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About the Course I

Content:

1 Modular arithmetics and finite fields

2 AES

3 RSA

4 Elliptic curve cryptography

5 DH

6 Key establishment protocols: with a shared key, with a server, with
public key cryptography

7 Augmenting DH with authentication

8 Conference protocols

Books:
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About the Course II

Items 1-5 are covered by Stallings, Cryptography and Network
Security, editions 4-5.

Items 6-8 are covered by Boyd, Mathuria, Protocols for
Authentication and Key Establishment.

Exercises:
Useful! They can produce 6 points for the exam.

Required courses:
None, but some are useful: Basic Computer Security, Mathematics
(especially algebra), Computer Communications.
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Number theory

Knowledge about modulo arithmetics and finite fields is essential
when studying both traditional symmetric ciphers and public key
cryptography.

In this chapter we introduce the most important concepts in these
areas. Courses in the department of mathematics (Algebra I and II)
offer more detailed material. This introduction should be enough for
understanding RSA and key exchange protocols.

But when studying more advanced elliptic curve cryptography this
introduction or even the above mentioned mathematical courses are
not enough, but it is necessary to read more about finite fields and
their algorithmic methods.

It is necessary to use even algebraic geometry. However, this course
does not touch these advanced methods.
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Modulo arithmetics

Modulo or mod operation is important when dealing with public key
cryptography. It behaves well with respect to addition and multiplication:

((a mod n) + (b mod n)) mod n = (a + b) mod n,

((a mod n)(b mod n)) mod n = (ab) mod n.
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Let us denote by Zn the set of integers {0, 1, 2, · · · , n − 1}. In other
words, Zn is the set of residues modulo n.

We can define addition ⊕ and multiplication ⊗ in the set Zn as follows:

Definition

Let a, b ∈ Zn. Define

a⊕ b = (a + b) mod n, a⊗ b = (ab) mod n.

Operation mod is the normal modulo operation. Instead of ⊕ and ⊗
ordinary notations for addition and multiplication are used, if it is clear
that we mean modulo operations.
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Groups I

The mathematical structure group is a set G equipped with a map
> : G × G−→G . We use the the notation >(x , y) = x>y . The map must
satisfy the following properties:

1 > is associative: x>(y>z) = (x>y)>z .

2 There is a special element e ∈ G such that e>x = x>e = x for all
x ∈ G . This special element is called a neutral element.

3 For every x ∈ G there is y ∈ G such that x>y = y>x = e. This y is
called the inverse of x .

If x>y = y>x for every x , y ∈ G , we say that G is an abelian group (Niels
Henrik Abel, 1802-1829, a Norwegian mathematician).

Example

The set Zn is a group with respect to addition.
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Groups II

Clearly
(a + ((b + c) mod n)) mod n = ((a + b mod n) + c) mod n so
+ is associative.

0 is the neutral element.

There are inverses, too. In other words, if a ∈ Zn, then there is
b ∈ Zn such that

a + b mod = 0

.

For example, if n = 5 and a = 3, then the inverse of a with respect to
addition is 2, because (3 + 2) mod 5 = 0.
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Multiplicative inverse

If a ∈ Zn, then the multiplicative inverse of a is an element b ∈ Zn such
that ab mod n = 1. The existence of multiplicative inverses is a more
difficult question than additive inverses. The basic result is the following:

Theorem

An element a ∈ Zn has a multiplicative inverse if and only if gcd(a, n) = 1.
If gcd(a, n) = 1, then the multiplicative inverse is unique. (gcd means the
greatest common divisor.) �
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For example, if n = 12, then 1, 5, 7 and 11 have multiplicative inverses in
Z12, because the gcd of those numbers with respect to n is one. As a
matter of fact, the inverse of 5 is 5 (similarly with 7 and 11).

Theorem

In Zn, every nonzero element has a multiplicative inverse if and only if n is
a prime. �

Multiplicative inverses are found with the help of Extended Euclidean
algorithm. (See exercises).
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Group U(Zn)

Denote by the symbol U(Zn) the set of elements in Zn that have
multiplicative inverses modulo n.

When we consider the set U(Zn), we consider only multiplication,
never addition.

We know that U(Zp) = {1, 2, · · · , p − 1}, if p is a prime. Then the
alternative notation for U(Zp) is Z∗p. In fact, U(Zp) is cyclic i.e.
there is an element a ∈ U(Zp) that generates the set U(Zp) (that is
to say: when k runs through the numbers 0, 1, · · · , p − 1, then ak

goes through all the elements in U(Zp).

