# Lecture 4. Stegosystems for other cover objects.

4.1. Linguistic SG (SG-L)4.2. Graphic SG (SG-G)4.3. Internet (Network) SG (SG-I)

## Some of SG proposed on Internet

| Type of SG                                | Operation<br>System | Method of<br>embedding                  | Cover objects                                                        | Amount of<br>embedded<br>information<br>Additional<br>security measures |                                                     | Remarks                                                                                   |
|-------------------------------------------|---------------------|-----------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|
| <u>Steganos</u><br>Security Suite<br>2006 | Windows             | ?                                       | Moveless images<br>and musicial files                                | ?                                                                       | Password,<br>Encryption of<br>messages              | Using USB as the key. It<br>is possible to erase date<br>if the key is lost or<br>stolen. |
| <u>StegoVideo</u>                         | Windows             | ?                                       | Video files                                                          | ?                                                                       | Password                                            | It is possible to<br>compress video files<br>after embedding.                             |
| StegaNote                                 | Windows             | Modified LSB<br>embedding               | Moveless images of<br>BMP format 24 bit/<br>pixel                    | Maximum date<br>embedding rate<br>1/255                                 | ?                                                   | Friendly interface                                                                        |
| <u>StegoMagic</u>                         | Windows             | ?                                       | Text files, Formats<br>WAV, BMP 24 bits/<br>pixel                    | Maximum date<br>embedding rate<br>1/8                                   | Password,<br>Encryption of<br>messages with<br>DES. | Friendly interface                                                                        |
| Puff                                      | Windows             | 16 different<br>embedding<br>algorithms | Formats BMP, JPG,<br>PCX, PNG, TGA,<br>AIFF, MP3, NEXT /<br>BC, WAV. | ?                                                                       | ?                                                   | ?                                                                                         |
| wbStego4.3op<br>en                        | Windows             | ?                                       | Formates BMP,<br>TXT, HTML /<br>XML, PDF                             | Up to 2 Gb Encryption of information messages                           |                                                     | Friendly interface                                                                        |
| Steganography<br><u>4.0</u>               | Windows             | ?                                       | Format BMP                                                           | ?                                                                       | Encryption of messages                              | Friendly interface                                                                        |

| SecurEngine<br>Professional<br>1.0 | Windows | ?                                                                   | Formats: BMP,<br>GIF, PNG, HTM.             | ?                                            | Encryption of<br>messages with<br>AES,<br>Blowafish,<br>GOST, Triple-<br>DES | ?                                |
|------------------------------------|---------|---------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------|
| Hermetic<br>Stego v6.5             | Windows | ?                                                                   | Format BMP                                  | ?                                            | ?                                                                            | ?                                |
| PhotoCrypt<br>1.1                  | Windows | ?                                                                   | Format BMP                                  | Format BMP Up to 50% of CM                   |                                                                              | ?                                |
| Invisible<br>Secrets v4.0          | Windows | ?                                                                   | Formats: JPEG,<br>PNG, BMP,<br>HTML and WAV | ormats: JPEG,<br>PNG, BMP, ? 7<br>ML and WAV |                                                                              | There is a password generator.   |
| CryptArkan                         | Windows | ?                                                                   | Formats: WAV<br>and BMP.                    | ?                                            | Information is encrypted                                                     | ?                                |
| Gifshuffle<br>v2.0                 | Windows | Transposition<br>of colours<br>according of<br>given<br>colourmap). | Format GIF                                  | ?                                            | Information is encrypted                                                     | Image compression<br>is possible |
| JPegX                              | Windows | ?                                                                   | Format JPEG.                                | ?                                            | Information is<br>encrypted with<br>password.                                | ?                                |
| The Third<br>Eye                   | Windows | ?                                                                   | Formats: BMP,<br>GIF and PCX.               | ?                                            | Information is encrypted                                                     | Friendly interface               |

