Lecture 10. Embedding with informed coder.

Using the code book in the case of 0-bit WM. The code book:

With attacker's point of view $\pi_i(n), n = 1, 2, ..., N, \ \pi_i(n) \in \{+1, -1\}, \text{ i.i.d}$ i = 1, 2, ..., L

(15)

WM embedding

 $C_w(n) = C(n) + \alpha \pi_0(n), n = 1, 2...N \text{ where } \pi_0(n) : \sum_{n=1}^N C(n) \pi_0(n) \ge \sum_{n=1}^N C(n) \pi_i(n), i \ne 0 (16)$ Additive noise attack:

$$C'_{w}(n) = C_{w}(n) + \varepsilon(n), \ n = 1, 2, ... N$$
Blind decoding:
(17)

 $\Lambda \ge \lambda$ - WM is present

 $\Lambda < \lambda$ - WM is absent

where λ - is some threshold,

$$\Lambda = \max_{i} \sum_{n=1}^{N} C'_{w}(n) \pi_{i}(n)$$
(19)

(18)

The probability of incorrect WM detecting(P_m and P_{fa} [22])

$$P_{m} \leq \frac{L}{(\sqrt{2\pi})^{L+1}} \int_{-\infty}^{\infty} e^{-y^{2}/2} F(y)^{L-1} F(\lambda - y\sqrt{\eta_{w}\eta_{a}}/(\eta_{w} - \eta_{a})) - \sqrt{N\eta_{a}}/(\eta_{w} - \eta_{a})) dy$$
(20)

$$P_{fa} \leq 1 - \left(\frac{1}{\sqrt{2\pi}}\right) F\left(\lambda \sqrt{(\eta_w - \eta_a)/(\eta_w \eta_a + \eta_w - \eta_a)}\right)^L,$$
where:
$$(21)$$

$$F(x) = \int_{-\infty}^{x} \exp(-t^2/2) dt$$

Numerical calculations show that the use of such informed encoder allows for $P_m = P_{fa} \approx 10^{-4}$ to decrease *N* in 2-10 times (depending on the values η_w , η_a) in comparison with non-informed encoder (see eq. (9) in the Lecture 9)

WM-ISS – based system [23]

The general idea for "Improved Spread Spectrum Signal (ISS) is – to reduce the impact of CO (as an interference) on the result of blind decoding.

Embedding:

$$C_{w}(n) = C(n) + (\beta(-1)^{b} - \lambda x)\pi'(n), n = 1, 2...N$$
where β, λ - some constants
$$(22)$$

$$x = (C, \pi') = \frac{1}{N\alpha^2} \sum_{n=1}^{N} C(n) \pi'(n), \pi'(n) = \alpha \pi(n)$$
(23)

Particular case:

 $\lambda = 0, \beta = 1 \Longrightarrow C_w(n) = C(n) + \alpha (-1)^b \pi(n)$ (conventional SS - WM)

Attack by additive noise: $C'_{w}(n) = C_{w}(n) + \varepsilon(n),$ where $E\{\varepsilon(n)\} = 0, Var\{\varepsilon(n)\} = \sigma_{\varepsilon}^{2}$ (24) Blind decoding rule:

$$\Lambda = \frac{1}{N\alpha^2} \sum_{n=1}^{N} C'_w(n) \pi'(n) \Longrightarrow \begin{cases} b = 0, \text{if } \Lambda \ge 0\\ b = 1, \text{if } \Lambda < 0 \end{cases}$$
(25)

Substituting (22) and (24) in (25) we get:

$$\Lambda = x + \beta(-1)^{b} - \lambda x + y = \beta(-1)^{b} + (1 - \lambda)x + y,$$
(26)
where $y = \frac{1}{N\alpha^{2}} \sum_{n=1}^{N} \varepsilon(n)\pi'(n)$

If λ =1, then C(n) is absent as interference, but this does not mean that the value λ =1 is optimal one if take into account interferences after WM embedding (say additive noise).

