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Number theory

@ Knowledge about modulo arithmetics and finite fields is essential
when studying both traditional symmetric ciphers and public key
cryptography.

@ In this chapter we introduce the most important concepts in these
areas. Courses in the department of mathematics (Algebra | and I1)
offer more detailed material. This introduction should be enough for
understanding RSA and key exchange protocols.

@ But when studying more advanced elliptic curve cryptography this
introduction or even the above mentioned mathematical courses are
not enough, but it is necessary to read more about finite fields and
their algorithmic methods.

@ It is necessary to use even algebraic geometry. However, this course
does not touch these advanced methods.
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Modulo arithmetics

Modulo or mod operation is important when dealing with public key
cryptography. It behaves well with respect to addition and multiplication:

((a mod n)+ (b mod n)) mod n = (a+b) mod n,
((2 mod n)(b mod n)) mod n = (ab) mod n.
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Let us denote by Z, the set of integers {0,1,2,--- ,n— 1}. In other
words, Z, is the set of residues modulo n.

We can define addition @ and multiplication ® in the set Z,, as follows:

Definition
Let a, b € Z,,. Define

a®db=(a+b) mod n, a®b=(ab) mod n.

Operation mod is the normal modulo operation. Instead of ® and ®
ordinary notations for addition and multiplication are used, if it is clear
that we mean modulo operations.
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Inverses

@ In the set Z, every element has an inverse with respect to addition.
@ In other words, if a € Z,,, then there is b € Z,, such that

a®db=0

@ For example, if n =5 and a = 3, then the inverse of a with respect to
addition is 2, because (3 +2) mod 5= 0.
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Multiplicative inverse

If a € Z,, then the multiplicative inverse of a is an element b € Z,, such
that ab mod n = 1. The existence of multiplicative inverses is a more
difficult question than additive inverses. The basic result is the following:

An element a € Z,, has a multiplicative inverse if and only if gcd(a, n) = 1.

If ged(a, n) = 1, then the multiplicative inverse is unique. (gcd means the
greatest common divisor.) [
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For example, if n =12, then 1, 5, 7 and 11 have multiplicative inverses in
Z,,, because the gcd of those numbers with respect to n is one. As a
matter of fact, the inverse of 5 is 5 (similarly with 7 and 11).

In Z,,, every nonzero element has a multiplicative inverse if and only if n is

a prime. [

Multiplicative inverses are found with the help of Extended Euclidean
algorithm. (See exercises).

Advanced Computer Security, part |: Basic cn October 2010 7 /69



Group U(Z,)

@ Denote by the symbol U(Z,) the set of elements in Z, that have
multiplicative inverses modulo n.

@ When we consider the set U(Z,), we consider only multiplication,
never addition.
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Group U(Z,)

@ Denote by the symbol U(Z,) the set of elements in Z, that have
multiplicative inverses modulo n.

@ When we consider the set U(Z,), we consider only multiplication,
never addition.

@ We know that U(Z,) ={1,2,--- ,p— 1}, if pis a prime. In fact,
U(Z,) is cyclic i.e. there is an element a € U(Z,) that generates the
set U(Zp) (that is to say: when k runs through the numbers
0,1,---,p —1, then a¥ goes through all the elements in U(Z,).

@ This kind of a is called a primitive root modulo p.
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2 is a primitive root mod 5, because 21 =2 22 =14 and 23 = 3. On the
other hand, 2 is not a primitive root mod 7, because 23 mod 7 =1, but 3
is a primitve root.

@ It is known that there are always primitive roots modulo a prime.

o Guessing is a rather effective algorithmic way to find primitive roots.

@ There are methods that test the correctness of a guess quicker than
trying all the exponents. We skip the description of these methods.

@ (Note: Emil Artin has formulated the following famous hypothesis: If
a > 1is not of the form b? for some b, then there are infinitely many
primes that have a as a primitive root. Even if some progress has
been taken, the proof of the hypothesis is still widely open.)
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Consider an arbitrary n and the existence of primitive roots in the set
U(Z,). The basic result is the following.