| WeavWav                     | Windows          | ?                                                         | Format WAV                   | ?                                                 | ?                                             | Friendly interface.                                                         |
|-----------------------------|------------------|-----------------------------------------------------------|------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| InfoStego                   | Windows          | ?                                                         | Format BMP                   | ?                                                 | Information is encrypted                      | Image compression is possible                                               |
| Camouflage                  | Windows          | Attaching of<br>encrypted<br>(scrambled)<br>file to cover | Any file format              | t ? Information is<br>encrypted with<br>password. |                                               | Embedded<br>information is<br>detected very simple<br>but it cannot be read |
| BMP Secrets                 | Windows          | ?                                                         | Format BMP                   | Up to 65%<br>cover message<br>size                | Information is encrypted                      | ?                                                                           |
| S-Mail<br>Shareware<br>v1.3 | Windows<br>и DOS | ?                                                         | Formats EXE<br>and DLL       | ?                                                 | Information is encrypted                      | It is secure against simple methods                                         |
| S-Tools v4                  | Win 95/<br>NT    | ?                                                         | Formats :BMP,<br>GIF and WAV | ?                                                 | ?                                             | ?                                                                           |
| Encrypt Pic                 | Windows          | ?                                                         | Format BMP<br>24 bits/pixel  | ?                                                 | Information is<br>encrypted with<br>Blowfish. | ?                                                                           |
| Contraband<br>Hell Edition  | Windows          | ?                                                         | Format BMP                   |                                                   | Information is encrypted                      | Friendly interface.                                                         |

| Steghide<br>0.4.6.b | Windows<br>и Linux                                                                                                                                    | ?                                                       | Formats : JPG,<br>BMP, WAV .  |   | Information is<br>encrypted with<br>Blowfish,<br>pseudorandom<br>embedding into<br>cover; 128 MD5<br>for the key to<br>Blowfish. | ?.                  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Hide4PGP<br>v2.0    | Windows,<br>DOS, OS /<br>2, and<br>Linux                                                                                                              | ?                                                       | Formats : BMP,<br>WAV and VOC | ? | ?                                                                                                                                | ?                   |
| Blindside           | Windows,<br>Linux, HP,<br>Solaris<br>and AIX                                                                                                          | ?                                                       | Format BMP                    | ? | Information is<br>encrypted                                                                                                      | ?                   |
| TextHide            | Windows                                                                                                                                               | Change words<br>into the text by<br>their<br>synonymous | Text files                    | ? | Information is<br>encrypted with<br>Twofish .                                                                                    | Text files are in   |
| JP Hide and<br>Seek | Win95/98/<br>NT, DOS<br>and Linux                                                                                                                     | ?                                                       | Format JPG                    | ? | Information is<br>encrypted with<br>Blowfish.                                                                                    | Small software size |
| MP3Stego            | $\begin{array}{c c} \text{Windows} \\ 95/98/\text{NT} \\ \text{wandLinu} \\ x / \text{Unix} \end{array} ? Formats : MP3 \\ and WAV. ? \\ \end{array}$ |                                                         | ?                             | ? | Files can be<br>compressed with<br>MPEG <sup>5</sup>                                                                             |                     |

| Stella                           | ? | Two<br>embedding<br>algorithms.                                     | Formats : GIF,<br>BMP and JPEG. | ?                                | Information is encrypted | ?                       |
|----------------------------------|---|---------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------|-------------------------|
| SGPO                             | ? | Transposition<br>of colours<br>according of<br>given<br>colourmap). | Format GIF                      | GIF ? ?                          |                          | ?                       |
| Snow                             | ? | The use of<br>tabulation and<br>spaces at the<br>end of rows        | Text files                      | Text files ? Information<br>ICE. |                          | Compression is possible |
| Invisible<br>Encryption<br>(IVE) | ? | ?                                                                   | Format GIF                      | ?                                | ?                        | The use of passwords.   |
| Visual<br>Encryption<br>(VE)     | ? | ?                                                                   | Format GIF                      | ?                                | ?                        | The use of passwords.   |

We can see that there are a lot of proposed SG for different CO but undetectability of them is not granted.

### 4.1. Linguistic SGS.

*Definition:* Embedding of any data into text documents that is prepared in any natural language.

*The main requirement:* SG-L has to be appear as innocent text .This means that content, grammar, syntax and semantic should be kept completely. *Two main types of SG-L:* 

- 1. With given CO (text).
- 2. With chosen CO (text).

### Basic principle to design SG-L of the first type.

To find the areas with uniformly distributed data and replace them to the encrypted messages .

SG based on substitution of absolute and relative synonyms.

### Definitions.

1. *Synonyms* are words that can replace each other in some class of contexts with insignificant change of the whole text meaning. The reference "some class" and to "insignificant change "make this definition rather vague , nevertheless nearly all modern synonymy dictionaries are based on it. *2.Absolute synonyms.* 

These are absolute synonyms that can replace each other in any context without any change in meaning.

