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ABSTRACT
A novel image denoising approach based on iterated median
filtering is proposed. It is well suited for removing white noise
and produces visually pleasing smooth surfaces while pre-
serving edges and without producing artifacts. The denoised
image is the fixed point of a nonlinear operator and can be
obtained as the limit of a convergent sequence. We show that
the sequence converges at an exponential rate. An algorithm
implementing the proposed method is described; in addition
to the fixed-point iteration, it automatically selects a suitable
window and optimizes a scalar parameter based on an assumed
noise level. The results of preliminary simulation experiments
on well-known test images are presented. While the proposed
method does not outperform earlier methods, it offers a theo-
retically well-understood foundation for future development;
promising further research directions are discussed.

Index Terms— Image denoising, nonlinear filters, itera-
tive algorithms, model selection, statistical analysis.

1. INTRODUCTION

In this paper, we define the task of image denoising as follows.
We are given a discrete grayscale image that has been con-
taminated with additive i.i.d. Gaussian noise. The variance of
the noise is assumed to be known. The goal is to recover the
original image.

To solve this problem, one must define a model for images.
While there have been attempts to explicitly define generic
image models (e.g. [1]), most image denoising methods seem
to implicitly incorporate a model within the flow of a com-
plicated algorithm. As an example of the latter, we mention
the highly successful BM3D algorithm [2] for which it seems
difficult to describe the class of images that are modeled.

Many well-known denoising methods start from relatively
simple premises and build complexity upon them to improve
the results. For instance, wavelet thresholding is a lucid and
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powerful method which can be improved by, for instance,
adding adaptivity [3] or employing the minimum description
length principle [4]. One method that stands out as being
straightforward to describe is the total variation approach,
introduced by Rudin, Osher and Fatemi [5].

In this paper, we propose a new denoising algorithm that
is easy to understand and implement and performs relatively
well, although not as well as its more complicated competitors.
Our method is based on iterated median filtering and its output
qualitatively resembles that of total variation denoising: there
are no artifacts typical to wavelet-based methods and smooth
surfaces are favored over textures.

2. METHODS

2.1. Model

Our setting is the Banach space X = RN⇥M with the norm
kxk = maxi,j |x(i, j)|. In all our examples, we have N =

M = 512 and the pixel values of noise-free images lie within
the range [0, 255].

We denote the median of a multiset of reals A =

{a1, . . . , ak} by medA (if k is even, the median is the
average of the two middle numbers). Given a finite window
W ⇢ Z2, the median filter is defined as MW : X ! X ,
MW (x)(i, j) = med{x(i + s, j + t) : (s, t) 2 W}. When
out-of-bound indices appear, we use the symmetric extension
(that is, the image is padded with mirror reflections).

Let W be a window, assume (0, 0) 2 W and let � > 0.
Given a noisy image v 2 X , we seek a solution to the equation

u =

✓

1

�+ 1

◆

v +

✓

�

�+ 1

◆

MW (u) (1)

as a denoised version of v. If we keep W fixed and denote
↵ = �/(�+1) 2 (0, 1), equation (1) can be written simply as
u = (1� ↵)v + ↵M(u).

We offer the following interpretation for (1). Note first that
the noisy image v is proportional to u� ↵M(u). If ↵ is close
to zero, we have v / (u � ↵M(u)) ⇡ (u � ↵u) / u since
the difference is dominated by the effect of ↵; here almost
no denoising takes place. On the other hand, if ↵ is close to
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one, we have v / (u � ↵M(u)) ⇡ (u �M(u)) which has
the interpretation that v is the result of amplifying the non-
smooth component of u. The task of finding a good value for ↵
(equivalently, for �) is then a question of balancing between
dampening noise and deviating from the input image.

The value of � will be adaptively chosen so that the Frobe-
nius norm ku� vkF is approximately

p
NM�

2, the expected
energy of the noise. Intuitively, the greater the value of �,
the more noise equation (1) will be able to suppress. In fact,
preliminary numerical results suggest that the optimal value
of � grows roughly linearly as a function of �2.

The model defined by (1) has a simple characterization.
An image is unaltered, u = v, if and only if v = MW (v). That
is, an image is considered noise-free precisely when it is a root
image of the median filter MW .

Notice also that given u, one can recover the noisy image v.
As shown by the following theorems, the equation (1) in

fact has a unique solution.

Theorem 1. Let W ⇢ Z2
be finite. Then kMW (x) �

MW (y)k  kx� yk for all x, y 2 X

For a proof of the above theorem, see the appendix.