An arbitrary natural number n has primitive roots, if and only if n is of the
form 2, 4, p? or 2p?, where p is a prime. [
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Finite fields

@ A field is a set with two operations, addition and multiplication.
Sometimes these operations have nothing to do with ordinary addition
and multiplication with numbers.

@ There are neutral elements with respect to both operations. So there
is an element 0 such that x + 0 = 0+ x = x (addition),

@ and there is an element 1 such that 1x = x1 = x (multiplication).
@ Elements have inverses with respect to these operations.

@ In addition, the operations are commutative, associative and
distributive.

@ Examples of infinite fields are R ja C. The basic examples of finite
fields are the fields Z,.
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Finite fields Il

@ Let GF(m) be a finite field with m elements. Only certain numbers m
are possible.

@ In fact, m must be of the form p”, where p is a prime, the
characteristics of the field.

@ We show in the following how to construct the field GF(p"). The
construction is based on polynomials. The same method is used in
the Rijndael cipher, too.
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Finite fields Il

@ Let f be an irreducible polynomial
ap X"+ ap_1 X"+ 4+ a1 X + ag,

where the coefficients a; € Z,, p a prime.

@ Irreducibility means that there are no polynomials g and h such that
deg(g) > 1, deg(h) > 1 and f = gh. (Normal multiplication of
polynomials, but the coefficients are added and multiplied modulo p.)

@ Denote f € Z,[X], when f is a polynomial with coefficients in Z,,.
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Finite fields IV

o If also g € Z,[X] and g is divided by f, then we get the result of the
division and the residue h € Z,[X].
@ Then deg(h) <deg(f).

@ There can be only a finite amount of different residues, when divided
by f, because there are only a certain finite number of coefficients
and the degree of the residue is less that the degree of f.

@ As a matter of fact, there are exactly p” residues.

@ When f has been fixed and the degree of f is n, we denote the set of
residues by GF¢(p"”). It turns out that GF¢(p") is a field, when
addition & and multiplication ® are defined as follows.
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Finite fields V

o Let g,h e GF¢(p"). Set
g®dh=(g+h) mod f, g ® h=(gh) mod f.

@ It is necessary to show that the multiplication has inverses.

o If g € GF¢(p"), then by applying the Extended Euclidean algorithm
we can find polynomials r and s such that

rg +sf =1.

Now r is the inverse of g with respect to the multiplication.

@ The field GF¢(p") does not depend on the choice of f. If g is another
irreducible polynomial of the same degree, then the field GF,(p") is
isomorfic with the field GF¢(p").
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Finite fields VI

Let us construct, for example, the field GF(22).
We need first an irreducible polynomial f € Z,[X] of degree two.
The polynomial f(X) = X2 + X + 1 is such,

If it were reducible, it would be the product of two polynomials of
degree one. Then it would have at least one root. Our polynomial f
has, however, no roots in Z> and so it must be irreducible.

e © ¢ ¢

@ The elements of the field GF(4) are the residue polynomials modulo
f, i.e. the polynomials 0, 1, X ja X + 1. The addition operation is
seen in the following table:
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Finite fields VII

+ 0 1 X X+1
0 0 1 X X+1
1 1 0 X+1 | X
X X X+1 1
X+1 | X4+1 | X 1 0
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Finite fields VII

+ 0 1 X X+1
0 0 1 X X+1
1 1 0 X+1 | X
X X X+1 |0 1
X+1 | X4+1 | X 1 0

The multiplication operation is seen in the following table:

* 1 X X+1
1 1 X X+1
X X X+1]1
X4+1 | X+1 |1 X

Note how the addition and multiplication is based on the corresponding
operations in Z5.
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Famous Problems in Cryptography

Modern cryptography is based on some mathematical problems which are
difficult to solve.

i) Factorization: Given an integer n, find a prime p that factors
n (i.e. p|n). No polynomial algorithm is known for this
problem. On the other hand, it is not known to NP-complete
and no lower bound has been proved.

i) Discrete logarithm: Given a prime p, a primitive root a of p,
and a number a°> mod p, find s. No polynomial algorithm is
known for this problem. No lower bound has been proved.
Essentially the same problem remains hard, if numbers are
replaced with other elements, for example elliptic curve
points.