*Examples :* sofa – settee, big – large, another – different, mind – opinion United States of America-USA-US-Unites States , former President-ex-President, stegosystem- SG-system .

3. *Relative synonyms.* These are synonyms that can replace (or not) each other depending on context .

Examples :

client -consumer -customer -user, come -go - leave , chief - leader -head real number – continuous number, real life ≠ continuous life.

Both absolute and relative synonyms are collected in special dictionaries for the thing:

1. "Dictionary of Russian Language Synonyms", St.Petersburg, 2006 (in Russian).

2. Oxford Collocation Dictionary for Students of English. Oxford University Press. 2003.

3. Fellbaum Ch. WordNet: An electronic lexical database. MIT Press, 1998.

**Remark** .Due to N. Chomsky collocations are simply a series of two or more words occurring together in a narrow window moving along a text. *Examples* : play -> the role , new <- method.

#### Embedding and extraction algorithms for SG-L based on synonyms.



#### Embedding into synonymy groups.



(There may be more effective methods of encoding).

### Example of synonyms-based SG-L design.

Cover text :

As many as five **subterranean pulses** are *registered* during **24 hours** in the south of *Altai Republic*. The *strength* of the **earthquakes** *amounts* from 2.2 to 3.1 points on Richter scale , as they have *informed* in the Aktash seismic station today *in the afternoon*.

(Absolute synonyms highlighted with bold face ,whereas relative synonyms are marked by cursive lines).

Encoding of absolute synonyms:

```
earthquakes (0) – subterranean pulses (1),
```

```
one day (0) – during 24 hours (1),
```

Encoding of relative synonyms:

```
registered (00),
fixed (01),
marked(10),
remarked (11),
Altai Republic (0) – Altai (1),
amounts (0) – was (1),
informed (0) – communicated (1),
afternoon (0) – second part of the day (1),
strength (00), amplitude (01), magnitude (10), power (11).
```

After checking of all synonymy groups on compatibility with their "surrounding" it is performed a substitution of these synonyms given information to be embedded.

Total number of bits that can be embedded in this fragment is 10.

Investigation of LS-L shows that steganographic bandwidth (SB) or in another words –data embedding rate [2] is about 0,004. This means that cover text should be 250 times longer than the hidden information.

Another method of design LS-L: A changing of the word order in the sentences.

Example: New earthquake has taken place in Iran on Monday\_.

S V L T

L-where, T-when, V-verb, S-subject.

There exists 4! = 24 permutation totally but not all of them are acceptable in line with grammar of some language. So for Russian language translation of this sentence are acceptable only 4 transpositions:

TLVS, SVTL, TVSL , LTVS .

But in English the word order is very strong and the number of transpositions will be smaller.

Let us estimate potential SB using Meaning-Text Theory. The French sentence in 35 words reveals 50 million synonymous variants [3]. It means that each paraphrase of the sentence can hide in itself 25.6 bits of information, this giving SB of about 0.016. The main problem for implementation of this method is the limited availability of the abovementioned linguistic resources.

#### 2. SG-L with chosen (edited) CT (cover text).

It is in fact a particular case of the following general ideal SG for any cover messages:



**Remark**. In this SG hash function and data base of CO is public but only encryption/ decryption key is kept in secret that plays a role of stegokey.

Implementation for the case of SG-L:



Properties of all SG-L:

- 1. Ideal security.
- 2. Any CT can be used for embedding.
- 3. Low BD (embedding rate).
- 4. A vulnerability to "blind" removal attack of the embedded information that can be performed by reembedding of truly random messages into stegotext.
- 5. SG-L with edited cover text does not depend on language and does not require linguistic resources.

### 4.2. Graphic (raster) SG (SG-G).

CO – graphic (image) document (text, picture, scheme, table, ctr.)

The simplest methods of embedding into image-text-documents:

- changing spaces between words and or sentences,
- changing spaces between rows,
- lifting words or rows up and down,
- small rotation of rows or wordse.

(See a demonstration on the next slide.)

All these SG-G can be easily detected by the use of statistical steganalysis.

