
Lecture 5’: The most effective methods of SG 
system design

1. HUGO project [63]



Problem definition
The goal of HUGO is to design stegosystem that is optimized to be as undetectable as possible against a 
particular algorithm of steganalysis.

In general – it is possible to optimize stegosystem against any  stegoalgorithm.

HUGO is optimized against SPAM[62] – one of the best known algorithms of blind steganalysis.

After algorithm is chosen authors of HUGO decompose the problem into two parts:

1) Determine cost of changing of every pixel of an image

2)Perform the embedding with minimizing of total cost of all changed pixels across the image



Overview
Let 𝑋 be cover image and 𝑌 is the image after embedding and 𝐷 𝑋, 𝑌 a distortion function that shows how 
much 𝑋 differs from 𝑌 in the sense of  ability of SPAM stegoalgorithm to distinct 𝑋 from 𝑌.   Then goal of HUGO 
embedding is to  minimize value (1) while making extraction  of embedded message possible:

(1)

where

0 ≤ i ≤ ∞ - is the weight coefficient (the cost of changing i-th pixel of 𝑋), 

xi, yi - values of i-th pixel of 𝑋 and 𝑌 correspondingly

Changes are restricted to ±1 so that following equation holds:

|xi - yi|  1

Additive form of (1) means that detectability of SG does not depend on correlation between embedded bits. 
That assumption holds when changed pixels are far from each other, which in turn holds when embedding rate 
is relatively low.

Formula (1) shows a general approach to stegosystem design  and does not show how to construct a 
stegosystem that minimizes D(X,Y).

To design such stegosystem  it is necessary to solve two problems:

1) How to adequately choose weights i so that minimization of (1) leads to improving undetectability ?

2) What coding method to use for changing pixels according to their weights i ?
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Weights calculation

In order to get pixel weight for using in formula (1) we change pixels of 𝑋 one by one and calculate “cost” of the change between 𝑋 and 𝑌 𝑖,𝑗

𝜌𝑖,𝑗 = 𝐷(𝑋, 𝑌 𝑖,𝑗 ) (2)

where (i,j) - are the coordinates of changed pixel.

Following formula is  used to calculate weighted distortion between two images

𝐷 𝑋, 𝑌 =  𝑑1,𝑑2,𝑑3=−𝑇
𝑇 𝑤 𝑑1, 𝑑2, 𝑑3  𝑘∈ →,←,↑,↓ 𝐂𝑑1𝑑2𝑑3

𝐗,𝑘 − 𝐂𝑑1𝑑2𝑑3
𝐘,𝑘 + 𝑤 𝑑1, 𝑑2, 𝑑3  𝑘∈ ↘,↖,↙,↗ 𝐂𝑑1𝑑2𝑑3

𝐗,𝑘 − 𝐂𝑑1𝑑2𝑑3
𝐘,𝑘 (3)

where features 𝐂𝑑1𝑑2𝑑3
𝐗,𝑘 and weight function 𝑤 𝑑1, 𝑑2, 𝑑3 calculated as shown below ((4) and (5)) 

Let’s consider one of the most effective blind steganalysis method – Subtractive Pixel Adjacency Matrix (SPAM) [62]

SPAM features are transition probabilities between pixels for eight directions {←,→,↑,↓,↖,↘,↗,↙} . Example for horizontal direction is given 
below:

𝐂𝑑1𝑑2
X,→ = Pr(𝐃𝑖𝑗

→ = 𝑑1, 𝐃𝑖,𝑗+1
→ = 𝑑2),−𝑇 ≤ 𝑑1 ≤ 𝑇, −𝑇 ≤ 𝑑2 ≤ 𝑇 (4)

where  𝐃𝑖𝑗
→ = X𝑖𝑗 − 𝑋𝑖,𝑗+1, 1  i  𝑛1, 1  j  n2 − 1, 

and I is image of size  𝑛1 × 𝑛2

Total number of features is 8 × (2𝑇 + 1)𝒅, where d is dimension (in the example above d=2)

Features are not equally important for steganalysis.  Authors of [58] suggest following function to weight features

𝑤 𝑑1, 𝑑2, 𝑑3 =
1

𝑑1
2+𝑑2

2+𝑑3
2+𝜎

𝛾 (5)

where 𝜎 , 𝛾 – are parameters that can be changed to tune algorithm.



Syndrome-Trellis Codes
Problem definition:

Let 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a binary vector of length 𝑛 (in  our case it contains LSB of cover image 𝐗),

𝛒 = 𝜌1, 𝜌2, … , 𝜌𝑛 is the vector of real values corresponding to weights of changing corresponding to changing 
of each bit of vector 𝐱(in our case they are calculated according to formula (5))

𝐦 = {𝑚0, 𝑚2, … ,𝑚𝑘−1} – binary chain of message bits of length 𝑘,

𝐲 = 𝑦, 𝑦2, … , 𝑦𝑛 - binary vector of length 𝑛

The goal is to encode message bits 𝐦 into vector 𝐱 so that distortion in sense of (1) is minimized.