Distortion of CO just after WM embedding

$$\Delta = E_{\ell} \left(C_w(n) - C(n) \right)^2 \} = E_{\ell} \left(\left(\beta \left(-1 \right)^b - \lambda \frac{\widetilde{x}}{\alpha^2} \right) \pi'(n) \right)^2 \} = \alpha^2 E_{\ell} \left(\beta \left(-1 \right)^b - \frac{\lambda \widetilde{x}}{\alpha^2} \right)^2 \} = \alpha^2 E_{\ell} \left(\beta^2 - \frac{2\beta\lambda \widetilde{x} \left(-1 \right)^b}{\alpha^2} + \frac{\lambda^2}{\alpha^4} x^2 \right) = \alpha^2 \left(\beta^2 + \frac{\lambda^2}{\alpha^4} E_{\ell} \widetilde{x}^2 \right)^2,$$

$$(27)$$

$$= \alpha^2 E_{\ell} \left(\beta^2 - \frac{1}{\alpha^2} \sum_{n=1}^{N} C_{n}(n) \pi'(n) \right)^2 = \alpha^2 \left(\beta^2 + \frac{\lambda^2}{\alpha^4} E_{\ell} \widetilde{x}^2 \right)^2,$$

где
$$\widetilde{x} = \frac{1}{N} \sum_{n=1}^{N} C(n) \pi'(n)$$

Let us transform the last item in (27):

$$E\{\tilde{x}^{2}\} = E\{\left(\frac{1}{N}\sum_{n=1}^{N}C(n)\pi'(n)\right)^{2}\} = \frac{1}{N^{2}}\sum_{n=1}^{N}\sum_{n'=1}^{N}E\{C(n)C(n')\pi'(n)\pi'(n')\} = \frac{1}{N^{2}}\sum_{n=1}^{N}\sum_{n'=1}^{N}E\{C(n)C(n')\}E\{\pi(n)\pi'(n')\} = \frac{N}{N^{2}}\alpha^{2}\sigma_{c}^{2} = \frac{\alpha^{2}\sigma_{c}^{2}}{N}$$
(28)

Substituting (28) in (27) we get:

$$\Delta = \alpha^2 \left(\beta^2 + \frac{\lambda^2 \sigma_c^2}{N \alpha^2} \right) = \alpha^2 \beta^2 + \frac{\lambda^2 \sigma_c^2}{N}$$
(29)

We want to find the parameter β for which CO distortion are equal to CO distortion in the case of conventional WM-SS-based embedding that gives $\Delta = \alpha^2$:

$$\alpha^{2} = \alpha^{2} \beta^{2} + \frac{\lambda^{2} \sigma_{c}^{2}}{N} \Longrightarrow \beta = \sqrt{\frac{N \alpha^{2} - \lambda^{2} \sigma_{c}^{2}}{N \alpha^{2}}}$$
(30)

Finding of the probability of error for WM-ISS-based system :

$$p = Q\left(\frac{|E\{\Lambda\}|}{\sqrt{Var\{\Lambda\}}}\right)$$
(31)

$$E\{\Lambda\{ = E\{\beta(-1)^{b} + (1-\lambda)x + y\} = \beta(-1)^{b}$$
(32)

 $Var\{\Lambda\} = E\{((1-\lambda)x+y)^2\} = E\{(1-\lambda)^2x^2 + 2(1-\lambda)xy + y^2\} = (1-\lambda)^2E\{x^2\} + E\{y^2\}$ (33)

$$E\{x^2\} = \frac{\sigma_c^2}{\alpha^2 N}$$
(34)

$$E\{y^2\} = \frac{\sigma_{\varepsilon}^2}{\alpha^2 N}$$
(35)

Substituting (34),(35) in (33), we obtain:

$$Var\Lambda = \frac{(1-\lambda)^2 \sigma_c^2 + \sigma_\varepsilon^2}{\alpha^2 N}$$
(36)

Substituting (30) in (32) and (32), (36) into (31) we :

$$P = Q\left(\sqrt{\frac{N\alpha^2 - \lambda^2 \sigma_c^2}{\left(1 - \lambda^2\right)\sigma_c^2 + \sigma_\varepsilon^2}}\right)$$
(37)

In a particular case λ =0 (conventional WM-SS-based)we obtain :

$$\widetilde{P} = Q\left(\sqrt{\frac{N\alpha^2}{\sigma_c^2 + \sigma_\varepsilon^2}}\right) = Q\left(\sqrt{\frac{N\eta_a}{\eta_a \eta_\omega + \eta_\omega - \eta_a}}\right) \approx Q\left(\sqrt{\frac{N}{\eta_\omega}}\right)$$
(38)

that coincides with (9) (see Lecture 9)

