Lecture 12 (Continuation). System attacks.

Unauthorized WM embedding

1. Brute force attack

With the knowledge of SG algorithm and stegokey simply embed WM in new CO.

Protection: Before WM embedding to perform authentication by digital signature with the use of secret key unknown for an attacker.

2. WM copying

Attacker copies WM from some CO and embed it in another CO that is needed to be watermarked .

How to copy WM :

 $C_{w1}(n) = C_1(n) + w(n)$

 $C_{w2}(n) = C_2(n) + \tilde{w}(n),$

where $\tilde{w}(n)$ - is estimation of w(n) (see in Lecture 11 "Estimation attack")

The simplest case: If it is LSB-based WM then one can copy these LSB to LSB of another CO.

Protection against copy attack The main idea: linking WM to CO.

(M – the WM message; OWF one way hash function; a description of CO is based on information unlikely to change, such as the lowest-frequency component; comparison means an inexact comparison, for example a calculation of correlation between the embedded and a description of the received CO and comparison it against a threshold.

The feature of method: Valid WM is confirmed even under slight distortion of CO.

3. Ambiguity attack

Ambiguity attacks create the appearance that a WM has been embedded in CO when in fact no such embedding has taken place. An adversary can use this attack to claim ownership of distributed CO.

Attack's technique: a) With the use of informed decoder

$$C_{w}(n) = C(n) + w(n)$$

$$C'(n) = C_{w}(n) - w'(n)$$

$$, w(n) - \text{ original WM}$$

$$w'(n) - \text{ fake WM}$$

$$C'(n) - \text{ fake CO (close to original C(n))}$$

For an attacker with informed decoder we get:

$$\Lambda_{a} = \sum_{n=1}^{N} (C(n) + w(n) - C(n) - w(n) + w'(n))w'(n) = \sum_{n=1}^{N} w'(n)w'(n) = N\alpha^{2} > \lambda,$$

where λ – threshold. In fact: $C(n) + w(n) - C'(n) = C(n) + w(n) - (C_w(n) - w'(n)) = C(n) + w(n) - (C(n) + w(n) - w'(n)) =$ = C(n) + w(n) - C(n) - w(n) + w'(n) = w'(n)

b) With the use of blind decoder

The main idea: To construct a fake WM w'(n), that appear to be a noise signal but has a high correlation with distributed Work $C_w(n)$.

Variant of solution $1.C_w(n) = C(n) + w(n), n = 1, 2...N$ (original WM-ed message) $2.C'_w(n) = C(n) + \varepsilon(n), \varepsilon(n) - \text{ small noise}$ $3.DCT(C'_w(n))$ $4.DCT' = Rand |DCT(C'_w(n))| - a randomization of <math>DCT(C'_w(n))$ amplitude 5.IDCT(DCT') = w'(n) - is looking as noise but has a large correlation coefficientwith $C_w(n)$

 $cor.coef.((C_w(n), w'(n)) = 0.968)$

a) The original image $C_{w}(n)$

b) Fake WM w'(n)

6. $C'(n) = C_W(n) + \alpha w'(n), \alpha \le 1$ $\sum_{n=1}^{N} C'(n) w'(n) > \lambda$ and arises a dispute – both legal and illegal user can make equal claims of ownership

Protection against ambiguity attack:

-use another embedding technique rather than additive embedding; in particular with the use of one-way hash functions [19].

