency of
the database and the temporal consistency of the data i§4¥@rdThere-
fore, there must be a trade-off made to decide with is moreoitapt [9,
103].

Real-Time Database Model

A real-time system consists ofcantrolling systenand acontrolled systeni82].
The controlled system is the environment with which the cot@apand its soft-
ware interacts. The controlling system interacts withm@®nment based on the
data read from various sensors, e.g., distance and spesutseltis essential that
the state of the environment is consistent with the actadd sif the environment
to a high degree of accuracy. Otherwise, the actions of théra@bng systems
may be disastrous. Hence, timely monitoring of the envirentas well as timely
processing of the information from the environment is nsags In many cases
the read data is processed to derive new data [25].



This section discusses the characteristics of data andaesistics of trans-
actions in real-time database systems.

2.1 Data and Consistency

In addition to the timing constraints that originate frone theed to continuously
track the environment, timing correctness requirements real-time database
system also surface because of the need to make data awdibatiie control-
ling system for its decision-making activities [26]. Thesdeio maintain consis-
tency between the actual state of the environment and tteeagaeflected by the
contents of the database leads to the notioteofporal consistencyTemporal
consistency has two components [91]:

e Absolute consistencyData is only valid between absolute points in time.
This is due to the need to keep the database consistent wigmtironment.

¢ Relative consistencyDifferent data items that are used to derive new data
must be temporally consistent with each other. This reqguinat a set of
data items used to derive a new data item forrelative consistency sét.

Data itemd is temporally consistent and only if d is absolutely consistent
and relatively consistent [82]. Every data item in the t&alke database consists
of the current state of the object (i.e. current value stangtiat data item), and
two timestamps. These timestamps represent the time wisettetta item was last
accessed by the committed transaction. These timestampsad in the concur-
rency control method to ensure that the transaction realysfiamm committed
transactions and writes after the latest committed writentfally,

Definition 2.1 a Data item in the real-time database is denoteddby (value,
RTS,WTS, avi), whered, ... denotes the current state @fdrs denotes when
the last committed transaction has read the current statk @f,rs denotes when
the last committed transaction has writténi.e., when the observation relating
to d was made, and,,; denotes/’'s absolute validity interval, i.e., the length of
the time interval followingRy, s during whichd is considered to have absolute
validity.

A set of data items used to derive a new data item form a relatwsistency
setR. Each such sek is associated with eelative validity interval Assume that
d € R. d has a correct state if and only if [82]:
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1. d,awe IS logically consistent, i.e., satisfies all integrity coasts.

2. d is temporally consistent:

e Dataitemd € R is absolutely consistent if and only if

(current_tzme - dobservationtime) S dabsolutevalidityinte'rval-

e Data items are relatively consistent if and only if

/

/
Vd € R|dtimestamp - dtimestamp’ S Rrelativevalidityinterval-

In this section we do not consider temporal data or temparasitaints. A
good book on temporal databases can be found in [99]. A dismu®n integra-
tion of temporal and real-time database systems can be fioomd[85]. Finally,
temporal consistency maintenance is discussed in [107, 110

2.2 Transactions in Real-Time Database System

In this section, transactions are characterized along ti®ensions; the man-
ner in which data is used by transactions, the nature of tiomstcaints, and the
significance of executing a transaction by its deadline, arenprecisely, the con-
sequence of missing specified time constraints [1].

To reason about transactions and about the correctnese ohdhagement
algorithms, it is necessary to define the concept formaty.tke simplicity of the
exposition, it is assumed that each transaction reads atebvardata item at most
once. From now on the abbreviationsv, a andc are used for the read, write,
abort, and commit operations, respectively.

Definition 2.2 A transaction”; is partial order with an ordering relation<;
where [11]:

1. T; C {ri[z],w;[z] | xis a data item} U {a;, ¢; };

2. a; € Ty ifand only ifc; ¢ T;

3. iftis¢; or a;, for any other operatiop € T;, p <; t; and
4
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Informally, (1) a transaction is a subset of read, write abdraor commit
operations. (2) If the transaction executes an abort dparahen the transaction
is not executing a commit operation. (3) if a certain operatiis abort or commit
then the ordering relation defines that for all other operatiprecede operatian
in the execution of the transaction. (4) if both read andewvoperation are exe-
cuted to the same data item, then the ordering relation defireeorder between
these operations.