#### Examples of embedding in text files [4]:

the Internet aggregates traffic flows from many end systems. Understanding effects of the packet train phenomena on router and IP switch behavior will be essential to optimizing end-to-end efficiency. A range of interesting

**Figure 1** - Vertical shifting of a text line. The first and thirc lines are unshifted; the second line has been shifted by 1/300 inch. Can you tell if it has been moved up or down?

the Internet aggregates traffic flows from many end systems. Understanding the Internet aggregates traffic flows from many end systems. Understanding

Figure 2 - Horizontal shifting of words on a text line. The first contains no shifted words; on the second line the 2nd, 4th, 6th and 8th words are each horizontally displaced by 1/300 inch. Line length remains unchanged.

the impact it has on information providers and users. Over 100 speakers and 100 the impact it has on information providers and users. Over 100 speakers and 100 the impact it has on information providers and users. Over 100 speakers and 100

Figure 3 - Illustration of marks inserted by lifting words off the baseline. The first line contains no shifted words; the second and third lines contain 3 words each shifted by 1/600 and 1/300 inch, respectively.

### More sophisticated method "Simulation of scanner's noises" (SG-S).

*The main idea:* Scan printed document and embed in it secret information simulating scanner's noises.

Algorithm of embedding:

1. After scanning black and white document is divided consecutively into areas *nxn* pixels denoted by *A*.

Introduce the following notations: *m* –the number of black pixels in *A*, *m*=*m*<sub>+</sub> *if A* contains even number of black pixels, m=m\_ if A contains odd number of black pixels,  $0 < k < \frac{1}{2}$  is chosen threshold,  $b = \{0, 1\}$  is bit of secret information that has to be embedded in the area *A*,  $A = A_0$ , if  $kn^2 < m < (1-k)n^2$ ,  $A = A_1$ , if  $m = (1-k)n^2$ ,  $A = A_2$ , if  $m = kn^2$ .

2. If  $A = A_0$ , then embedding is determined by the following Table:

|       | m = m <sub>+</sub>                              | m = m_                                          |
|-------|-------------------------------------------------|-------------------------------------------------|
| b = 0 | Change nothing                                  | Change color of any one pixel to opposite value |
| b = 1 | Change color of any one pixel to opposite value | Change nothing                                  |

**Remark** . It is possible to change any pixels but resting on a boundary between black and white .

3. If  $A = A_1$ , then embedding is determined by Table:

|       | m = m <sub>+</sub>                     | m = m_                              |
|-------|----------------------------------------|-------------------------------------|
| b = 0 | Change nothing                         | Change one of black pixels to white |
| b = 1 | Change one of black<br>pixels to white | Change nothing                      |

4. If  $A = A_2$ , then embedding is determined by Table:

|       | m = m <sub>+</sub>                     | m = m_                              |
|-------|----------------------------------------|-------------------------------------|
| b = 0 | Change nothing                         | Change one of white pixels to black |
| b = 1 | Change one of white<br>pixels to black | Change nothing                      |

5. If  $A \neq A_0$ ,  $A \neq A_1$ ,  $A \neq A_2$  then nothing is embedded into this area.

Algorithm of extraction :

- 1. Divide the image consecutively into *A*-areas *nxn* pixels each.
- 2. If  $A=A_0$ , or  $A=A_1$ , or  $A=A_2$ , then extract b=0, if  $m=m_+$  and b=1, if  $m=m_-$ .
- 3. If  $A \neq A_0$ ,  $A \neq A_1$ ,  $A \neq A_2$ , then extract nothing bits.

The main properties of SG-S above:

1. Extraction results in error free information.

2. The more are n and k, the more secure is SG but the less is embedding rate and vice versa .

3. SG is resistant to visual attack.

4. The embedded information can be removed easily by randomization of  $m_+$ ,  $m_-$  without significant degradation of cover image.

### **Attacks on Stegosystems**

- Analysis of the number of single rejections
- Analysis of the number of single deepening's

## Attack based on the number of single rejections

Single rejections



## Attack based on the number of single rejections

**Hypothesis :** the same amount of text on a page of A4 on average have less number of single rejections, than after the embedding