It is a little worrisome that practically all the cryptographic protocols
depend on these two mathematical problems.
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Block ciphers: Rijndael

@ In the block ciphers, plain texts are partitioned into blocks, whose
lengths are typically 64 or 128 bits.

@ Every block is encrypted in the same way. Blocks are sent to a
receiver, usually chaining them in one way or another. Chaining
prevents an opponent to change the order of the blocks or to
duplicate them.

@ As an example of a modern block cipher we examine one system,
Rijndael, more closely. It was a surprise winner in the competition for
the new encryption standard (Advanced Encryption Standard, AES)
(arranged by USA).

@ This competition, arranged by NIST, started in January 1997 and
Rijndael was declared a winner in April 2000. The designers were the
Belgians Joan Daemen and Vincent Rijmen.
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Block ciphers: Rijndael Il

@ There were 15 proposals in the first round. These proposals came
from 11 different countries.

@ In 1999 five finalists were chosen. These were Rijndael (BE), Serpent
(UK-IL-DK), Twofish (USA), RC6 (USA), Mars (USA).

@ In the evaluation of the finalists, the efficiency of software and
hardware implementations was emphasized. Finally, the winner was
Rijndael.
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Block ciphers: Rijndael Ill

@ In this course we describe the structure of Rijndael in a concise style.
Those who want a wider description can read the book J. Daemen
and V. Rijmen, The Design of Rijndael, Springer 2002. In addition,
W. Stallings, Cryptography and Network Security, Third Edition,
Prentice Hall 2003, contains quite a good and broad description of
the method.

@ Rijndael is a block cipher. The length of a block may vary and the
same is true for keys. The length of a block or key can be a multiple
of 32 with minimum 128 and maximum 256 bits.

@ Inputs and outputs to Rijndael are one-dimensional arrays consisting
of 8 bit bytes. Several rounds are used in order to encrypt a plaintext.
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Rijndael |

@ The rounds operate on intermediate results that are called states.

@ A state can be represented as a matrix of bytes. There are four rows
in a matrix. The number of columns in a state is N} that is the same
as the length of a block divided by 32.

@ A key is represented with the help of a matrix of four rows. The
number of columns is denoted by Ny which is the same as the length
of the key divided by 32.

Advanced Computer Security, part |: Basic cn October 2010 22 /69



For example, the following matrices represent a state and a key:

Po | Pa| Ps | P12 ko | ka | ks | ki2 | kie | k2o
P1| ps | Po | P13 ki | ks | ko | ki3 | ki7 | ko1
P2 | Pe | P10 | P14 ko | ke | kio | kia | kig | ka2
p3 | P7 | P11 | P15 ks | k7 | ki1 | kis | kig | ko3

The first matrix represent a plaintext block. It has N, = 4, so that the
length of the block is 4 x 32 = 128. In the case of the key matrix, Ny = 6
and the length of the block is thus 6 x 32 = 192.
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Rijndael Il

Rijndael consists of the following phases:

Rijndael(State, CipherKey)
begin

KeyExpansion(CipherKey, ExpandedKey) ;
AddRoundKey (State, ExpandedKey[0]);
for i := 1 until Nr-1 loop
Round(State, ExpandedKey[il);
end for;
FinalRound(State, ExpandedKey[Nr]);
end.
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The encryption takes place in the routine Round. It consists of four phases:

Round(State, ExpandedKeyl[i])
begin

SubBytes(State) ;

ShiftRows(State);

MixColumns (State);

AddRoundKey(State, ExpandedKeyl[i]);
end;
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The routine FinalRound is nearly the same as Round:

FinalRound(State, ExpandedKey[Nr])
begin
SubBytes(State) ;
ShiftRows(State);

AddRoundKey(State, ExpandedKey[Nr]);
end;
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@ All transformations applied in Rijndael are linear transformations
(check linear algebra: matrices = linear mappings).