This kind of a is called a primitive root modulo p.
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Example

2 is a primitive root mod 5, because 21 = 2, 22 = 4 and 23 = 3. On the
other hand, 2 is not a primitive root mod 7, because 23 mod 7 = 1, but 3
is a primitve root.

It is known that there are always primitive roots modulo a prime.

Guessing is a rather effective algorithmic way to find primitive roots.

There are methods that test the correctness of a guess quicker than
trying all the exponents. We skip the description of these methods.

(Note: Emil Artin has formulated the following famous hypothesis: If
a > 1 is not of the form b2 for some b, then there are infinitely many
primes that have a as a primitive root. Even if some progress has
been taken, the proof of the hypothesis is still widely open.)
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Consider an arbitrary n and the existence of primitive roots in the set
U(Zn). The basic result is the following.

Theorem

An arbitrary natural number n has primitive roots, if and only if n is of the
form 2, 4, pa or 2pa, where p is a prime. �
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U(p)

Especially important in applications is U(Zp) = {1, 2, · · · , p − 1},
where p is a prime. It is also a group with respect to multiplication:

Modulo multiplication is clearly associative.

1 is the neutral element.

Every element has the inverse.

T. Karvi () Cryptography and Network Security, part I: Basic cryptographyOctober 2012 14 / 95



Finite fields I

A field is a set with two operations, addition and multiplication.
Sometimes these operations have nothing to do with ordinary addition and
multiplication with numbers. The formal definition is as follows:
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Finite fields II

Definition

A field K is a set with two operations, addition + and multiplication ·,
such that the following conditions are satisfied for all x , y , z ∈ K :

K1) (x + y) + z = x + (y + z).

K2) There is 0 ∈ K such that 0 + x = x.

K3) For every x ∈ K there is y ∈ K such that x + y = 0.

K4) x + y = y + x.

K5) (x · y) · z = x · (y · z).

K6) x · y = y · x.

K7) There is 1 ∈ K such that 1 · x = x for every x ∈ K\{0}.
K8) For every x ∈ K\{0} there is y ∈ K such that x · y = 1.

K9) (x + y) · z = x · z + y · z and x · (y + z) = x · y + x · z.
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Finite fields III

Examples of infinite fields are R ja C. The basic examples of finite fields
are the fields Zp.
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Finite fields II

Let GF (m) be a finite field with m elements. Only certain numbers m
are possible.

In fact, m must be of the form pn, where p is a prime, the
characteristics of the field.

We show in the following how to construct the field GF (pn). The
construction is based on polynomials. The same method is used in
the Rijndael cipher, too.
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Finite fields III

Let f be an irreducible polynomial

anX n + an−1X n−1 + · · ·+ a1X + a0,

where the coefficients ai ∈ Zp, p a prime.

Irreducibility means that there are no polynomials g and h such that
deg(g) ≥ 1, deg(h) ≥ 1 and f = gh. (Normal multiplication of
polynomials, but the coefficients are added and multiplied modulo p.)

Denote f ∈ Zp[X ], when f is a polynomial with coefficients in Zp.
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Finite fields IV

If also g ∈ Zp[X ] and g is divided by f , then we get the result of the
division and the residue h ∈ Zp[X ].

Then deg(h) <deg(f ).

There can be only a finite amount of different residues, when divided
by f , because there are only a certain finite number of coefficients
and the degree of the residue is less that the degree of f .

As a matter of fact, there are exactly pn residues.

When f has been fixed and the degree of f is n, we denote the set of
residues by GFf (pn). It turns out that GFf (pn) is a field, when
addition ⊕ and multiplication ⊗ are defined as follows.
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Finite fields V

Let g , h ∈ GFf (pn). Set

g ⊕ h = (g + h) mod f , g ⊗ h = (gh) mod f .

It is necessary to show that the multiplication has inverses.

If g ∈ GFf (pn), then by applying the Extended Euclidean algorithm
we can find polynomials r and s such that

rg + sf = 1.

Now r is the inverse of g with respect to the multiplication.

The field GFf (pn) does not depend on the choice of f . If g is another
irreducible polynomial of the same degree, then the field GFg (pn) is
isomorfic with the field GFf (pn).
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Finite fields VI

Let us construct, for example, the field GF (22).

We need first an irreducible polynomial f ∈ Z2[X ] of degree two.

The polynomial f (X ) = X 2 + X + 1 is such.