**Estimated threshold :** number of single rejections for different amounts of text

### Analysis of the number of single rejections

| Img. № | Up  | Down | Left | Right | All before | Up  | Down | Left | Right | All after |
|--------|-----|------|------|-------|------------|-----|------|------|-------|-----------|
| 1      | 462 | 509  | 495  | 492   | 1958       | 602 | 542  | 649  | 720   | 2513      |
| 2      | 545 | 609  | 607  | 672   | 2433       | 654 | 654  | 757  | 936   | 3001      |
| 3      | 601 | 660  | 695  | 555   | 2511       | 743 | 713  | 866  | 787   | 3109      |
| 4      | 637 | 701  | 694  | 712   | 2744       | 788 | 773  | 851  | 951   | 3363      |
| 5      | 617 | 717  | 623  | 673   | 2630       | 799 | 791  | 806  | 887   | 3283      |
| 6      | 661 | 704  | 625  | 587   | 2577       | 818 | 770  | 787  | 825   | 3200      |
| 7      | 607 | 678  | 725  | 651   | 2661       | 750 | 735  | 862  | 903   | 3250      |
| 8      | 594 | 791  | 675  | 660   | 2720       | 743 | 866  | 819  | 897   | 3325      |
| 9      | 586 | 671  | 725  | 663   | 2645       | 728 | 728  | 897  | 881   | 3234      |
| 10     | 554 | 632  | 616  | 592   | 2394       | 691 | 708  | 761  | 815   | 2975      |
| 11     | 612 | 772  | 781  | 680   | 2845       | 782 | 830  | 937  | 915   | 3464      |
| 12     | 560 | 676  | 625  | 608   | 2469       | 696 | 726  | 788  | 823   | 3033      |
| 13     | 627 | 721  | 672  | 670   | 2690       | 746 | 776  | 782  | 885   | 3189      |
| 14     | 616 | 721  | 667  | 666   | 2670       | 780 | 767  | 845  | 872   | 3264      |
| 15     | 444 | 559  | 512  | 465   | 1980       | 565 | 622  | 621  | 666   | 2474      |
| 16     | 560 | 649  | 607  | 539   | 2355       | 693 | 695  | 778  | 764   | 2930      |
| 17     | 603 | 595  | 644  | 601   | 2443       | 734 | 655  | 788  | 808   | 2985      |
| 18     | 511 | 652  | 531  | 531   | 2225       | 591 | 705  | 682  | 742   | 2720      |
| 19     | 533 | 721  | 587  | 564   | 2405       | 665 | 782  | 748  | 790   | 2985      |
| 20     | 537 | 661  | 565  | 540   | 2303       | 679 | 716  | 702  | 792   | 2889      |

## Attack based on the number of single rejections

### The limits of applicability

- All text documents are printed on the same printer;
- All printed documents are scanned on the same scanner;
- Need database of test images to gather statistics;

### **Detection algorithm**

• Thresholds are selected on the basis of the collected statistics depending on the density of the text on the page;

As a criterion for determining the density of the text on the page is used the number of black pixels on the page.

- Searching and counting single emission in the scanned text document;
- Counting the number of black pixels in the scanned document;
- Comparing counted single emissions with chosen thresholds;
- A decision is made whether image is cover-image or stego-image.

## Testing the effectiveness of analysis based on single rejections

1. The following thresholds are selected based on analysis of 20 test images:

2. Hidden information is embedded with different speeds of embedding in 15 of 60 images submitted for stegoanalysis

| Number of black pixels | Chosen threshold |
|------------------------|------------------|
| 600000 - 650000        | 1950             |
| 650000 - 700000        | 2150             |
| 700000 - 750000        | 2350             |
| 750000 - 800000        | 2550             |
| 800000 - 850000        | 2750             |
| 850000 - 900000        | 2950             |
| 900000 - 950000        | 3150             |

## Testing the effectiveness of analysis based on single rejections

| Cover – image №                                         | Number of embedded bits                               |  |  |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| Embedding $8000 - 12000$ bits ( $n = 20$ , $k = 0.01$ ) |                                                       |  |  |  |  |  |  |
| 45                                                      | 11220                                                 |  |  |  |  |  |  |
| 51                                                      | 9400                                                  |  |  |  |  |  |  |
| 57                                                      | 9644                                                  |  |  |  |  |  |  |
| 73                                                      | 9978                                                  |  |  |  |  |  |  |
| 79                                                      | 10275                                                 |  |  |  |  |  |  |
| Embedding 600 – 700                                     | Embedding $600 - 700$ bits ( $n = 100$ , $k = 0.01$ ) |  |  |  |  |  |  |
| 23                                                      | 608                                                   |  |  |  |  |  |  |
| 27                                                      | 581                                                   |  |  |  |  |  |  |
| 42                                                      | 621                                                   |  |  |  |  |  |  |
| 48                                                      | 640                                                   |  |  |  |  |  |  |
| 50                                                      | 618                                                   |  |  |  |  |  |  |
| Embedding 400 – 500                                     | bits $(n = 100, k = 0.1)$                             |  |  |  |  |  |  |
| 41                                                      | 519                                                   |  |  |  |  |  |  |
| 56                                                      | 453                                                   |  |  |  |  |  |  |
| 62                                                      | 391                                                   |  |  |  |  |  |  |
| 67                                                      | 497                                                   |  |  |  |  |  |  |
| 80                                                      | 519                                                   |  |  |  |  |  |  |