In order to minimize *P* by (37) the parameter λ should be optimized. It is easy to see that if $\sigma_c^2 / \sigma_{\varepsilon}^2$ and *N* is large enough, we can let $\lambda_{opt} \approx 1$

Then we obtain from (37)

$$P = Q\left(\sqrt{\frac{N\alpha^2 - \sigma_c^2}{\sigma_{\varepsilon}^2}}\right) = Q\left(\alpha\sqrt{\frac{N - \eta_{\omega}}{\sigma_{\varepsilon}^2}}\right) = Q\left(\sqrt{\frac{\eta_a(N - \eta_{\omega})}{\eta_{\omega} - \eta_a}}\right)$$
(39)

Comparison WM-SS and WM-ISS

Let us transform (39)

$$P = Q \left(\sqrt{\frac{N - \eta_{\omega}}{\eta - 1}} \right)$$
где $\eta = \frac{\eta_{\omega}}{\eta_{\omega}}$

 η_a

(40)

Compare (40) with relation of the probability of error for informed decoder (see (11) in previous lectures):

$$P = Q\left(\sqrt{\frac{N}{\eta - 1}}\right) \tag{41}$$

If $N >> \eta_{\omega}$ we can see that (40) and (41) are close to one another that means that WM-ISS with blind decoder works similar to WM-SS with informed decoder.

Example:

$$\sigma_c = 50, \alpha = 5, \sigma_\varepsilon = 5, N = 1000$$

then:

$$\eta_{\omega} = \frac{\sigma_c^2}{\alpha^2} = 100, \quad \eta_a = \frac{\sigma_c^2}{\alpha^2 + \sigma_c^2} = 50 \ P = Q\left(\sqrt{\frac{N}{\eta_{\omega}}}\right) = Q(\sqrt{10}) \approx 3 \cdot 10^{-3}$$

We can see that WM-ISS gives for blind decoder the same error probability as WM-SS with blind decoder if the length of sequences *N* is increased till 110 times .Thus WM-ISS is superior to WM-SS because its embedding rate for the same probability is 9 times more.

Concept of WM design different to modulation and demodulation principle typical for communication systems. (*Quantization projective modulation/demodulation – QPD [24]*)

Conventional (quantization index modulation - QIM)

Embedding:

$$C_{w}(n) = \begin{cases} Q_{0}(C(n)), \text{ if } b = 0 \\ Q_{1}(C(n)), \text{ if } b = 1 \end{cases}$$
where $Q_{i}(...) - i^{th}$ type quantizer

Decoding:
$$I = argmin_{b} \|C'_{w}(n) - Q_{b}(C'_{w}(n))\|$$
(42)
(43)

where || ...|| - is a norm in Euclidean space

Example (scalar quantizer):

If $C'_w(n) = C_w(n)$ (no attacks on WM), then the embedded information can be extracted without errors. If interference is additive white Gaussian noise $\varepsilon(n) \in N(0, \sigma_{\varepsilon}^2)$, then:

$$P = \sum_{n=-\infty}^{+\infty} \left(Q \left(\frac{\Delta(4n+1)}{\alpha \sqrt{\sigma_{\varepsilon}^2}} \right) - Q \left(\frac{\Delta(4n+3)}{\alpha \sqrt{\sigma_{\varepsilon}^2}} \right) \right), Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-t^2}{2}} dt \quad , \quad \Delta \text{ - is a step of quantization.}$$
(44)

Requantization attack:

 $C'_{w}(n) = \begin{cases} C_{w}(n), \text{ with the probability } 0,5 & \text{, then } p=0,5 \text{ (WM is removed completely)} \\ C_{w}(n) \pm \Delta, \text{ with the probability } 0,5 \end{cases}$ (45)

Ditter QIM **(DM)** Embedding: $C_w(n) = Q(C(n) + d(b, n)) - d(b, n)$ (46)