If it were reducible, it would be the product of two polynomials of
degree one. Then it would have at least one root. Our polynomial f
has, however, no roots in Z2 and so it must be irreducible.

The elements of the field GF (4) are the residue polynomials modulo
f , i.e. the polynomials 0, 1, X ja X + 1. The addition operation is
seen in the following table:
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Finite fields VII

+ 0 1 X X+1

0 0 1 X X+1

1 1 0 X+1 X

X X X+1 0 1

X+1 X+1 X 1 0

The multiplication operation is seen in the following table:

* 1 X X+1

1 1 X X+1

X X X+1 1

X+1 X+1 1 X

Note how the addition and multiplication is based on the corresponding
operations in Z2.
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Additional example I

Consider the field GF (53). Let us use the irreducible polynomial
X 3 + X + 1. There are 125 elements in GF (53) so that we cannot
generate the addition and multiplication tables manually, but let us take a
look at some elements:

4X 2 + 2X + 3, 3X 2 + 2X + 1.

Their addition is

7X 2 + 4X + 4 = 2X 2 + 4X + 4.

Their first phase in the multiplication is
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Additional example II

(4X 2 + 2X + 3)(3X 2 + 2X + 1)

= 12X 4 + 8X 3 + 4X 2 +

6X 3 + 4X 2 + 2X +

9X 2 + 6X + 3

= 2X 4 + 4X 3 + 2X 2 + 3X + 3.

Because the degree is greater than 2, we must divide with X 3 + X + 1 and
take the remainder.
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Additional example III

2X 4 + 4X 3 + 2X 2 + 3X + 3 : X 3 + X + 1 = 2X + 4
2X 4 + 2X 2 + 2X

4X 3 + X + 3
4X 3 + 4X + 4

2X + 4
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So the remainder is 2X + 4 and this is the result of the multiplication of
these two elements in the finite field GF (53).
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Special coefficient field Z2 I

If the coefficient field is Z2, polynomial operations can be performed
efficiently using machine bitwise logical operations. A byte can represent
at most degree 7 polynomials. For example:

X 6 + X 4 + X 3 + 1 ≡ 01011001.

The addition of polynomials can be realized with the bitwise xor-operation
(mod 2 addition). For example (x6 + X 4 + X 3 + 1) + (X 5 + X 4 + X 2 + 1)
can be calculated with bits
0 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1

0 1 1 0 1 1 0 0

Thus the result is X 6 + X 5 + X 3 + X 2.

Multiplication is more complex.Consider GF (28) with the irreducible
polynomial M(X ) = X 8 + X 4 + X 3 + X + 1. Multiplication X · P,
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Special coefficient field Z2 II

P ∈ GF (28), can be implemented as a 1-bit left shift followed by a bitwise
xor with 00011011 which represents X 4 + X 3 + X + 1
(X 8 mod M(X ) = X 4 + X 3 + X + 1).

Multiplication by a higher power of x can be achieved by repeated
application X · P. By adding intermediate results, multiplication by any
element can be achieved.
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Famous Problems in Cryptography

Modern cryptography is based on some mathematical problems which are
difficult to solve.

i) Factorization: Given an integer n, find a prime p that factors
n (i.e. p|n). No polynomial algorithm is known for this
problem. On the other hand, it is not known to NP-complete
and no lower bound has been proved.

ii) Discrete logarithm: Given a prime p, a primitive root a of p,
and a number as mod p, find s. No polynomial algorithm is
known for this problem. No lower bound has been proved.
Essentially the same problem remains hard, if numbers are
replaced with other elements, for example elliptic curve
points.

It is a little worrisome that practically all the cryptographic protocols
depend on these two mathematical problems.
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Block ciphers: Rijndael

In the block ciphers, plain texts are partitioned into blocks, whose
lengths are typically 64 or 128 bits.

Every block is encrypted in the same way. Blocks are sent to a
receiver, usually chaining them in one way or another. Chaining
prevents an opponent to change the order of the blocks or to
duplicate them.

As an example of a modern block cipher we examine one system,
Rijndael, more closely. It was a surprise winner in the competition for
the new encryption standard (Advanced Encryption Standard, AES)
(arranged by USA).

This competition, arranged by NIST, started in January 1997 and
Rijndael was declared a winner in April 2000. The designers were the
Belgians Joan Daemen and Vincent Rijmen.
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Block ciphers: Rijndael II

There were 15 proposals in the first round. These proposals came
from 11 different countries.