Theorem 2. The equation (1) has a unique solution u 2 X
that is the limit of the sequence u0 2 X , un = (1 � ↵)v +

↵M(un�1). Moreover, this sequence satisfies the inequalities

ku� unk 
↵

n

1� ↵

ku1 � u0k ,

ku� unk 
↵

1� ↵

kun � un�1k .

Proof. Consider the operator T (x) = (1�↵)v+↵M(x). By
Theorem 1, it is a contraction: kT (x)� T (y)k = ↵kM(x)�
M(y)k  ↵kx� yk. The claim now directly follows from the
Banach fixed-point theorem (see e.g. [6]).

2.2. Window selection

The success of (1) must depend on the choice of the window W .
We propose to use the family Wr = {(s, t) 2 Z2

: s

2
+ t

2 
r

2}. In practice, we only consider the values 1  r  R

with R = 5; larger windows are unlikely to provide significant
improvements.

To determine a suitable radius for a given input image,
we have devised four heuristics based on cross-validation
and two model selection criteria: the Bayesian information
criterion (BIC) [7] and the sequentially normalized least
squares (SNLS) criterion [8].

The basic approach is always the same: For each radius r,
define a model Mr that attempts to predict the value of each
pixel of the noisy image given the pixels in its neighbor-
hood W

0
r = Wr\{(0, 0)}. Then use a suitable model selection

criterion to pick the best model, say Mr⇤ , and use the window
Wr⇤ for the denoising procedure.

We mention that the problem of window size selection
has been extensively studied for e.g. the local polynomial
approximation framework (see [9] and the references therein).
However, it is not clear whether the use of these intricate
approaches can be justified for our setting where the final
result emerges from the fixed point of a nonlinear operator.

Our heuristics are presented below. Their evaluation is
postponed to Section 3.

LinMod-BIC. Let 1  r  R and enumerate the elements
of W 0

r as (s1, t1), (s2, t2), . . . , (skr , tkr ). The model Mr pre-
dicts

v̂r(i, j) =

kr
X

`=1

�`v (i+ s`, j + t`)

where the parameters �` (independent of (i, j)) minimize the
mean squared error �̂2

r = (NM)

�1
P

i,j(v(i, j)� v̂r(i, j))
2.

The score is

BIC(Mr) = log(�̂

2
r) +

kr log(NM)

NM

.

The smaller the score, the better.
LinMod-SNLS. The model Mr is the same as for LinMod-

BIC. The formula for SNLS(Mr) is too complex to describe
here; see [8] for details. We note that the SNLS score re-
quires an ordering for the pixels (although its effect vanishes
asymptotically), so we use a random permutation.

Mean-LOO. For each 1  r  R, the model Mr predicts

v̂r(i, j) =
1

|W 0
r|

X

(s,t)2W 0
r

v(i+ s, j + t).

We choose the model that minimizes �̂2
r . This corresponds to

leave-one-out (LOO) cross-validation.
Median-LOO. Similar to Mean-LOO, except that the

model Mr predicts

v̂r(i, j) = med{v(i+ s, j + t) : (s, t) 2W

0
r}.

2.3. The full algorithm

We now assume that one of the four heuristics described above
has been chosen.

The procedure MedIter performs denoising according to
equation (1) and using the iterations implied by Theorem 2.
The input variable uinit is an arbitrary initial guess for the
output u.

MedIter is used as a subroutine of AdaptMedIter, which
adapts the value of � to match the variance of the noise. It
finds an upper bound for � with the hard limit �  128; since
smaller values of � imply faster convergence in MedIter, we
start from a small initial guess. After an upper bound has been
found, AdaptMedIter performs binary search to find a good
value for �.

The full algorithm is the following. Given a noisy
image v and the noise variance �

2, select the best win-
dow W by computing the score for each radius. Then call
AdaptMedIter(v,�

2
,W ) to obtain the denoised image.



Procedure MedIter(v, uinit, �, W )
error  +1
↵ �/(�+ 1)

u uinit

while error > 0.1 do
uprev  u

u (1� ↵)v + ↵MW (u)

error  ↵(1� ↵)

�1ku� uprevk
end
return u

3. RESULTS

3.1. Large-scale experiment

We tested the performance of our algorithm on the van Hateren
dataset [10] of natural images. We took a random subset of
400 images, cropped them to the middle 512⇥ 512 pixels, and
rescaled the pixel values so that the minimum and maximum
values in each image are 0 and 255, respectively. To each
image, we added i.i.d. Gaussian noise with standard deviations
� 2 {10, 30, 50}. We then computed the four model selection
scores for the noisy image and performed the denoising using
each window. Each experiment was repeated ten times with
different random noise realizations. All results stated in this
subsection are from this setup.