 $Q(\ldots)$ -quantizer with a step « Δ »

where d(0,n) - i.i.d., is uniformly independently and distributed on interval $[-\Delta/2, +\Delta/2]$

$$d(1,n) = \begin{cases} d(0,n) + \frac{\Delta}{2}, & \text{if } d(0,n) < 0\\ d(0,n) - \frac{\Delta}{2}, & \text{if } d(0,n) \ge 0 \end{cases}$$
(47)

Decoder:

$$\widetilde{b} = argmin_{b} \|C'_{w}(n) - Q(C'_{w}(n) + d(b, n)) + d(b, n)\|$$
(48)

Graphical interpretation for uniform scalar quantizer :

1. If
$$C'_{w}(n) = C_{w}(n)$$
, then $p = 0$
2. If $C'_{w}(n) = C_{w}(n) + \varepsilon(n)$, then $p = \text{see }(44)$
3. If $C'_{w}(n) = C_{w}(n) + \tilde{\varepsilon}(n)$, and $|\tilde{\varepsilon}(n)| < \frac{\Delta}{4}$ then $p = 0$
4. Quantization errors do not depend on $C(n)$,

that improves comprehension

Vector QIM .

Scalar QIM practically coincides with LSB-WM and therefore it has all its defects .

In the case of vector QIM it is selected initially some code book (consisting from two volumes for embedding of one bit taken from each of volumes):

$$C_{io}(n), n = 1, 2...N, C_{il}(n), n = 1, 2...N, i = 1, 2, ...L$$

Embedding:

$$C_{w}(n) = \begin{cases} C_{\tilde{\iota}o}(n), \text{ if } b = 0\\ C_{\tilde{\iota}1}(n), \text{ if } b = 1 \end{cases}$$
(49)

where $C_{\tilde{i}1}(n) = argmin_i \|C_w(n) - C_{ib}(n)\|$ Decoding:

$$\widetilde{b} = \operatorname{argmin}_{b} \operatorname{min}_{i} \| C'_{w}(n) - C_{ib}(n) \|$$
(59)

(, ,)

Remark 1.

In order to get small CO distortions the code books have to be chosen in such a way that for any CO $\Pi C C(n)$, $||C(_w(n)-C(n))||$, should be small in comparison with ||C(n)||

Remark 2.

Such system can be used also as SG and it will be resistant to deliberate removal if the selection of code books is controlled by stegokey.

Remark 3.

This WM system is agreed with vector coding using in speech coders (*vocoders*).

Quantization projective modulation/demodulation (QPD)[24]

The reason to use QPD:

To provide a resistance WM against its deliberate removal by randomizing of quantization levels .

Embedding:

$$C_{w}(n) = C(n) + \frac{Q_{b}(r) - r}{N} \pi(n), n = 1, 2, ..., N$$
(51)
where $r = \sum_{n=1}^{N} C(n) \pi(n)$

 $Q_b(...)$ – uniform quantizer with step Δ , as for *b*=0 and for *b*=1 are taken alternating points (see Fig. below)

• $\rightarrow b=1, \bigcirc \rightarrow b=0$, shaded regions $\rightarrow 0$, non-shaded regions $\rightarrow 1$ Fig1. Uniform quantizer with the step Δ

Additive noise attack:

$$C'_{w}(n) = C(n) + \varepsilon(n), \text{ rge } E\{\varepsilon(n)\} = 0,$$
 $Var\{\varepsilon(n)\} = \sigma_{\varepsilon}^{2}$
(52)

Decoder :

$$\tilde{b} = argmin_b \|r' - Q_b(r')\|^2, b \in \{0,1\}$$
 (53)

where:

$$r' = \sum_{n=1}^{N} C'_{w}(n) \pi(n)$$

Fig. 2. WM embedding scheme:

Recovering «b» under attack absence: Let us b=0, then we get from (52):

$$r' = \sum_{n=1}^{N} C'_{w}(n)\pi(n) = \sum_{n=1}^{N} \left(C(n) + \frac{\rho_{0}}{N} \pi(n) \right) \pi(n) = \sum_{n=1}^{N} \left(C(n)\pi(n) + \frac{\rho_{0}}{N} \right) = \sum_{n=1}^{N} C(n)\pi(n) + \sum_{n=1}^{N} \left(\frac{Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) - \sum_{n=1}^{N} C(n)\pi(n)}{N} \right) = \sum_{n=1}^{N} C(n)\pi(n) + Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) - \sum_{n=1}^{N} C(n)\pi(n) = Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right)$$

$$Q_{0}(r) - r' = Q_{0}\left(Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right)\right) - Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) = 0$$

$$Q_{1}(r) - r' = Q_{1}\left(Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right)\right) - Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) = \Delta$$
(55)