In 1999 five finalists were chosen. These were Rijndael (BE), Serpent
(UK-IL-DK), Twofish (USA), RC6 (USA), Mars (USA).

In the evaluation of the finalists, the efficiency of software and
hardware implementations was emphasized. Finally, the winner was
Rijndael.
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Block ciphers: Rijndael III

In this course we describe the structure of Rijndael in a concise style.
Those who want a wider description can read the book J. Daemen
and V. Rijmen, The Design of Rijndael, Springer 2002. In addition,
W. Stallings, Cryptography and Network Security, Third Edition,
Prentice Hall 2003, contains quite a good and broad description of
the method.

Rijndael is a block cipher. The length of a block may vary and the
same is true for keys. The length of a block or key can be a multiple
of 32 with minimum 128 and maximum 256 bits.

Inputs and outputs to Rijndael are one-dimensional arrays consisting
of 8 bit bytes. Several rounds are used in order to encrypt a plaintext.
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Rijndael I

The rounds operate on intermediate results that are called states.

A state can be represented as a matrix of bytes. There are four rows
in a matrix. The number of columns in a state is Nb that is the same
as the length of a block divided by 32.

A key is represented with the help of a matrix of four rows. The
number of columns is denoted by Nk which is the same as the length
of the key divided by 32.
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For example, the following matrices represent a state and a key:

Example

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

k0 k4 k8 k12 k16 k20
k1 k5 k9 k13 k17 k21
k2 k6 k10 k14 k18 k22
k3 k7 k11 k15 k19 k23

The first matrix represent a plaintext block. It has Nb = 4, so that the
length of the block is 4× 32 = 128. In the case of the key matrix, Nk = 6
and the length of the block is thus 6× 32 = 192.

T. Karvi () Cryptography and Network Security, part I: Basic cryptographyOctober 2012 34 / 95



Rijndael II

Rijndael consists of the following phases:

Rijndael(State, CipherKey)

begin

KeyExpansion(CipherKey, ExpandedKey);

AddRoundKey(State, ExpandedKey[0]);

for i := 1 until Nr-1 loop

Round(State, ExpandedKey[i]);

end for;

FinalRound(State, ExpandedKey[Nr]);

end.
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The encryption takes place in the routine Round. It consists of four phases:

Round(State, ExpandedKey[i])

begin

SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State, ExpandedKey[i]);

end;
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The routine FinalRound is nearly the same as Round:

FinalRound(State, ExpandedKey[Nr])

begin

SubBytes(State);

ShiftRows(State);

AddRoundKey(State, ExpandedKey[Nr]);

end;
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SubBytes I

All transformations applied in Rijndael are linear transformations
(check linear algebra: matrices = linear mappings).

The only exception is the procedure SubBytes which is non-linear. It
mixes a block using the following principle:

Rijndael uses 16× 16 array, so called S-box, whose values are
hexadecimal numbers.

| 0 1 2 3 4 5 6 7 8 9 a b c d e f

---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
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SubBytes II

60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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SubBytes III

Every byte in a state is transformed into another byte as follows. The
first four bits in a byte are intepreted as a hexadecimal number
0 · · ·F , and similarly the four righmost bits. These numbers are used
as indexes when picking a new 8 bit value from the S-box. The old
byte is replaced by this new byte, picked from the S-box.
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SubBytes II

The S-box is designed such that the transformation is non-linear and
that it mixes bytes well.

Of course, the transformation must invertible. Otherwise the
decryption will not succeed.

The main motivation for the S-box is to make the differential and
linear cryptoanalysis more difficult.

If all operations in the encryption were linear, then the above analysis
methods would work better. The S-box makes a non-linear
transformation, what prevents the straightforward application of these
analysis methods.
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SubBytes

In this context it is interesting that the inventors of Rijndael refer to
the article by Kaisa Nyberg ”Differentially uniform mappings for
cryptography”, Advances in Cryptology, Proc. Eurocrypt’93, LNCS
765, T. Helleseth, ed. Springer-Verlag, 1994, pp. 55-64.

The article examines principles according to which it is possible to
generate a good S-box.