Denoising performance was measured using both the peak
signal-to-noise ratio, PSNR = 10 log10(255

2
/MSE), and the

SSIM index [11].
As a baseline to which we compare our method, we chose

to use total variation (TV) denoising [5], more specifically,
the implementation by Peyre [12] that uses Chambolle’s algo-
rithm [13]. This comparison is motivated by the observations
that both methods (i) have relatively simple foundations, and
(ii) tend to produce smooth surfaces separated by sharp edges.

Figure 1 shows the relationship between the radius of the
window and the PSNR. For � = 10, using the smallest window
(r = 1) gives the best results. In all other cases, r = 2

tends to perform best. The corresponding results for SSIM
are qualitatively similar. The figure suggests that considering
larger radii would not bring significant benefits.

The effects of using the various window selection heuris-
tics described in the previous section are shown in Figure 2.
For comparison, we have included both the baseline method
(total variation denoising) and the “oracle” heuristic that al-
ways chooses the window size that performs the best under the
image quality measure being considered. In all cases, Mean-
LOO is the best of the four heuristics tested. Still, the baseline
consistently performs better than any of the heuristics. No-
tably, though, using the oracle for window selection results
in performance comparable to the baseline especially with
the SSIM measure. This suggests that coming up with bet-
ter heuristics should be a major objective for future research.

Procedure AdaptMedIter(v, �2, W )

// Initial upper bound for �

u v; �LB  0; �UB  1

while true do
u MedIter (v, u,�UB ,W )

if ku� vkF �
p
NM�

2 then
break

else
�LB  �UB

�UB  2�UB

if �UB � 128 then
break

end
end

end
// Binary search for the best �

� +1
while true do

�prev  �

� (�LB + �UB)/2

if |�� �prev|  0.1 then
break

end
u MedIter (v, u,�,W )

if ku� vkF 
p
NM�

2 then
�LB  �

else
�UB  �

end
end
return u

The second best heuristic is Median-LOO. Finally, the two
heuristics based on a linear model appear inferior.

3.2. Performance on common test images

In this experiment, we measure denoising performance on
the well-known test images lena, barbara and goldhill. We
only use the Mean-LOO heuristic as it achieved the best
performance in the previous experiment. We compare the
PSNR values of our method, TV denoising, BayesShrink [3]
and BM3D [2]. The results are presented in Table 1.

To illustrate the effect of window choice, we look more
closely on the performance of our algorithm on barbara with
� = 30. The Mean-LOO heuristic chooses r = 4, resulting in
PSNR = 23.6, but this choice is hardly optimal: r = 2 would
give PSNR = 24.0. Figure 3 shows the algorithm’s output for
each 1  r  5 alongside with the respective PSNR’s and the
baseline result.

Running the full algorithm on barbara with � = 30
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Fig. 1. The effect of window radius on denoising performance on the van Hateren dataset, as measured by the peak signal-to-noise
ratio (PSNR). The error bars show one standard deviation. Using the SSIM measure gives similar results (not displayed here due
to limited space).
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Fig. 2. Average denoising performance using the various window selection heuristics (left: PSNR, right: SSIM) with the
van Hateren dataset, compared to the baseline (total variation denoising). The “oracle” heuristic always chooses the best window.
The error bars show one standard deviation.

took approximately 52 seconds (averaged over 30 trials) on a
MacBook Pro (2.4 GHz Intel Core i5) with MATLAB R2013a.
The corresponding runtime for the TV algorithm was 16 sec-
onds.

4. DISCUSSION

Our proposed denoised method performs reasonably well when
using the Mean-LOO heuristic for window selection. For a
low noise level (� = 10), the algorithm performed almost as
well as the baseline under the SSIM measure. The algorithm is
extremely simple to implement1, has a clear interpretation and
converges at a known rate. We anticipate that these properties
may be useful in fields such as medical imaging, where every
extraneous source of complexity must be carefully justified.

There is still room for improvement in the window selec-
tion mechanism, as discussed in Section 3.2. As can be seen
from Figure 2, developing a heuristic that could match the ora-
cle would result in an algorithm with performance comparable
to total variation denoising in a variety of settings.

1Esp. in Matlab, where the built-in function ordfilt2 comes in useful.

We have made some experiments with the weighted me-
dian filter [14], and it may potentially improve denoising per-
formance in some cases. It is not yet clear to us how the
window selection procedure should be adapted to this setting.