For b=1 , we get in a similar manner that $Q_0(r') - r' = \Delta, Q_1(r') - r' = 0$

Conclusion:

If attack is absent then decoder gives no errors

Calculation of the probability of error for decoding of the bit b under additive noise attack .

Let us *b*=0. then we get from (51), (52) :

$$r' = \sum_{n=1}^{N} C'_{w}(n)\pi(n) = \sum_{n=1}^{N} \left(C(n) + \frac{\rho_{0}}{N}\pi(n) + \varepsilon(n) \right)\pi(n) = \sum_{n=1}^{N} \left(C(n)\pi(n) + \varepsilon(n)\pi(n) + \frac{\rho_{0}}{N} \right) = \sum_{n=1}^{N} C(n)\pi(n) + \sum_{n=1}^{N} \varepsilon(n)\pi(n) + \sum_{n=1}^{N} \varepsilon(n)\pi(n) + \sum_{n=1}^{N} \left(\frac{Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) - \sum_{n=1}^{N} C(n)\pi(n)}{N} \right) = \sum_{n=1}^{N} C(n)\pi(n) + \sum_{n=1}^{N} \varepsilon(n)\pi(n) + Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) - \sum_{n=1}^{N} C(n)\pi(n) = Q_{0}\left(\sum_{n=1}^{N} C(n)\pi(n)\right) + \sum_{n=1}^{N} \varepsilon(n)\pi(n)$$
(56)

Consider the region where is taking a decision about symbol b:

Shaded regions (P) corresponds to decision b=0, whereas non-shaded- b=1thus if b=0 is embedded then

$$P = Pr\{r' \notin P\} = Pr\left\{ \begin{matrix} \infty \\ r' \notin U & (2 \varDelta i, \varDelta (2i+1)) \\ i = -\infty \end{matrix} \right\}$$

(57)

$$r' = \mathcal{Q}_{0} \left(\sum_{n=1}^{N} C(n)\pi(n) \right) + \sum_{n=1}^{N} \varepsilon(n)\pi(n)$$

$$\mathcal{Q}_{0} \left(\sum_{n=1}^{N} C(n)\pi(n) \right) \in \bigcup_{\substack{i=-\infty\\i=-\infty}}^{\infty} \mathcal{A}(2i+1/2) \right) \Rightarrow \mathcal{A} = \sum_{n=1}^{N} \varepsilon(n)\pi(n) \in \bigcup_{\substack{i=-\infty\\i=-\infty}}^{\infty} (2\mathcal{A}i + \mathcal{A}/2, 2\mathcal{A}i + 3\mathcal{A}/2) \Rightarrow$$

$$\mathcal{A} \in \bigcup_{\substack{i=-\infty\\i=-\infty}}^{\infty} (2\mathcal{A}i + \mathcal{A}/2, 2\mathcal{A}i + 3\mathcal{A}/2) = \sum_{\substack{i=-\infty\\i=-\infty\\i=-\infty}}^{\infty} (2\mathcal{A}i + \mathcal{A}/2, 2\mathcal{A}i + 3\mathcal{A}/2) = 2\mathcal{A}i + 2\mathcal{A}i + 3\mathcal{A}/2)$$

$$\mathcal{A} \in \mathcal{N}(0, \mathcal{N}\sigma_{\varepsilon}^{2}) \qquad (58)$$

$$\mathcal{A} \in \mathcal{N}(0, \mathcal{N}\sigma_{\varepsilon}^{2}) = \mathcal{P} = \sum_{\substack{i=-\infty\\i=-\infty\\i=-\infty}}^{\infty} \left(\mathcal{Q} \left(\mathcal{A} \frac{(2i+1/2)}{\sqrt{\mathcal{N}\sigma_{\varepsilon}^{2}}} \right) - \mathcal{Q} \left(\mathcal{A} \frac{(2i+3/2)}{\sqrt{\mathcal{N}\sigma_{\varepsilon}^{2}}} \right) \right) =$$

$$\sum_{\substack{i=-\infty\\i=-\infty}}^{\infty} \mathcal{Q} \left(\mathcal{A} \frac{(4i+1)}{2\sqrt{\mathcal{N}\sigma_{\varepsilon}^{2}}} \right) - \mathcal{Q} \left(\mathcal{A} \frac{(4i+3)}{2\sqrt{\mathcal{N}\sigma_{\varepsilon}^{2}}} \right) \qquad (60)$$