@ The only exception is the procedure SubBytes which is non-linear. It
mixes a block using the following principle:

@ Rijndael uses 16 x 16 array, so called S-box, whose values are
hexadecimal numbers.

@ Every byte in a state is transformed into another byte as follows. The
first four bits in a byte are intepreted as a hexadecimal number
0---F, and similarly the four righmost bits. These numbers are used
as indexes when picking a new 8 bit value from the S-box. The old
byte is replaced by this new byte, picked from the S-box.
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SubBytes Il

@ The S-box is designed such that the transformation is non-linear and
that it mixes bytes well.

@ Of course, the transformation must invertible. Otherwise the
decryption will not succeed.

@ The main motivation for the S-box is to make the differential and
linear cryptoanalysis more difficult.

@ If all operations in the encryption were linear, then the above analysis
methods would work better. The S-box makes a non-linear
transformation, what prevents the straightforward application of these
analysis methods.
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@ In this context it is interesting that the inventors of Rijndael refer to
the article by Kaisa Nyberg " Differentially uniform mappings for
cryptography”, Advances in Cryptology, Proc. Eurocrypt'93, LNCS
765, T. Helleseth, ed. Springer-Verlag, 1994, pp. 55-64.

@ The article examines principles according to which it is possible to
generate a good S-box.

@ The designers of Rijndael have taken one suggestion of the article. In
this course we do not start to examine the theory of S-boxes which
demands for example knowledge about finite fields.
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ShiftRows

This is a transposition of bytes which shifts rows cyclically (compare the
similar operation in machine languages). The following matrices show how
this shift works. The first matrix shows the initial situation and the second
the result.

b|c|d albjc|d
e|flg|h f h|e
il gk k|1 |i]]
min|lo|p plm|njo
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MixColumns

This step can be formulated using the multiplication of matrices. It must
be noted, however, that both addition and multiplication take place in the
field GF(2%). The matrix operation is applied to a state column by
column. For one column the transformation is as follows:

bo 02
by | | o1
by | ~ | 01
bs 03

03
02
01
01

01
03
02
01

01
01
03
02

X

ao
ai
as
as
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MixColumns

@ The values of a column, a;, are bytes of 8 bits. These bytes are
intepreted as elements of the field GF(28) i.e. polynomials.

@ If for example ag = 01001101, then it represents the polynomial
X0+ X3+ X2 +1.

@ In the same way the numbers in the coefficient matrix are interpreted
as bytes and furthermore as polynomials as presented above.

@ The matrix multiplication is normal, but the elements are considered
to be in the field GF(28).

@ Thus for example
bp=(2®ap) ®(3®ay) ®ax® as,

where @ means the addition of polynomials and ® means the
multiplication of the polynomials in the field GF(28).
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AddRoundKey

@ In this step a simple one time pad encryption is performed to the
mixed plaintext.

@ The secret key used in this operation is obtained of the secret master
key using transformations defined for keys.

@ The key is added with the state using the XOR-operation bit by bit
(addtion modulo two).
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Usage of the key

The master key is used to generate round keys for every round. These
round keys are used in the step AddRoundKey. The generation of round

keys is no more difficult than the encryption itself, but we skip it in this
course.
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The security of Rijndael

@ The competition was open and the candidates were evaluated openly
and internationally. Because no clear vulnerabilities were detected, it
seemed quite safe. There are, however, some problems which were
detected afterwards.

@ Algebraic approaches can be applied to Rijndael and they nearly broke
the cipher. The idea is to formulate a system of algebraic equations
according to the functioning of a cipher.

@ The algebraic analysis of the 128 bit Rijndael has led to a system of
equations with 16 000 unknown and 8000 second order equations
(Courtois and Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. IACR eprint server
http://www.iacr.org).
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@ Thus the system is Diophantine, i.e. there are more unknowns than
equations. There are no mechanical solution methods for such
systems as Yuri Matiyasevich (Finnish transliteration Juri
Matijasevits) showed already 1970 (when he solved this so called
Hilbert's 10th problem).