Another possible extension would be to use a different
window for each pixel. It is easy to show that this would not
affect convergence. Adapting the algorithm to local properties
of the image could potentially offer drastic improvements.
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PSNR for lena

� Proposed TV BayesShrink BM3D
10 32.9 33.3 33.4 35.9

20 29.2 30.1 30.2 33.1

30 27.0 28.4 28.5 31.3

PSNR for barbara

� Proposed TV BayesShrink BM3D
10 28.6 30.0 31.0 35.0

20 25.1 26.2 27.3 31.8

30 23.6 24.6 25.3 29.8

PSNR for goldhill

� Proposed TV BayesShrink BM3D
10 31.3 31.8 31.9 33.6

20 28.2 28.9 28.7 30.7

30 26.1 27.4 27.1 29.2

Table 1. Denoising performance for three test images and
three noise levels, as measured by the PSNR. The results for
the proposed method and TV denoising are averages over
30 trials. The values for BayesShrink and BM3D are from the
corresponding papers [3, 2].

A. PROOF OF THEOREM 1

Lemma 1. Let a, b, c, d 2 R with a  b and c  d. Then

max{|a� c|, |b� d|}  max{|a� d|, |b� c|}.

Proof. Easy to see e.g. by separately considering the six pos-
sible orderings of the four numbers.

Lemma 2. Let J be a finite index set of N elements. Con-

sider the numbers x(j), y(j) 2 R indexed by j 2 J . Let

n,m : {1, 2, . . . , N}! J be bijections that satisfy

x(n(1))  x(n(2))  · · ·  x(n(N)) and

y(m(1))  y(m(2))  · · ·  y(m(N)).

(In other words, the mappings n and m sort the numbers x(·)
and y(·), respectively.) Then we have

max

1iN
|x(n(i))� y(m(i))|  max

j2J
|x(j)� y(j)|,

that is, by sorting x(·) and y(·) we cannot increase the maxi-

mum pointwise distance.

Proof. We denote x̃(i) = x(n(i)) and y0(i) = y(n(i)); this
means that we sort the numbers x(·) and arrange the numbers
y(·) so that the pairwise differences |x(·)�y(·)| coincide with
the differences |x̃(·)� y0(·)|. Then, for each k = 1, 2, . . . , N ,
we define recursively

pk = argmin

kiN
yk�1(i), yk(i) =

8

>

<

>

:

yk�1(pk), if i = k,
yk�1(k), if i = pk,
yk�1(i), otherwise.

These definitions mean that we sort the values of y0 using a
selection sort–type algorithm, denoting by yk a permutation of
y with the first k values sorted. Hence, yN is fully sorted. To be
precise, we define the argmin in pk to pick the i corresponding
to the mapping m in case of a tie.

We want to show that

max

1iN
|x̃(i)� yk(i)|  max

j2J
|x(j)� y(j)| (2)

for every k = 0, 1, 2, . . . , N . The case k = 0 is triv-
ial. Suppose that the inequality (2) holds for some k =

0, 1, 2, . . . , N � 1. By definition, k + 1  pk+1, so
x̃(k + 1)  x̃(pk+1). Moreover,

yk(pk+1) = yk( argmin

k+1iN
yk(i))  yk(k + 1).

Now Lemma 1 gives

max{|x̃(k + 1)� yk(pk+1)|, |x̃(pk+1)� yk(k + 1)|}
 max{|x̃(k + 1)� yk(k + 1)|, |yk(pk+1)� x̃(pk+1)|},

so we have

max

1iN
|x̃(i)� yk+1(i)|

= max

n

|x̃(k + 1)� yk(pk+1)|, |x̃(pk+1)� yk(k + 1)|,

max

1iN,
i/2{k+1,pk+1}

|x̃(i)� yk(i)|
o

 max

n

|x̃(k + 1)� yk(k + 1)|, |yk(pk+1)� x̃(pk+1)|,

max

1iN,
i/2{k+1,pk+1}

|x̃(i)� yk(i)|
o

= max

1iN
|x̃(i)� yk(i)|  max

j2J
|x(j)� y(j)|.

Hence, (2) holds for all k = 0, 1, 2, . . . , N . The case k = N

was our claim.

The desired result is a straightforward corollary of the
previous lemma.

Proof of Theorem 1. A special case of Lemma 2 is that
�

�

�

�

med

j2J
x(j)�med

j2J
y(j)

�

�

�

�

 max

j2J
|x(j)� y(j)|.

This result was presented without a proof by Arias-Castro and
Donoho [15, eq. (6.2)]. Now, when x, y 2 X , we have

kMW (x)�MW (y)k
= max

i,j
|MW (x)(i, j)�MW (y)(i, j)|

 max

i,j
max

(s,t)2W
|x(i+ s, j + t)� y(i+ s, j + t)|

= kx� yk.