A real-time transactions a transaction with additional real-time attributes.
We have added additional attributes foreal-time transaction These attributes
are used by the real-time scheduling algorithm and coneayreontrol method.
Additional attributes are the following [51]:

e Timing constraints - e.g. deadline is a timing constraisbagted with the
transaction.

e Criticalness - It measures how critical it is that a tranisetneets its timing
constraints. Different transactions have different caliness. Furthermore,
criticalness is a different concept from deadline becausaresaction may
have a very tight deadline but missing it may not cause graahho the
system.

e Value function - Value function is related to a transactsocriticalness. It
measures how valuable it is to complete the transactionraegmint in
time after the transaction arrives.

e Resource requirements - Indicates the number of /0 op&isito be exe-
cuted, expected CPU usage, etc.

e Expected execution time. Generally very hard to predictdaum be based
on estimate or experimentally measured value of worst casgiéon time.

e Data requirements - Read sets and write sets of transactions
e Periodicity - If a transaction is periodic, what its periad i

e Time of occurrence of events - In witch point in time a tratgacissues a
read or write request.

e Other semantics - Transaction type (read-only, write-cgtly.).



Based on the values of the above attributes, the availabilithe information,
and other semantics of the transactions, a real-time tcibgaacan be character-
ized as follows [54]:

e Implication of missing deadlinéhard, critical, or soft (firm)real-time
¢ Arrival pattern:periodic sporadic or aperiodic

e Data access pattern: predefinegla@d-only write-only, or updatg or ran-
dom

e Data requirementinownor unknown

e Runtime requirement i.e. pure processor or data access tmmwvnor
unknown

e Accessed data typeontinuousdiscrete or both

The real-time database system apply all three types ofactioss discussed
in the database literature [8]:

¢ Write-only transaction®btain the state of the environment and write into
the database.

e Update transactionderive a new data item and store it in the database.

e Read-only transactionsead data from the database and transmit that data
or derived actions based on that data to the controllingegyst

The above classification can be used to tailor the apprepr@icurrency con-
trol methods [51]. Some transaction-time constraints ctyora temporal consis-
tency requirements and some come from requirements impmssgistem reac-
tion time. The former typically take the form of periodicitgquirements. Trans-
actions can also be distinguished based on the effect ofngisstransaction’s
deadline.

Transaction processing and concurrency control in a need-latabase system
should be based on priority and criticalness of the trarsax{97]. Traditional
methods for transaction processing and concurrency damges in a real-time
environment would cause some unwanted behavior. Belowotlvaypified prob-
lems are characterized and priority is used to denote esttterduling priority or
criticality of the transaction:



e wasted restart: A wasted restart occurs if a higher priority transaction
aborts a lower priority transaction and later the highewonity transaction is
discarded when it misses its deadline.

e wasted wait: A wasted wait occurs if a lower priority transaction waits
for the commit of a higher priority transaction and later kiigher priority
transaction is discarded when it misses its deadline.

e wasted execution:A wasted execution occurs when a lower priority trans-
action in the validation phase is restarted due to a comftjdtigher priority
transaction which has not finished yet.

e unnecessary restart:An unnecessary restart occurs when a transaction in
the validation phase is restarted even when history woukkbalizable.

Traditional two-phase locking methods suffer from the peab of wasted
restart and wasted wait. Optimistic methods suffer the lprab of wasted ex-
ecution and unnecessary restart [67].

3 Transaction Processing in the Real-Time Database
System

This section presents several characteristics of traioseahd query processing.
Transactions and queries have time constraints attach#teto and there are
different effects of not satisfying those constraints [82key issue in transaction
processing ipredictability [95]. If a real-time transaction misses its deadline, it
can have catastrophic consequences. Therefore, it issagds able t@redict
that such transactions will complete before their deadlirEhis prediction will
be possible only if the worst-case execution time of a tretisiaand the data and
resource needs of the transaction is known.

In a database system, several sources of unpredictabilgy[82]:

¢ Dependence of the transaction’s execution sequence ovalats
e Data and resource conflicts
e Dynamic paging and 1/0O

e Transactions abort and the resulting rollbacks and rastart
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e Communication delays and site failures on distributedlzizdas

Because a transaction’s execution path can depend on thesvaf the data
items it accessed, it may not be possible to predict the va@st execution time of
the transaction. Similarly, it is better to avoid using uabded loops and recursive
or dynamically created data structures in real-time tretisas. Dynamic paging
and I/0 unpredictability can be solved by using main memaitgbases [2]. Addi-
tionally, I/O unpredictability can be decreased using tlaad and priority-driven
I/O controllers (e.g. [4, 94]).