Algorithm description:

Authors of [63] suggest to use trellis coding and Viterbi algorithm (VA) for minimization  of D(X,Y) in general 
case i.e. i  1, i  .

Let ℍ ,a binary matrix of size kn , be generating matrix for some code.

Then, the problem is to choose such 𝐲 that following conditions holds:

1)ℍ𝐲 = 𝐦 (6)

2) Choose such  solution of (6)  that for given 𝐱 and 𝛒 - 𝐷(𝐱, 𝐲)is minimized.



In [63] it has been suggested to use special form of matrix ℍ that is constructed from several copies of small submatrix  ℍ of 

size ℎ × 𝑤 next to each other with one row shift. Next, for purpose of simplicity we will use matrix  ℍ =
ℎ11 ℎ12
ℎ21 ℎ22

. Number 

of copies  ℍ into ℍ is equal to 𝑘 – number of message bits. 

ℍ =

ℎ11 ℎ12
ℎ21 ℎ22 ℎ11 ℎ12

ℎ21 ℎ22
∙

∙
∙

It can be easily seen that due to this form of matrix ℍ each bit of 𝐦 affected only by 2𝑤 bits of 𝐲, and each bit of 𝐲 affects 
only ℎ message bits. This significantly reduces number of solutions of (6) and  makes it possible to calculate solution of (6) 
step by step.

In coding theory, there is a definition of syndrome 𝐬 = ℍ𝐲,which corresponds to 𝐦. During the encoding process one bit of 
partial syndrome is calculated on each step. Partial syndrome calculated on each step is of length ℎ.

Trellis consists of 2ℎ × 𝑘(𝑤 + 1) nodes. Each of 2ℎ states correspond to bits of partial syndrome (𝑠𝑖+ℎ, 𝑠𝑖+ℎ−1, 𝑠𝑖) where 1 <
𝑖 < 𝑘. Let’s consider first block of the trellis for matrix ℍ given above. First block of such trellis is shown on the next slide.



state 
(𝑠1, 𝑠0)

00

01

10

11

As it was aforementioned, state for the first block correspond to partial syndrome (𝑠1, 𝑠0). Taking into 
consideration that 𝐬 = ℍ𝐲, partial syndrome 

𝑠0
𝑠1

=
ℎ11 ℎ12
ℎ21 ℎ22

×
𝑦1
𝑦2

(7)

Columns marked as 1 and 2 correspond to the corresponding bits of 𝐱 ,  𝑝0 is dummy column that does not 
correspond to actual bit of 𝐱 but is needed for purposes of state transition between blocks(because with shifting 
to next block bits of partial syndrome are always being shifted)

𝑝0 1 2

At the beginning of the first block we start from state 00. Then from this state there are 
two path – corresponding to 𝑦1 = 0 and 𝑦1 =1 . Since we are performing step-by-step 
calculation of 𝐬 and 𝐲, on the first step we will  use only first column of matrix ℍ(or we 
can say that we ‘set’ 𝑦2 = 0)
1) path corresponding to  𝑦1 = 0 . According to (7) the path will lead into state 

𝑦1ℎ12
𝑦1ℎ22

=
0
0

. 

2) Similarly, path corresponding to 𝑦1 =1 will lead into state 
𝑦1ℎ12
𝑦1ℎ22

=
ℎ12
ℎ22

At the end of this step, there will be path entering two states in the column 1 of the 
trellis. The weight of this path is set to 𝜌1 if 𝑦1 ≠ 𝑥1 and 0 otherwise. Similarly to first 
step, we use only second column of matrix ℍ and depending on value 𝑦2 there are two 
paths from each of the two states in column 1. Weight of the resulting paths are 
calculated additively across the trellis.



So, at the end of the first block there will be paths to every state of column 2. Remembering, that state corresponds to 
partial syndrome we choose only those states that have 𝑠0 = 𝑚0. As an example, let’s choose 𝑚0 = 1. The next step is 
transition from (𝑠1, 𝑠0) bits of partial syndrome to (𝑠2, 𝑠1) that is represented by transition to the next block. During 
transition, we leave 𝑠0 out of partial syndrome, shift 𝑠1 on it’s place and set 𝑠2 as 0.

state 
(𝑠1, 𝑠0)

00

01

10

11

𝑝0 1 2

state 
(𝑠2, 𝑠1) 𝑝1 3 4

Also, there are such situations when two paths enter one node in that case path with minimal weight is chosen as a 
survivor.  Similarly, all bits of partial syndrome are calculated, and in the end of the trellis the only one path with minimal 
weight is chosen.



Submatrix  ℍ =
1 0 1
1 1 0

of dimension size ℎ × 𝑤 = 23. LSB of CM are  𝐱 = 1 1 0 0 1 1 1 0 1 and it is 

required to embed 𝐦 = 0 1 0 . Then, using method described in [63]  we can build a path through the trellis 
(see figure below), which minimizes D(x,y) for particular case when i = 1, i = 1, 2, …, n.