The designers of Rijndael have taken one suggestion of the article. In
this course we do not start to examine the theory of S-boxes which
demands for example knowledge about finite fields.
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ShiftRows

This is a transposition of bytes which shifts rows cyclically (compare the
similar operation in machine languages). The following matrices show how
this shift works. The first matrix shows the initial situation and the second
the result.

a b c d

e f g h

i j k l

m n o p

a b c d

f g h e

k l i j

p m n o
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MixColumns

This step can be formulated using the multiplication of matrices. It must
be noted, however, that both addition and multiplication take place in the
field GF (28). The matrix operation is applied to a state column by
column. For one column the transformation is as follows:

b0

b1

b2

b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×


a0
a1
a2
a3
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MixColumns

The values of a column, ai , are bytes of 8 bits. These bytes are
intepreted as elements of the field GF (28) i.e. polynomials.

If for example a0 = 01001101, then it represents the polynomial
X 6 + X 3 + X 2 + 1.

In the same way the numbers in the coefficient matrix are interpreted
as bytes and furthermore as polynomials as presented above.

The matrix multiplication is normal, but the elements are considered
to be in the field GF (28).

Thus for example

b0 = (2⊗ a0)⊕ (3⊗ a1)⊕ a2 ⊕ a3,

where ⊕ means the addition of polynomials and ⊗ means the
multiplication of the polynomials in the field GF (28).
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AddRoundKey

In this step a simple one time pad encryption is performed to the
mixed plaintext.

The secret key used in this operation is obtained of the secret master
key using transformations defined for keys.

The key is added with the state using the XOR-operation bit by bit
(addtion modulo two).
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Usage of the key

The master key is used to generate round keys for every round. These
round keys are used in the step AddRoundKey. The generation of round
keys is no more difficult than the encryption itself, but we skip it in this
course.
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The security of Rijndael

The competition was open and the candidates were evaluated openly
and internationally. Because no clear vulnerabilities were detected, it
seemed quite safe. There are, however, some problems which were
detected afterwards.

Algebraic approaches can be applied to Rijndael and they nearly broke
the cipher. The idea is to formulate a system of algebraic equations
according to the functioning of a cipher.

The algebraic analysis of the 128 bit Rijndael has led to a system of
equations with 16 000 unknown and 8000 second order equations
(Courtois and Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. IACR eprint server
http://www.iacr.org).
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Thus the system is Diophantine, i.e. there are more unknowns than
equations. There are no mechanical solution methods for such
systems as Yuri Matiyasevich (Finnish transliteration Juri
Matijasevits) showed already 1970 (when he solved this so called
Hilbert’s 10th problem).

However, it may be the case that some special systems can be solved
mechanically. As a matter of fact, different kind of equation systems
can be deduced from AES.

Thus the security of the new standard AES depends on these
equations which maybe can be solved some day.
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Side channel attacks

More serious threat is a side channel attack that was discovered in
2005 (Daniel J. Bernstein: Cache-timing attacks on AES).

Bernstein demonstrates complete AES key recovery from
known-plaintext timings of a network server on another computer.
This attack should be blamed on the AES design, not on the
particular AES library used by the server; it is extremely difficult to
write constant-time high-speed AES software for common
general-purpose computers.
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Public Key Cryptography

The basic idea of public key encryption or asymmetric encryption is
that encryption can be done using a public key. The receiver decrypts
the message using his secret private key. One essential condition is
that it is not possible to detect the secret key even if the encryption
key is public.

The advantage of public key encryption is that everybody can send an
encrypted message to a receiver without first agreeing of keys with
the receiver.

The receiver is the only one who can decrypt the message with his
secret key.

The idea of public key encryption was published first by Diffie and
Hellman in 1976. In some sources Merkle is mentioned, too.

The method they suggested was theoretical and unpractical.
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Public key cryptography II

The first practical and public method was RSA which was developed
by Rivest, Shamir and Adleman in 1977.

RSA is still the most popular public key method.

In 1997 CEG (British cryptographical organisation) published
documents that James Ellis had already in 1970 invented public key
encryption.

Similarly, in 1973 Clifford Clocks had described one version of RSA,
where the encryption key was the same as the modulus n.

After RSA, there have been many other suggestions. The most
important are:
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Merkle’s and Hellman’s knapsack. The knapsack problem is
NP-complete but anyway it has turned out to be vulnerable. There
have been many versions, but only Chor’s and Rivest’s version has
resisted breaking attempts.

McEliece’s method is based on algebraic coding theory.

Elliptic curve method. An elliptic curve is a second degree polynomial
curve defined in the complex plane. Instead of complex numbers, it is
possible to use finite fields. In this case the point set is finite, too.
This set can be used in encryption. The advantage is a shorter key.
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Public key encryption cannot quarantee the confidentiality in every case. If
an enemy has the cipher text, he can encrypt every possible clear text with
the public key and compare the result with the cipher text. If the result is
the same, the clear text has been found. Thus there must be a huge
amount of possible clear texts.
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RSA

The keys in RSA are as follows:

public key is the pair (e, n);

secret key is the pair (d , n);

a plain text is divided into blocks and the length of one block, as a
binary number, must be less that n; thus a block consists at most of
log2(n) bits.