Neglecting by «side petals» in (60), we get:

$$p \approx 2Q \left(\frac{\Delta}{2\sqrt{N\sigma_{\varepsilon}^2}} \right)$$
(61)

Distortion evaluation of CO under WM embedding and additive noise attack :

$$\eta_{\omega} = \frac{\sigma_c^2}{E\{(C_w(n) - C(n))^2\}} = \frac{\sigma_c^2 N^2}{E\{(Q_b(r) - r)^2\}}$$
where : $r = \sum_{n=1}^{N} C(n) \pi(n)$
(62)

We can see from (62) that η_{ω} depends not only from the current value C(n) but also from adjacent samples C(n), n=1,2,...N, and by non-linear manner.

However the following bound holds $|Q_b(r)-r| \le \Delta$ and therefore we get :

$$\eta_{\omega} \geq \frac{\sigma_{c}^{2} N^{2}}{\Delta^{2}}$$

$$C'_{w}(n) = C_{w}(n) + \varepsilon(n), Var\{\varepsilon(n)\} = \sigma_{\varepsilon}^{2} \Longrightarrow$$

$$\eta_{a} = \frac{\sigma_{c}^{2}}{E_{\ell}(C_{w}(n) - C(n))^{2}\} + \sigma_{\varepsilon}^{2}} = \frac{\sigma_{c}^{2}}{\Delta^{2} / N^{2} + \sigma_{\varepsilon}^{2}}$$

$$(64)$$

20

If we let equality in (63), (64), we get from them

$$\frac{\sigma_{\varepsilon}^2 N}{\Delta^2} = \frac{\eta_{\omega}}{N\eta_a} - 1/N = 1/N \left(\frac{\eta_{\omega}}{N\eta_a} - 1\right)$$
(65)

Substituting (63) and (65) in (61), we obtain

$$P \le 2Q\left(\frac{1}{2}\sqrt{\frac{N\eta_a}{\eta_\omega - \eta_a}}\right) = 2Q\left(\frac{1}{2}\sqrt{\frac{N}{\eta - 1}}\right) = 2Q\left(\sqrt{\frac{N}{4(\eta - 1)}}\right)$$

$$\tilde{a}\ddot{a}\dot{a} \eta = \frac{\eta_\omega}{\eta_a}$$
(66)

For more precise evaluation of distortion for QPD, we get the bound[24]: $P \leq 2Q\left(\sqrt{\frac{0,75N}{(\eta-1)}}\right)$

Conclusion:

If we compare (66) with (41) that gives the probability of error for informed decoder with the use of SS-based WM we can see that for the same reliability the length of pseudorandom sequence N has to be increased for QPD (with blind decoder) at 1.3 times approximately. This is some sacrifice on altar of "blind decoding". Parameter optimization of QPD-WM

We fix the following values:

 $P, \sigma_{c.}^2 \eta_a$. It is necessary to find such parameters Δ и N, that maximize η_{ω} .

Remark 1.

Equations (63), (64), (66) are approximate ones and therefore they should be specified by simulation .

Remark 2.

QPD-WM, (similar as ISS-WM) and in contrast to SS-WM produces correlated errors of CO on the interval of the length *N* samples (pixels).

Remark 3.

If we compare QPD with ISS(see for that eq.(40)

$$P = Q\left(\sqrt{\frac{\eta_a(N - \eta_{\omega})}{\eta_{\omega} - \eta_a}}\right) = Q\left(\sqrt{\frac{N - \eta_{\omega}}{\eta - 1}}\right)$$

we can conclude that for large *N*, ISS is superior to QPD, but there may be another situation (see lecture 15).