Transaction rollbacks also reduce predictability. Therefit is advisable to
allow a transaction to write only to its own memory area andrahe transaction
is guaranteed to commit write the transaction’s changdsetalatabase [67].

3.1 Scheduling Real-Time Transactions

A transaction scheduling policgefines how priorities are assigned to individual
transactions [1]. The goal of transaction scheduling i$ #isamany transactions
as possible will meet their deadlines. Numerous transacitheduling policies
are defined in the literature. Only a few examples are quoteel. h

Transactions in a real-time database can often be exprassasksin a real-
time system [1]. Scheduling involves the allocation of teses and time to tasks
in such a way that certain performance requirements areAtgpical real-time
system consists of several tasks, which must be executedicently. Each task
has avalue which is gained to the system if a computation finishes inexiic
time. Each task also hagdaadline which indicates a time limit, when a result of
the computing becomes useless.

In this section, the termisard, soft andfirm are used to categorize the trans-
actions [1]. This categorization tells thvalue imparted to the system when a
transaction meets its deadline. In systems which use pridriven scheduling
algorithms, value and deadline are used to derive the pri@8, 100].

A characteristic of most real-time scheduling algorithmshe use of prior-
ity based scheduling [1]. Here transactions are assignearijes’, which are
implicit or explicit functions of their deadlines ariticality or both. The criti-
cality of a transaction is an indication of its level of imgamce. However, these
two requirements sometimes conflict with each other. Thatasmsactions with
very short deadlines might not be very critical, and vicesagl2]. Therefore,
the criticality of the transactions is used in place of thadlme in choosing the
appropriate value to priority. This avoid the dilemma ofopity scheduling, yet

10



integrates criticality and deadline so that not only the encritical transactions
meet their deadlines. The overall goal is to maximize thewweth of the exe-
cuted transactions to the system.

Whereas arbitrary types of value functions can be assalowté transactions
[14, 36, 45], the following simple functions occur more ofi@ee also Figure 1):

e Hard deadline transactions are those which may result in a cajpde if the
deadline is missed. One can say that a large negadiveis imparted to the
system if a hard deadline is missed. These are typicallyysaféical ac-
tivities, such as those that respond to life or environnibreatening emer-
gency situations (e.g. [75, 60]).

¢ Softdeadline transactions have some value even after theitidesadTyp-
ically, the value drops to zero at a certain point past thedli®a (e.g.
[42, 50]).

e Firm deadline transactions impart no value to the system ongedbad-
lines expire, i.e., the value drops to zero at the deadlinge (22, 36]).

Value
Haa e Deadlines to be met
Firm v
Soft y
Time

Figure 1: The deadline types.
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3.2 Scheduling Paradigms

Several scheduling paradigms emerge, depending on a) erhatlystem per-
forms a schedulability analysis, b) if it does, whether itle statically or dy-

namically, and c) whether the result of the analysis itsedfdpces a schedule or
plan according to which tasks are dispatched at run-timese&an this the fol-

lowing classes of algorithms can be identified [83]:

¢ Static table-driven approaches: These perform a statedsdability analy-
sis and the resulting schedule is used at run time to deciéa atask must
begin execution.

e Static priority-driven preemptive approaches: Theseqguarfa static schedu-
lability analysis but unlike the previous approach, no &xpkchedule is
constructed. At run time, tasks are executed using a highesity first

policy.

e Dynamic planning-based approaches: The feasibility iskde at run time,
i.e., a dynamically arriving task is accepted for execubaly if it is found
feasible.

e Dynamic best effort approaches: The system tries to do i feemeet
deadlines.

In theearliest deadline firsEDF) [75] policy, the transaction with the earliest
deadline has the highest priority. Other transactionsredtive their priorities in
descending deadline order. In teast slack firs(LSF) [1] policy, the transaction
with the shortest slack time is executed first. The slack t8van estimate of how
long the execution of a transaction can be delayed and s#itnts deadline. In
the highest valugHV) [33] policy, transaction priorities are assigned aciiog
to the transaction value attribute. A survey of transacsidmeduling policies can
be found in [1].