@ However, it may be the case that some special systems can be solved
mechanically. As a matter of fact, different kind of equation systems
can be deduced from AES.

@ Thus the security of the new standard AES depends on these
equations which maybe can be solved some day.
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Side channel attacks

@ More serious threat is a side channel attack that was discovered in
2005 (Daniel J. Bernstein: Cache-timing attacks on AES).

@ Bernstein demonstrates complete AES key recovery from
known-plaintext timings of a network server on another computer.
This attack should be blamed on the AES design, not on the
particular AES library used by the server; it is extremely difficult to
write constant-time high-speed AES software for common
general-purpose computers.
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Public Key Cryptography

@ The basic idea of public key encryption or asymmetric encryption is
that encryption can be done using a public key. The receiver decrypts
the message using his secret private key. One essential condition is
that it is not possible to detect the secret key even if the encryption
key is public.

@ The advantage of public key encryption is that everybody can send an
encrypted message to a receiver without first agreeing of keys with
the receiver.

@ The receiver is the only one who can decrypt the message with his
secret key.

@ The idea of public key encryption was published first by Diffie and
Hellman in 1976. In some sources Merkle is mentioned, too.

@ The method they suggested was theoretical and unpractical.
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Public key cryptography Il

@ The first practical and public method was RSA which was developed
by Rivest, Shamir and Adleman in 1977.

@ RSA is still the most popular public key method.

@ In 1997 CEG (British cryptographical organisation) published

documents that James Ellis had already in 1970 invented public key
encryption.

@ Similarly, in 1973 Clifford Clocks had described one version of RSA,
where the encryption key was the same as the modulus n.

@ After RSA, there have been many other suggestions. The most
important are:
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@ Merkle's and Hellman's knapsack. The knapsack problem is
NP-complete but anyway it has turned out to be vulnerable. There
have been many versions, but only Chor's and Rivest's version has
resisted breaking attempts.

@ McEliece's method is based on algebraic coding theory.

@ Elliptic curve method. An elliptic curve is a second degree polynomial
curve defined in the complex plane. Instead of complex numbers, it is

possible to use finite fields. In this case the point set is finite, too.
This set can be used in encryption. The advantage is a shorter key.
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Public key encryption cannot quarantee the confidentiality in every case. If
an enemy has the cipher text, he can encrypt every possible clear text with
the public key and compare the result with the cipher text. If the result is
the same, the clear text has been found. Thus there must be a huge

amount of possible clear texts.

October 2010 41 / 69
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RSA

The keys in RSA are as follows:

@ public key is the pair (e, n);
@ secret key is the pair (d, n);
@ a plain text is divided into blocks and the length of one block, as a

binary number, must be less that n; thus a block consists at most of
log,(n) bits.

Encryption is done using the following formula:
C = M® mod n.
Decryption is done by the formula

M = C? mod n=(M®)? mod n= M mod n.
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Before the system is working,

@ one has to find suitable numbers e, d and n,
@ computations M€ and C¢ must be done efficiently with all M < n,

@ d cannot be deducible easily from e and n.

Advanced Computer Security, part |: Basic cn October 2010 43 / 69



Numbers e, d and n are chosen as follows:

© Generate two large primes p and gq.

@ Compute n= pq and ®(n) = (p —1)(g —1).

© Choose a random number e such that 1 < e < ®(n) and
ged(e, ®(n)) = 1.

Q Compute d = e~! mod ®(n).

© Publish e and n.
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Because of these selections, we have (M€ mod n)¢ mod n= M.

In order to show this we need some basic theorems in number theory,
as for example Fermat's little theorem.

These basic results have been presented in many books on computer
security.
Instead, the special cases where M = p or M = g have been passed in

most books, but the system works with these values, too. The proof
uses the Chinese remainder theorem.
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)

)

p =101, g = 113, n = 11413, ®(n) = 100 - 112 = 11200.