### Testing the effectiveness of analysis based on single rejections

| Image № | Up  | Down | Left | Right | All  | Number of black<br>pixels | Detecting     |
|---------|-----|------|------|-------|------|---------------------------|---------------|
| 23      | 466 | 653  | 632  | 712   | 2463 | 798781                    | Missed        |
| 27      | 439 | 563  | 653  | 631   | 2286 | 804339                    | Missed        |
| 41      | 501 | 669  | 753  | 718   | 2641 | 877083                    | Missed        |
| 42      | 508 | 659  | 733  | 698   | 2598 | 851749                    | Missed        |
| 45      | 795 | 775  | 998  | 1091  | 3659 | 946030                    | Stego - Image |
| 48      | 508 | 684  | 813  | 710   | 2715 | 885834                    | Missed        |
| 50      | 507 | 644  | 759  | 747   | 2657 | 850749                    | Missed        |
| 51      | 601 | 719  | 850  | 937   | 3107 | 810658                    | Stego - Image |
| 56      | 505 | 660  | 713  | 709   | 2587 | 813280                    | Missed        |
| 57      | 672 | 708  | 890  | 940   | 3210 | 829337                    | Stego - Image |
| 62      | 467 | 560  | 676  | 661   | 2364 | 754718                    | Missed        |
| 67      | 499 | 666  | 825  | 791   | 2781 | 874827                    | Missed        |
| 73      | 740 | 748  | 992  | 1079  | 3559 | 859889                    | Stego - Image |
| 75      | 531 | 655  | 800  | 795   | 2781 | 837569                    | False alarm   |
| 76      | 485 | 564  | 758  | 707   | 2514 | 742726                    | False alarm   |
| 79      | 718 | 748  | 1007 | 1128  | 3601 | 895940                    | Stego - Image |
| 80      | 591 | 754  | 895  | 823   | 3063 | 907919                    | Missed        |

## Testing the effectiveness of attack based on single emissions

| Embedding speed, bits | Detecting | False alarm |
|-----------------------|-----------|-------------|
| 8000 - 12000          | 5 from 5  |             |
| 500- 600              | 0 from 5  | 2 from 60   |
| 400 - 500             | 0 from 5  |             |

### 4.3. Internet SG (SG-I) [5].

This type of SG is based on embedding into different Internet protocols like TCP/IP.



**OSI Internet architecture** 

Embedding is possible on all OSI levels .

### Methods of embedding on different levels.

| Application  | The use of conventional steganography                                                                                  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------|--|
| Presentation | Embedding into the fields of system messages                                                                           |  |
| Session      | Monitoring of remote sites                                                                                             |  |
| Transport    | Embedding into unused heads of TCP protocols                                                                           |  |
| Network      | Embedding into free fields of IP packets                                                                               |  |
| Data-link    | Embedding into heads of frames , the use of CRC information                                                            |  |
| Physical     | The use of conflict situations:<br>"0" – to send packet just after delay , "1" – to send packet<br>just after conflict |  |

### Format of TCP head.



The fields in which is allowed to embed information unconditionally are shown by hatching whereas the field where embedding is allowed under some conditions are shown by double hatching.

#### VoIP Steganography (Idea of packet loss)



The main idea is to organize simulated "packet loss" between PE-routers:

- 1. Customer A started RTP-session to Customer B
- 2. Provider analyses the codec and calculate how many packets from this session may be lost without degradation of speech:
  - G.711 codec <10% packet loss
  - G.729 codec <1% packet loss
- 3. Provider selects a packet , inserts needed information and send it to other side of provider network or other provider
- 4. Opposite PE needs to know the number of changed packet and to be able to route it to needed interface
- 5. Customer sees it as normal packet loss in provider network