3.3 Periority Inversion

In a real-time database environment resource control migyfane with CPU
scheduling [3]. When blocking is used to resolve a resouliogaion such as
in 2PL [24], apriority inversion[2] event can occur if a higher priority transac-
tion gets blocked by a lower priority transaction.
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Figure 2 illustrates an execution sequence, where a riorersion occurs.
A taskT; executes and reserves a resource. A higher priority Tagke-empts
taskT3 and tries to allocate a resource reserved by TgsH hen, taski; becomes
eligible and blocksl;. Becausel; cannot be executed the resource remains re-
served suppressing . Thus,7; misses its deadline due to the resource conflict.

deadline of T1

T1 }—D i

T2 | |

T3 }—l ii

Time

——  Start of task execution D Lock resource and continue
—1  Completion of task D Try to lock resource and wait
vy Context switch

Figure 2: Priority inversion example.

In [87], apriority inheritanceapproach was proposed to address this problem.
The basic idea of priority inheritance protocols is that wlagask blocks one or
more higher priority task the lower priority transactioh@arits the highest priority
among conflicting transactions.

Figure 3 illustrates, how a priority inversion problem meted in figure 2 can
be solved with the priority inheritance protocol. Againskd’; executes and re-
serves a resource, and a higher priority taskries to allocate the same resource.
In the priority inheritance protocol task inherits the priority of/; and executes.
Thus, taskl; cannot pre-empt task;. WhenT; releases the resource, the priority
of T3 returns to the original level. NoW; can acquire the resource and complete
before its deadline.
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deadline of T1

T1 —1 — |
A é é 3
' “Inherit : Return v

T2 | |
: - priority orlglnal

of T1 prlorlty

R B

Time

—— Start of task execution D Lock resource and continue
—1  Completion of task |:| Try to lock resource and wait
V Context switch . Release resource

Figure 3: Priority inheritance example.

4 Concurrency Control in Real-Time Databases

A Real-Time Database Syst€RITDBS) processes transactions with timing con-
straints such as deadlines [82]. Its primary performantermn is timeliness,
not average response time or throughput. The schedulirrgrmddctions is driven
by priority order. Given these challenges, consideraldearch has recently been
devoted to designing concurrency control methods for RTE&%] to evaluating
their performance (e.g. [2, 35, 40, 43, 61, 58] Most of thes¢hwds are based on
one of the two basic concurrency control mechanisiosking [24] or optimistic
concurrency contro{OCC) [56].

In real-time database systems transactions are schedcteddang to their
timing constraints. Task scheduler assigns a priority ftask based on its tim-
ing constraints or criticality or both [82]. Therefore, higriority transactions
are executed before lower priority transactions. Thisus wnly if a high prior-
ity transaction has some database operation ready for gxecuf no operation
from a higher priority transaction is ready for executidrern an operation from a
lower priority transaction is allowed to execute its dataperation. Therefore,
the operation of the higher priority transaction may cohfl@h the already ex-
ecuted operation of the lower priority transaction. In mya-emptive methods a
higher priority transaction must wait for the release of tegource. This is the
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priority inversion problem presented earlier. Therefa@a conflicts in concur-
rency control should also be based on transaction prismtieriticalness or both.
Hence, numerous traditional concurrency control metheds been extended to
the real-time database systems.

There are many ways in which the schedulers can be classifi¢éd®ne obvi-
ous classification criterion is the mode of database digioh. Some schedulers
that have been proposed require a fully replicated datalbdske others can op-
erate on partially replicated or partitioned database® Sdhnedulers can also be
classified according to network topology. The most commassification crite-
rion however is the synchronization primitive, i.e. thosethods that are based
on mutually exclusive access to shared data and those teatgtto order the ex-
ecution of the transactions according to a set of rules [BB§re are two possible
views: the pessimistic view that many transactions willféonwith each other,
or the optimistic view that not too many transactions wilhiwt with each other.
Pessimistic methods synchronize the concurrent execotimansactions early in
their execution and optimistic methods delay the synchaiion of transactions
until their terminations [105]. Therefore, the basic cifasation is as follows:

e Pessimistic Methods

— Timestamp Ordering Methods [79, 101]
— Serialization Graph Testing [11]
— Locking Methods [88, 41, 7, 62, 39, 63]

e Optimistic Methods

— Backward Validation Methods [32]

— Forward Validation Methods [34, 58, 59, 111, 68]
— Serialization Graph Testing [11, 79, 70]

— Hybrid Methods [69]

e Hybrid Methods [40, 92, 112, 27, 61]

In the locking-based methods, the synchronization of @etisns is acquired
by using physical or logical locks on some portion or grarfiehe database.
The timestamp ordering method involves organizing the @txec order of trans-
actions so that they maintain mutual and internal constgteihis ordering is
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maintained by assigning timestamps to both the transactiad the data that are
stored in the database [80].