Choose first e. Because 11200 = 265271, then e cannot be divisible
by 2, 5 or 7. Let e = 3533.

Then e~ = 6597 modulo 11200.

The public key is (3533,11413).

Let M = 9726.The cipher text is got by calculating
9726%33 mod 11413 = 5761.

Decryption results in the original plain text:
5761%%97 mod 11413 = 9726.
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Implementing RSA

Implementing RSA is rather complicated, because many things must be
taken into account:

@ Primes p and g must be secret, not even parts of these numbers
cannot be revealed.

@ Low exponents must be avoided.

@ Short plaintexts must be preprocessed before encryption.

@ Side channel attacks must be taken account, especially in card
applications.

@ Modulo operations must be done efficiently.

We check every one of these items a little bit more carefully.
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Let n = pq be m bits. If the first or last m/4 bits of p are known, then n
can be factored efficiently.

See D.Coppersmith, " Small solutions to polynomial equations, and low
exponent RSA vulnerabilities,” J. Cryptology 10 (1997), 233-260.

48 / 69
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Let n = pq be m bits. If the first or last m/4 bits of p are known, then n
can be factored efficiently.

See D.Coppersmith, "Small solutions to polynomial equations, and low
exponent RSA vulnerabilities,” J. Cryptology 10 (1997), 233-260.

Assume that (n, €) is public key and that n is m bits. Let d be the
decryption key. If one knows the last m/4 bits of d, then d can be
calculated in linear time with respect to elog, e.

See D. Boneh, G.Durfee, and Y. Frankel, " An attack on RSA given a
fraction of the private key bits,” Advances in Cryptology - ASIACRYPT
'98, LNCS 1514, Springer-Verlag, 1998, pp.25-34.
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Small exponents

@ e = 3 is a weak value.
@ d must be large enough so that the brute force attack does not work.

Let p and g be primes and g < p < 2q. Let n = pq and let d and e be
such that 1 < d,e < ¢(n), de =1 mod (p—1)(qg — 1). If now d < %nl/“,
then d can be calculated efficiently in polynomial time with respect to log

n.

See Trappe, Washington, Introduction to Cryptography with Coding
Theory, Pearson International 2006, pp. 170-171.
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Short plaintexts

Consider the situation where 56 bit DES key is written as a number
m ~ 1017,

This number is encrypted with RSA, ¢ = m® ( mod n).

(]

Even if m is small, c is large, about 200 digits.

An enemy can break the encryption as follows: He makes two lists

Q ox ¢ ( mod n) forall x, 1 < x < 10°
Q y¢ ( mod n)forally, 1<y <10°

@ Now he searches for correspondences in both lists. If this kind of

correspondence is found, then cx™¢ = y€ for some x ja y.

(]

Then ¢ = (xy)¢ ( mod n), so m= xy ( mod n).
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Short plaintexts Il

@ Is this attack realistic? Assume that m is the product of two numbers
x y, and both numbers are less than 10°.

@ In this case these numbers can be found in the lists of the attacker.
Not all m are of this form, but many are, and then it is not necessary
for the attacker to go through all of 1017 possibilities. It is necessary
to go through only 2 x 10° calculations and comparisons.

@ Preventing this attack: Before encryption, add random bits to the end
and start of m forming thus a longer plaintext.
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OAEP

@ There is a more developed method, Optimal Asymmetric Encryption
Padding, OAEP.

@ Bellare and Rogaway 1994.

@ Assume that A wants to send message m to B, whose RSA key is
(n,e), where n is k bits.

@ Choose beforehand two positive integers, ko and ki, ko + ki < k.
@ A's message can be at most k — kg — ky bits.

@ Let G be a function, whose input is a string of kg bits and whose
output is a string of k — kg bits.

@ Let H be a function, whose input is a string of kK — kg bits and output
is a string of kg bits. G and H are usually hash functions.
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OAEP

The processing and encryption of a plaintext is done as follows:

m — mokt,

xi =m0k @ G(r), xo = r ® H(x1).
If the catenation xj||x2 as a number is larger than n, A chooses a new
r and makes the previous calculations again.