Encryption is done using the following formula:

C = Me mod n.

Decryption is done by the formula

M = Cd mod n = (Me)d mod n = Med mod n.
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RSA

Before the system is working,

one has to find suitable numbers e, d and n,

computations Me and Cd must be done efficiently with all M < n,

d cannot be deducible easily from e and n.

T. Karvi () Cryptography and Network Security, part I: Basic cryptographyOctober 2012 56 / 95



RSA

Numbers e, d and n are chosen as follows:

1 Generate two large primes p and q.

2 Compute n = pq and Φ(n) = (p − 1)(q − 1).

3 Choose a random number e such that 1 < e < Φ(n) and
gcd(e,Φ(n)) = 1.

4 Compute d = e−1 mod Φ(n).

5 Publish e and n.
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RSA

Because of these selections, we have (Me mod n)d mod n = M.

In order to show this we need some basic theorems in number theory,
as for example Fermat’s little theorem.

These basic results have been presented in many books on computer
security.

Instead, the special cases where M = p or M = q have been passed in
most books, but the system works with these values, too. The proof
uses the Chinese remainder theorem.
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RSA

Example

p = 101, q = 113, n = 11413, Φ(n) = 100 · 112 = 11200.

Choose first e. Because 11200 = 265271, then e cannot be divisible
by 2, 5 or 7. Let e = 3533.

Then e−1 = 6597 modulo 11200.

The public key is (3533, 11413).

Let M = 9726.The cipher text is got by calculating
97263533 mod 11413 = 5761.

Decryption results in the original plain text:
57616597 mod 11413 = 9726.
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Implementing RSA

Implementing RSA is rather complicated, because many things must be
taken into account:

Primes p and q must be secret, not even parts of these numbers
cannot be revealed.

Low exponents must be avoided.

Short plaintexts must be preprocessed before encryption.

Side channel attacks must be taken account, especially in card
applications.

Modulo operations must be done efficiently.

We check every one of these items a little bit more carefully.
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RSA: p ja q

Theorem

Let n = pq be m bits. If the first or last m/4 bits of p are known, then n
can be factored efficiently.

See D.Coppersmith, ”Small solutions to polynomial equations, and low
exponent RSA vulnerabilities,” J. Cryptology 10 (1997), 233-260.

Theorem

Assume that (n, e) is public key and that n is m bits. Let d be the
decryption key. If one knows the last m/4 bits of d, then d can be
calculated in linear time with respect to e log2 e.

See D. Boneh, G.Durfee, and Y. Frankel, ”An attack on RSA given a
fraction of the private key bits,” Advances in Cryptology - ASIACRYPT
’98, LNCS 1514, Springer-Verlag, 1998, pp.25-34.
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Small exponents

e = 3 is a weak value.

d must be large enough so that the brute force attack does not work.

Theorem

Let p and q be primes and q < p < 2q. Let n = pq and let d and e be
such that 1 ≤ d , e < φ(n), de ≡ 1 mod (p − 1)(q − 1). If now d < 1

3n1/4,
then d can be calculated efficiently in polynomial time with respect to log
n.

See Trappe, Washington, Introduction to Cryptography with Coding
Theory, Pearson International 2006, pp. 170-171.
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Short plaintexts

Consider the situation where 56 bit DES key is written as a number
m ≈ 1017.

This number is encrypted with RSA, c ≡ me ( mod n).

Even if m is small, c is large, about 200 digits.

An enemy can break the encryption as follows: He makes two lists

1 cx−e ( mod n) for all x , 1 ≤ x ≤ 109.
2 y e ( mod n) for all y , 1 ≤ y ≤ 109.

Now he searches for correspondences in both lists. If this kind of
correspondence is found, then cx−e ≡ y e for some x ja y .

Then c ≡ (xy)e ( mod n), so m ≡ xy ( mod n).
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Short plaintexts II

Is this attack realistic? Assume that m is the product of two numbers
x y , and both numbers are less than 109.

In this case these numbers can be found in the lists of the attacker.
Not all m are of this form, but many are, and then it is not necessary
for the attacker to go through all of 1017 possibilities. It is necessary
to go through only 2× 109 calculations and comparisons.