The state of a conventional non-versioning database repiréise state of a
system at a single moment of time. Although the contentsetisftabase change
as new information is added, these changes are viewed aficatidn to the state.
The current contents of the database may be viewed as a shapshe system.
Additionally, conventional DBSs provide no guarantee ahgaction completion
times.

In the following sections recent related work on locking apdimistic meth-
ods for real-time databases are presented.

4.1 Locking Methods in Real-Time Databases

In this section we present some well known pessimistic coeagy control meth-
ods. Most of these methods are based on 2PL.

2PL High Priority In the 2PL-HP (2PL High Priority) concurrency control
method [2, 5, 41] conflicts are resolved in favor of the highority transactions.
If the priority of the lock requester is higher than the pityof the lock holder,
the lock holder is aborted, rolled back and restarted. Thk i® granted to this
requester and the requester can continue its executiohe Ibriority of the lock
requester is lower than that of the lock holder, the requgdtansaction blocks to
walit for the lock holder to finish and release its locks. Higlofty concurrency
control may lead to the cascading blocking problem, a de&dsituation, and
priority inversion.

2PL Wait Promote In 2PL-WP (2PL Wait Promote) [3, 41] the analysis of con-
currency control method is developed from [2]. The mechamsesented uses
shared and exclusive locks. Shared locks permit multiptecgoent readers. A
new definition is made - the priority of a data object, whichiéined to be the
highest priority of all the transactions holding a lock oa ttata object. If the data
object is not locked, its priority is undefined.

A transaction can join in the read group of an object if andyahits prior-
ity is higher than the maximum priority of all transactiomsthe write group of
an object. Thus, conflicts arise from incompatibility of kowg modes as usual.
Particular attention is given to conflicts that lead to ptyonversions. A priority
inversion occurs when a transaction of high priority regsi@nd blocks for an
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object which has lesser priority. This means that all thé loalders have lesser
priority than the requesting transaction. This same metb@dso called 2PL-PI
(2PL Priority Inheritance) [41].

2PL Conditional Priority Inheritance  Sometimes High Priority may be too
strict policy. If the lock holding transactidfy, can finish in the time that the lock
requesting transactidf. can afford to wait, that is within the slack time’6f, and
let 7}, proceed to execution ari. wait for the completion off},. This policy is
called 2PL-CR (2PL Conditional Restart) or 2PL-CPI (2PL @Gitional Priority
Inheritance) [41].

Priority Ceiling Protocol [86, 87] the focus is to minimize the duration of
blocking to at most one lower priority task and prevent themfation of dead-
locks. A real-time database can often be decomposed ird@Edatabase objects
that can be modeled as atomic data sets. For example, twp s&di@ns track
an aircraft representing the local view in data obj&etsandO,. These objects
might include e.g. the current location, velocity, etc. EEa€these objects forms
an atomic data set, because the consistency constraintsecatmecked and val-
idated locally. The notion of atomic data sets is especiadlgful for tracking
multiple targets.

A simple locking method for elementary transactions is W& phase locking
method; a transaction cannot release any lock on any ataatacset unless it has
obtained all the locks on that atomic data set. Once it ha&saseld its locks it
cannot obtain new locks on the same atomic data set, howtegan obtain new
locks on different data sets. The theory of modular concusyreontrol permits
an elementary transaction to hold locks across atomic @étdaFhis increases the
duration of locking and decreases preemptibility. In thiglg transactions do not
hold locks across atomic data sets.

Priority Ceiling Protocol minimizes the duration of blooki to at most one
elementary lower priority task and prevents the formatibdeadlocks [86, 87].
The idea is that when a new higher priority transaction pggsra running trans-
action its priority must exceed the priorities of all predetptransactions, taking
the priority inheritance protocol into consideration. hig condition cannot be
met, the new transaction is suspended and the blockingaitdos inherits the
priority of the highest transaction it blocks.

The priority ceiling of a data object is the priority of theghest priority trans-
action that may lock this object [86, 87]. A new transactiam preempt a lock-
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holding transaction if and only if its priority is higher th#he priority ceilings of
all the data objects locked by the lock-holding transactlbthis condition is not
satisfied, the new transaction will wait and the lock-hojdiransaction inherits
the priority of the highest transaction that it blocks. Thel-holder continues
its execution, and when it releases the locks, its originalry is resumed. All
blocked transactions are awaked, and the one with the Highiesity will start
its execution.