If x1||x2 < n, A encrypts: E(m) = (x1]|x2)¢ ( mod n).

°
@ Choose a random string r of kg bits.
°
°
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OAEP

Decryption is done as follows:
@ B decrypts the ciphertext and writes the result in the form

c® (mod n) = yil|ys,

where y; is of k — kg bits and y» kg bits.

@ The B calculates
mof = y; @ G(H(y1) @ y2).

o B takes away kj zeros at the end and gets the original plaintext.
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Side channel attacks

@ Sometimes it is possible to deduce the secret key by observing the
time or power consumption used for calculations.

@ These kind of attacks are called side channel attacks.

o It is difficult to protect against side channel attacks, because various
means must be applied: at the machine level (adding noise, special
logic, damping of power source), at the algorithmic level
(randomizing) and at the protocol level (changing the keys often
enough).

@ Side channel attacks must be taken into account especially in card
applications.
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Finding large primes

@ The best method seems to be to generate first large random numbers
and to test, if they are primes.

@ Testing primes is fast when using randomized algorithms such as
Soloway and Strassen or Miller and Rabin tests.

@ According to the famous prime number theorem there are about
N/In N primes between 1 and N. If one is searching a prime of 512
bits, on average it is necessary to generate about 177 numbers before
finding a prime.
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Generating the encryption key e

@ Number e is also generated randomly and after this it is tested, if
ged(e, ®(n)) = 1.

@ Both the gcd test and the calculation of d can be done at the same
time using so called Extended Euclidean algorithm.
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Power calculations

@ Powers x> mod n are calculated as follows:
@ First represent b in the binary form b = Zf'(:o b;2', where b; = 0 or 1.
@ Use this as the basis of the algorithm:

1. z :=1;

2. for i = k downto 0 do

3. z := (z z) mod n;

4. if bi = 1 then z := z x mod n end if;
5. end for.
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Security of RSA

@ The security of RSA depends on the fact how fast large numbers can
be factorized.

@ This problem is equivalent with the square root problem in modular
arithmetics.

@ Already in 1996 a 130 digit number (431 bits) was factored. The
computations were distributed, using hundreds or thousands of
computers. The cpu time used was 500 MIPS vyears.

@ At the end of 2003 a number of 174 digits (576 bits) was factored
and the factoring team received 10 000 dollars.

@ In May 2005 a 200 digit number was factored, but that number did
not belong to the prize list.
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@ Prize was promised to be given to those who factor one 193 digit
number (20 000 dollar) and 212 digit number (704 bits, 30 000
dollar).

@ At the end of the prize list is one 617 digit number (2048 bits) and
the factoring of that number was announced to produce 200 000
dollar. Prizes were given by RSA laboratories to encourage the
research in number theory and factoring and to help appliers to
deduce suitable key lengths.

@ However, prices are no more payed (at least from 2007 onwards).
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Requirements to the parameters

At this moment the requirements for the keys are:

@ n must be between 1024 and 2048 bits,
@ p and g must be near each other, between 107® and 100199,
@ p—1 and g — 1l:n must contain a large prime factor,

@ syt(p— 1,9 — 1) must be small.

Advanced Computer Security, part |: Basic cn October 2010 61 / 69



Quantum computer

@ One threat in the future is quantum computer, because it factors
numbers very fast.

@ It is not clear, if a realistic quantum computer can be built.

@ In 2002 a quantum computer was built which had 7 qubits and which
was capable to factor number 15.

@ Canadian D-Wave company announced to make a quantum computer
for commercial purposes already in 2008. Nothing came of it.

@ Besides quantum computers and other previous threats there is still
mathematical research which can find quick ways to do factoring. No
lower bounds for factoring are known.
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Elliptic curve encryption

Nowadays one hears more and more suggestions that instead of RSA
also elliptic curve cryptography should be applied, both in real
systems and in teaching.

It is a little unsure how long elliptic curve encryption is safer that
RSA.