Preventing this attack: Before encryption, add random bits to the end
and start of m forming thus a longer plaintext.
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OAEP

There is a more developed method, Optimal Asymmetric Encryption
Padding, OAEP.

Bellare and Rogaway 1994.

Assume that A wants to send message m to B, whose RSA key is
(n, e), where n is k bits.

Choose beforehand two positive integers, k0 and k1, k0 + k1 < k .

A’s message can be at most k − k0 − k1 bits.

Let G be a function, whose input is a string of k0 bits and whose
output is a string of k − k0 bits.

Let H be a function, whose input is a string of k − k0 bits and output
is a string of k0 bits. G and H are usually hash functions.
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OAEP

The processing and encryption of a plaintext is done as follows:

m 7→ m0k1 .

Choose a random string r of k0 bits.

x1 = m0k1 ⊕ G (r), x2 = r ⊕ H(x1).

If the catenation x1||x2 as a number is larger than n, A chooses a new
r and makes the previous calculations again.

If x1||x2 < n, A encrypts: E (m) = (x1||x2)e ( mod n).
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OAEP

Decryption is done as follows:

B decrypts the ciphertext and writes the result in the form

cd ( mod n) = y1||y2,

where y1 is of k − k0 bits and y2 k0 bits.

The B calculates

m0k1 = y1 ⊕ G (H(y1)⊕ y2).

B takes away k1 zeros at the end and gets the original plaintext.
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Side channel attacks

Sometimes it is possible to deduce the secret key by observing the
time or power consumption used for calculations.

These kind of attacks are called side channel attacks.

It is difficult to protect against side channel attacks, because various
means must be applied: at the machine level (adding noise, special
logic, damping of power source), at the algorithmic level
(randomizing) and at the protocol level (changing the keys often
enough).

Side channel attacks must be taken into account especially in card
applications.
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Finding large primes

The best method seems to be to generate first large random numbers
and to test, if they are primes.

Testing primes is fast when using randomized algorithms such as
Soloway and Strassen or Miller and Rabin tests.

According to the famous prime number theorem there are about
N/ ln N primes between 1 and N. If one is searching a prime of 512
bits, on average it is necessary to generate about 177 numbers before
finding a prime.
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Generating the encryption key e

Number e is also generated randomly and after this it is tested, if
gcd(e,Φ(n)) = 1.

Both the gcd test and the calculation of d can be done at the same
time using so called Extended Euclidean algorithm.
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Power calculations

Powers xb mod n are calculated as follows:

First represent b in the binary form b =
∑k

i=0 bi2
i , where bi = 0 or 1.

Use this as the basis of the algorithm:

1. z := 1;

2. for i = k downto 0 do

3. z := (z z) mod n;

4. if bi = 1 then z := z x mod n end if;

5. end for.
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Security of RSA

The security of RSA depends on the fact how fast large numbers can
be factorized.

This problem is equivalent with the square root problem in modular
arithmetics.

Already in 1996 a 130 digit number (431 bits) was factored. The
computations were distributed, using hundreds or thousands of
computers. The cpu time used was 500 MIPS years.

At the end of 2003 a number of 174 digits (576 bits) was factored
and the factoring team received 10 000 dollars.

In May 2005 a 200 digit number was factored, but that number did
not belong to the prize list.
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Prize was promised to be given to those who factor one 193 digit
number (20 000 dollar) and 212 digit number (704 bits, 30 000
dollar).

At the end of the prize list is one 617 digit number (2048 bits) and
the factoring of that number was announced to produce 200 000
dollar. Prizes were given by RSA laboratories to encourage the
research in number theory and factoring and to help appliers to
deduce suitable key lengths.

However, prices are no more payed (at least from 2007 onwards).
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Requirements to the parameters

At this moment the requirements for the keys are:

n must be between 1024 and 2048 bits,

p and q must be near each other, between 1075 and 100100,

p − 1 and q − 1:n must contain a large prime factor,

syt(p − 1, q − 1) must be small.
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Quantum computer

One threat in the future is quantum computer, because it factors
numbers very fast.

It is not clear, if a realistic quantum computer can be built.

In 2002 a quantum computer was built which had 7 qubits and which
was capable to factor number 15.

Canadian D-Wave company announced to make a quantum computer
for commercial purposes already in 2008. Nothing came of it.