The fact that the priority of the new lock-requesting trastigen must be higher
than the priority ceiling of all the data objects that it a&ses, prevents the for-
mation of a potential deadlock. The fact that the lock-restjung transaction is
blocked only at most the execution time of one lower prionignsaction guaran-
tees, the formation of blocking chains is not possible [84, 8

Read/Write Priority Ceiling  The Priority Ceiling Protocol is further advanced
in [88], where the Read/Write Priority Ceiling Protocol rgrioduced. It contains
two basic ideas. The first idea is the notion of priority intearce. The second
idea is a total priority ordering of active transactions. rAnsaction is said to
be active if it has started but not completed its executiohusl a transaction
can execute or wait caused by a preemption in the middle ekgsution. Total
priority ordering requires that each active transactiogcexe at a higher priority
level than the active lower priority transaction, takingopty inheritance and
read/write semantics into consideration.

4.2 Optimistic Methods in Real-Time Databases

Optimistic Concurrency ContrqlOCC) [32, 56], is based on the assumption that
conflictis rare, and that it is more efficient to allow trartgacs to proceed without
delays. When a transaction desires to commit, a check isnoeedd to determine
whether a conflict has occurred. Therefore, there are thraggs to an optimistic
concurrency control method:

¢ Read phaseThe transaction reads the values of all data items it needs f
the database and stores them in local variables. Concyrcemtrol sched-
uler stores identity of these data items to a read set. Hayweviées are ap-
plied only to local copies of the data items kept in the tratisa workspace.
Concurrency control scheduler stores identity of all werittata items to a
write set.
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¢ Validation phaseThe validation phase ensures that all the committed trans-

actions have executed in a serializable fashion. For aoefdtransaction,
this consists of checking that the data values read arétrstiturrent values
for the corresponding data items. For a transaction thaivhiéss, the vali-

dation consists of determining whether the current trammabas executed
serializable way.

e Write phase This follows the successful validation phase for transast
including write operations. During the write phase, allgp@s made by the
transaction are permanently stored into the database.

In the following we introduce some well known optimistic rnetls for real-
time database systems.

Broadcast Commit For RTDBSs, a variant of the classical concurrency control
method is needed. In Broadcast Commit, OPT-BC [35], whearsstction com-
mits, it notifies other running transactions that conflicthwi. These transactions
are restarted immediately. There is no need to check a cownfiio commit-
ted transactions since the committing transaction woulge Heeen restarted in
the event of a conflict. Therefore, a validating transacitsalways guaranteed
to commit. The broadcast commit method detects the conBatber than the
conventional concurrency control mechanism, resultingariier restarts, which
increases the possibility of meeting the transaction dees[35].

The main reason for the good performance of locking in a catimeal DBMS
is that the blocking-based conflict resolution policy résin conservation of re-
sources, while the optimistic method with its restart-llasenflict resolution pol-
icy wastes more resources [35]. But in a RTDBS environmeiigre conflict
resolution is based on transaction priorities, the OPT-B(p effectively pre-
vents the execution of a low priority transaction that catdlivith a higher prior-
ity transaction, thus decreasing the possibility of furtt@nflicts and the waste of
resources is reduced. Conversely, 2PL-HP loses some ofithe PPL blocking
factor due to the partially restart-based nature of the Higarity scheme.

The delayed conflict resolution of optimistic methods aisniaking better
decisions since more information about the conflictingdeantions is available at
this stage [35]. Compared to 2PL-HP, a transaction coulabarted by, or wait
for, another transaction which is later discarded. Suctaressor waits are useless
and cause performance degradation. OPT-BC guaranteesrtireitand thus the
completion of each transaction that reaches the validatiage. Only validating
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transactions can cause the restart of other transacthors, dll restarts generated
by the OPT-BC method are useful.