RSA is based on elementary number theory and it is easy to
understand. Elliptic curve cryptography demands deeper knowledge
on algebra.

Especially the programs attempting to solve the discreet logarithm
problem on elliptic curves apply deep mathematics, for example
algebraic geometry. Maybe these methods have not been studied as
extensively as the methods of RSA.

The situation is changing, because elliptic curve methods have been
started to use in applications more and more. This has some
implications to the teaching of computer security.
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Digital signatures with the help of RSA |

@ In electronic commerce and when using certificates it is necessary to
be able to show that a certain person or organisation is really the
sender of the message. The aim of a digital signature is that it shows
without doubt the sender, the date of the sending and, in addition, a
third party must be able to verify the signature.

@ Verification or authentication means, in this context, that a signed
message can not been altered with influencing on the signature.

@ Direct digital signature is based on public key encryption. One
precondition is that the encryption satisfies

Ex,(Dk,(M)) = M.

For example, RSA satisfies the formula.

@ If the condition is valid, a message is signed by "encrypting” it with
the sender’s secret key, Dy, .
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Digital signatures with the help of RSA Il

@ The receiver decrypts the message using the sender’s public key and
checks that the result is the plaintext of the message.

@ If the sender wants that nobody except the receiver is able to read the
message, the message can be encrypted with the public key of the
receiver.

@ Assume that an enemy chooses first number y; and then makes a
message my = y;”.

@ Now A cannot deny that he has not written the message m;. On the
other hand, it is very probable that m; is not a meaningful message.
It is likely a random bit string.

@ Often, with signatures, hash functions are used. It is the hash which
is signed, not the original message.
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Other methods of digital signatures

@ There are many other methods to do digital signatures.

@ ElGamal signature is based on discreet logarithms. It is not very
practical, because the signature is quite long.

@ Digital Signature Standard is a modification of EIGamal and it is small
enough. It was developed partially because RSA was still patented.

@ There are many others. See for example the book Menezes, van
Oorschot, Vanstone: Handbook of Applied Cryptography.
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Key generation

@ In symmetric encryption, both sides need the same key. In computer
networks, the key delivery can be done using a key server and public
key encryption.

@ If there are no key servers, it is possible to use either key agreement
protocols or key generation protocols.

@ A key agreement protocol is such that the other participant generates
a key and sends it to the other. It is also possible to get a key from a
trusted third party in a safe way.

@ A key generation protocol is such that the participants do not change
keys, but they change only partial information that can be used to
generate the keys without outsiders interference..

@ In some cases the distinction between the change and generation is
unclear. In the following chapter we will present several key agreement
protocols. In the following example we consider how to generate keys.
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Diffie-Hellman key generation |

@ The first and best known key generation protocol is Diffie-Hellman
protocol, which is based on the discreet logarithm problem.

@ Suppose that pis a prime and « a generator (primitive root) in zZ,

@ The values p and « are public and they are used to calculate a
common key K, 0 < K < p—1, to A and B using the following
method.

© A chooses a random ap, 0 < ap < p-—2;
O A calculates a® mod p and sends it to B;
© B chooses a random ag, 0 < ag < p—2;
© B calculates @8 mod p and sends it to A;

© A computes the key K = (a?8)?4 mod p,
B computes the key K = (a?4)? mod p.
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Diffie-Hellman key generation I

The following diagram shows the working of the protocol. In the diagram
U=a and V = a?s.

Unfortunately the protocol is vulnerable. An active enemy can use the
man-in-the-middle attack as it is shown in the picture:
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V' V

In the diagram U’ = o and V' = o%.
Here A has agreed the key with the enemy even if he thinks to agree with
B. The same is true with B.

@ Clearly it is necessary to know with whom you are communicating.
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Diffie-Hellman key generation IV

@ Before changing information A and B can acertain each other's
indentity using a separate protocol, but this does not help, if E is
quet during this time and starts to act only when the key agreement
protocol starts.

@ Thus it is necessary to take care of authentication and key generation
at the same time.

@ There are this kind of key agreement protocols and we go through
them in the next part.
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