Example

𝐱

𝐲



Dependency of relative number of changes from a) h and b)w

Experimental results



Comparing HUGO and LSB matching

Image size Relative 

payload 

k/n

Probability of error 

during detection 

𝑃𝑒
16x16 0.4 0.27

64x64 0.4 0.176

128x128 0.2 0.1780

128x128 0.4 0.123

256x256 0.4 0.099

Image size Relative 

payload 

k/n

T 𝜎 𝛾 𝑃𝑒

16x16 0.4 10 10 4 0.337

64x64 0.4 10 10 4 0.24

128x128 0.4 10 10 4 0.162

128x128 0.2 10 10 4 0.269

LSB matching

HUGO



2. Optimization of SG based on the use of nearest-neighbor approach to 
divergence estimation

Subjects of optimization are:

-methods of embedding

-parameters of SG algorithms

It has been proved in Lecture 5 that the value of relative entropy 𝐷(𝑋| 𝑌 (or Kullback-Leibler
divergence(KLD)) can be used in order to estimate efficiency of SG (in terms of 𝑃𝑚 and 𝑃𝑓𝑎) for the best 
detecting methods:

𝑃𝑓𝑎 log
𝑃𝑓𝑎

1 − 𝑃𝑚
+ 1 − 𝑃𝑓𝑎 log

1 − 𝑃𝑓𝑎

𝑃𝑚
≤ 𝐷(𝑋| 𝑌 ,

where 𝐷(𝑋| 𝑌 = 𝐷(𝑃𝑐| 𝑃𝑠 =  𝑃𝑐 𝑧 log
𝑃𝑐

𝑃𝑠
𝑑𝑧,

𝑃𝑐 - the probability distribution of CO,

𝑃𝑠 - the probability distribution of stegosignal (SG).



Consider i.i.d. d-dimensional samples 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 drawn independently from densities p and q 
respectively. 

If p corresponds to CO and q corresponds to SG, then it would be possible to estimate them given  𝑋,  𝑌 and 
then to compute 𝐷(  𝑋||  𝑌). But it is very time consuming process. Much better is to execute the nearest 
neighbor distance(NND) following to the paper[70].

At [70] the following NND estimator is introduced:

𝐷𝑛,𝑚(𝑝| 𝑞 =
𝑑

𝑛
 

𝑖=1

𝑛

log
𝜈𝑚(𝑖)

𝜌𝑛(𝑖)
+ log(

𝑚

𝑛 − 1
)

Authors of [70] have proved the following relations:
lim

𝑛,𝑚→∞
𝐸  𝐷𝑛,𝑚(𝑝| 𝑞 = 𝐷(𝑝||𝑞)

lim
𝑛,𝑚→∞

𝐸 [ 𝐷𝑛,𝑚(𝑝| 𝑞 − 𝐷(𝑝| 𝑞 ]2 = 0

Application of NND estimator to steganography was proposed in [71]. 

Let us take one image and divide it into disjoint (𝐿 × 𝐿) – pixel areas chosen like a chess board, where white 
areas correspond to the set 𝑋 (no embedding) and black areas correspond to the set 𝑌 (embedding by some 
algorithm).

Example of 12922 × 6080 pixels image is shown below:



This experiment allows to make the following conclusions:

-no embedding results in a practically value 𝐷𝑛,𝑚(𝑝| 𝑞 ≈ 0 for all algorithms

-the greater is the embedding rate(the probability of embedding), the less is the SG security by 
𝐷(𝑝||𝑞) criteria

-LSB-matching is more secure than LSB-replacing

-HUGO is much more secure than all other SG

The results of KLD calculations are present in Table o
1 3 1 3 1 3 1 3

p LSB 

replcaing 

LSB 

matching 

SSB HUGO 

 1  3  

0 -0.07 -0.07 -0.07 -0.07 -0.07 

0.1 32.16 27.66 76.26 135.70 7.52 

0.2 85.22 77.02 184.27 273.91 22.46 

0.3 143.89 129.72 270.47 352.42 48.13 

0.4 199.70 183.80 331.57 427.20 83.48 

0.45 227.54 204.78 352.87 444.99 - 

0.5 249.79 225.60 368.09 463.42 - 

0.55 273.44 252.89 378.50 483.73 - 

0.6 295.80 273.79 386.21 494.02 - 

0.7 331.87 299.99 414.46 504.93 - 

0.8 356.86 326.49 424.98 504.93 - 

0.9 379.08 351.02 439.78 477.59 - 

1 388.36 371.02 440.00 440.85 - 
 



It is possible to optimize the structure of submatrix for HUGO algorithm.

In the Table below it is present a dependency between KLD and the structure of the 4 × 2 submatrix  𝐻 of the 
STC check matrix 𝐻:

Matrix 

H
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(x||y)D


 41.9 45.2 39.4 56.2 

 

It  can be seen that there exists an optimal submatrix, namely 

1 1
1 1
0 1
1 1

, whereas the submatrix

1 0
1 1
1 1
1 0

gives 

a much worse SG security.