First of all, OPT-BC has a bias against long transactioms (long transac-
tions are more likely to be aborted if there is conflicts)elik the conventional
optimistic methods [35]. Second, as the priority inforraatis not used in the
conflict resolution, a committing lower priority transamti can restart a higher
priority transaction very close to its validation stagejethwill cause missing the
deadline of the restarted higher priority transaction [34]

OPT-SACRIFICE In the OPT-SACRIFICE [34] method, when a transaction
reaches its validation phase, it checks for conflicts witieottoncurrently run-
ning transactions. If conflicts are detected and at leasbbtie conflicting trans-
actions has a higher priority, then the validating trarieads restarted, i.e. sac-
rificed in favor of the higher priority transaction. Althdughis method prefers
high priority transactions, it has two potential problenksstly, if a higher pri-
ority transaction causes a lower priority transaction tadmstarted, but fails in
meeting its deadline, the restart was useless. This degthd@erformance. Sec-
ondly, if priority fluctuations are allowed, there may be thatual restarts prob-
lem between a pair of transactions (i.e. both transactiomalaorted). These two
drawbacks are analogous to those in the 2PL-HP method [34].

OPT-WAIT and WAIT-X  When a transaction reaches its validation phase, it
checks if any of the concurrently running other transaatioave a higher priority.
In the OPT-WAIT [34] case the validating transaction is madevait, giving
the higher priority transactions a chance to make their ldesslfirst. While a
transaction is waiting, it is possible that it will be reséal due to the commit of
one of the higher priority transactions. Note that the wagitiransaction does not
necessarily have to be restarted. Under the broadcast ¢etineme a validating
transaction is said to conflict with another transactiorthd intersection of the
write set of the validating transaction and the read sete€tmnflicting transaction
is not empty. This result does not imply that the intersectibthe write set of the
conflicting transaction and the read set of the validatiaggaction is not empty
either [34].

The WAIT-50 [34] method is an extension of the OPT-WAIT - itntains the
priority wait mechanism from the OPT-WAIT method and a waithtol mech-
anism. This mechanism monitors transaction conflict statelsdynamically de-
cides when and for how long a low priority transaction shdagdnade to wait for
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the higher priority transactions. In WAIT-50, a simple 50qent rule is used - a
validating transaction is made to wait while half or moretsfdonflict set is com-
posed of transactions with higher priority. The aim of thetwantrol mechanism
is to detect when the beneficial effects of waiting are oubéved by its drawbacks
[34].
We can view OPT-BC, OPT-WAIT and WAIT-50 as being specialesasf

a general WAIT-X method, where X is the cutoff percentagehef ¢tonflict set
composed of higher priority transactions. For these methtotbkes the values
infinite, 0 and 50 respectively.

4.3 Validation Methods

The validation phase ensures that all the committed traiosaschave executed
in a serializable fashion [56]. Most of the validation methaise the following
principles to ensure serializability. If a transactifins before transactiof; in the
serialization graph( i.e7; < T3}), the following two conditions must be satisfied
[67]:

1. No overwriting. The writes of; should not overwrite the writes Gf;.

2. No read dependency. The writesTfshould not affect the read phase of
T;.

Generally, condition 1 is automatically ensured in mosirojstic methods
because 1/O operations in the write phase are required tobe sequentially in
the critical section [67]. Thus most validation schemessatgr only condition
2. During the write phase, all changes made by the transaat® permanently
installed into the database. To design an efficient read-bptimistic concurrency
control method, three issues have to be considered [67]:

1. which validation scheme should be used to detect conbietiween trans-
actions;

2. how to minimize the number of transaction restarts; and

3. how to select a transaction or transactions to restarbv@h@nserializable
execution is detected.
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In Backward Validatiorj32], the validating transaction is checked for conflicts
against (recently) committed transactions. Conflicts ateated by comparing the
read set of the validating transaction and the write setes@tbmmitted transac-
tions. If the validating transaction has a data conflict vauly committed transac-
tions, it will be restarted. The classical optimistic methio [56] is based on this
validation process.

In Forward Validation[32], the validating transaction is checked for conflicts
against other active transactions. Data conflicts are tietdny comparing the
write set of the validating transaction and the read set ®faittive transactions.
If an active transaction has read an object that has beemugendy written by
the validating transaction, the values of the object useithéyransactions are not
consistent. Such a data conflict can be resolved by regiastiher the validating
transaction or the conflicting transactions in the read @h&ptimistic methods
based on this validation process are studied in [32]. Moshefproposed opti-
mistic methods are based on Forward Validation.

Forward Validation is preferable for the real-time databagstems because
Forward Validation provides flexibility for conflict resdlan [32]. Either the val-
idating transaction or the conflicting active transactiora/ be chosen to restart.
In addition to this flexibility, Forward Validation has the\aantage of early detec-
tion and resolution of data conflicts. In recent years, tleeai®ptimistic methods
for concurrency control in real-time databases has redeivere and more atten-
tion. Different real-time optimistic methods have beenposed.

Forward Validation (OCC-FV) [32] is based on the assumptiuat the se-
rialization order of transactions is determined by thevarg order of the trans-
actions at the validation phase. Thus the validating tretiesa if not restarted,
always precedes concurrently running active transaciitise serialization or-
der. A validation process based on this assumption can castets that are not
necessary to ensure data consistency. These restartd Sieoavoided.

The major performance problem with optimistic concurreoagtrol methods
is the late restart [67]. Sometimes the validation processguthe read sets and
write sets erroneously concludes that a nonserializaldewtion has occurred,
even though it has not done so in actual execution [92] (seenfple 1). There-
fore, one important mechanism to improve the performan@naiptimistic con-
currency control method is to reduce the number of restaréedactions.

Example 1 Consider the following transactiori§, 7> and historyH; :
Ty rx]ey

Ty: welz]ce
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Hy: rlz|wsyx]es

Based on the OCC-FV method [32]; has to be restarted. However, this is
not necessary, because whgnis allowed to commit such as:

Hj @ r[x]|ws[z]cacy,

then the schedule df, is equivalent to the serialization ord&; — T as the
actual write ofT; is performed after its validation and after the readigf There
is no cycle in their serialization graph anfd, is serializable.

One way to reduce the number of transaction restarts is tardigally ad-
just the serialization order of the conflicting transac$ig®7]. Such methods are
calleddynamic adjustment of the serialization ordév]. When data conflicts be-
tween the validating transaction and active transactiomsgletected in the valida-
tion phase, there is no need to restart conflicting activestretions immediately.
Instead, a serialization order of these transactions calyt@mically defined.

Definition 4.1 Suppose there is a validating transacti@p and a set of active
transactionsT;(j = 1,2,...,n). There are three possible types of data conflicts
which can cause a serialization order betweérandT; [67, 73, 92]:

1. RS(T,) N WS(T}) # 0 (read-write conflict)
A read-write conflict betweef, and 7; can be resolved by adjusting the
serialization order betweeft, and 7, as7,, — T} so that the read of,,
cannot be affected by,’s write. This type of serialization adjustment is
called forward ordering or forward adjustment.

2. WS(T,) N RS(T;) # 0 (write-read conflict)
A write-read conflict betweel, and 7; can be resolved by adjusting the
serialization order betweef, and7); as7; — T,. It means that the read
phase off; is placed before the write &f,. This type of serialization ad-
justment is called backward ordering or backward adjustmen

3. WS(T,) nWS(T;) # 0 (write-write conflict)
A write-write conflict betweeff, and 7} can be resolved by adjusting the
serialization order betweef, and7; as’T,, — T} such that the write of,
cannot overwritel’;'s write (forward ordering).
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OCC-TI The OCC-TI [67, 65] method resolves conflicts using the tiaep
intervals of the transactions. Every transaction must leew@ed within a specific
time slot. When an access conflict occurs, it is resolvedguia read and write
sets of the transaction together with the allocated time $ime slots are adjusted
when a transaction commits.

OCC-DA OCC-DA [58] is based on the Forward Validation scheme [32]e T
number of transaction restarts is reduced by using dynagusement of the seri-

alization order. This is supported with the use of a dynamestamp assignment
scheme. Conflict checking is performed at the validatiorspha a transaction.
No adjustment of the timestamps is necessary in case of dafkcts in the read

phase. In OCC-DA the serialization order of committed teations may be dif-

ferent from their commit order.

OCC-DATI  Optimistic Concurrency Control with Dynamic Adjustmenings

Timestamp Intervals (OCC-DATI) [74]. OCC-DATI is based arward valida-

tion. The number of transaction restarts is reduced by dynadjustment of the
serialization order which is supported by similar timegpantervals as in OCC-
TI. Unlike the OCC-TI method, all checking is performed &t thalidation phase
of each transaction. There is no need to check for conflicifevehtransaction
is still in its read phase. As the conflict resolution betwdas transactions in
OCC-DATI is delayed until a transaction is near completithere will be more
information available for making the choice in resolving ttonflict. OCC-DATI

also has a new final timestamp selection method compared @ 0OC

S5 Summary

The field of real-time database research has evolved greedly the relatively

short time of its existence. The future of RTDB research getelent of contin-

ues progress of this evolution. Research on this field shoodinue to pursue
state-of-the-art applications and apply both existingmégues to them as well as
develop a new ones when needed.
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