Besides quantum computers and other previous threats there is still
mathematical research which can find quick ways to do factoring. No
lower bounds for factoring are known.
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Digital signatures with the help of RSA I

In electronic commerce and when using certificates it is necessary to
be able to show that a certain person or organisation is really the
sender of the message. The aim of a digital signature is that it shows
without doubt the sender, the date of the sending and, in addition, a
third party must be able to verify the signature.

Verification or authentication means, in this context, that a signed
message can not been altered with influencing on the signature.

Direct digital signature is based on public key encryption. One
precondition is that the encryption satisfies

EKp(DKs (M)) = M.

For example, RSA satisfies the formula.

If the condition is valid, a message is signed by ”encrypting” it with
the sender’s secret key, DKs .
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Digital signatures with the help of RSA II

The receiver decrypts the message using the sender’s public key and
checks that the result is the plaintext of the message.

If the sender wants that nobody except the receiver is able to read the
message, the message can be encrypted with the public key of the
receiver.

Assume that an enemy chooses first number y1 and then makes a
message m1 = y eA

1 .

Now A cannot deny that he has not written the message m1. On the
other hand, it is very probable that m1 is not a meaningful message.
It is likely a random bit string.

Often, with signatures, hash functions are used. It is the hash which
is signed, not the original message.
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Other methods of digital signatures

There are many other methods to do digital signatures.

ElGamal signature is based on discreet logarithms. It is not very
practical, because the signature is quite long.

Digital Signature Standard is a modification of ElGamal and it is small
enough. It was developed partially because RSA was still patented.

There are many others. See for example the book Menezes, van
Oorschot, Vanstone: Handbook of Applied Cryptography.
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Key generation

In symmetric encryption, both sides need the same key. In computer
networks, the key delivery can be done using a key server and public
key encryption.

If there are no key servers, it is possible to use either key agreement
protocols or key generation protocols.

A key agreement protocol is such that the other participant generates
a key and sends it to the other. It is also possible to get a key from a
trusted third party in a safe way.

A key generation protocol is such that the participants do not change
keys, but they change only partial information that can be used to
generate the keys without outsiders interference..

In some cases the distinction between the change and generation is
unclear. In the following chapter we will present several key agreement
protocols. In the following example we consider how to generate keys.
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Diffie-Hellman key generation I

The first and best known key generation protocol is Diffie-Hellman
protocol, which is based on the discreet logarithm problem.

Suppose that p is a prime and α a generator (primitive root) in Z∗p.

The values p and α are public and they are used to calculate a
common key K , 0 ≤ K ≤ p − 1, to A and B using the following
method.

1 A chooses a random aA, 0 ≤ aA ≤ p − 2;

2 A calculates αaA mod p and sends it to B;

3 B chooses a random aB , 0 ≤ aB ≤ p − 2;

4 B calculates αaB mod p and sends it to A;

5 A computes the key K = (αaB )aA mod p, ,
B computes the key K = (αaA)aB mod p.
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Diffie-Hellman key generation II

The following diagram shows the working of the protocol. In the diagram
U = αaA and V = αaB .

Unfortunately the protocol is vulnerable. An active enemy can use the
man-in-the-middle attack as it is shown in the picture:

In the diagram U ′ = αa′A and V ′ = αa′B .
Here A has agreed the key with the enemy even if he thinks to agree with
B. The same is true with B.

Clearly it is necessary to know with whom you are communicating.
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Diffie-Hellman key generation III

Before changing information A and B can acertain each other’s
indentity using a separate protocol, but this does not help, if E is
quet during this time and starts to act only when the key agreement
protocol starts.

Thus it is necessary to take care of authentication and key generation
at the same time.

There are this kind of key agreement protocols and we go through
them in the next part.
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Elliptic curve encryption

Nowadays one hears more and more suggestions that instead of RSA
also elliptic curve cryptography should be applied, both in real
systems and in teaching.

It is a little unsure how long elliptic curve encryption is safer that
RSA.

RSA is based on elementary number theory and it is easy to
understand. Elliptic curve cryptography demands deeper knowledge
on algebra.

Especially the programs attempting to solve the discreet logarithm
problem on elliptic curves apply deep mathematics, for example
algebraic geometry. Maybe these methods have not been studied as
extensively as the methods of RSA.

The situation is changing, because elliptic curve methods have been
started to use in applications more and more. This has some
implications to the teaching of computer security.
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Elliptic curves I

An elliptic curve E is the graph of an equation

E : y2 = x3 + ax2 + bx + c,

where a, b, c are in whatever is the appropriate field (complex
numbers, rational numbers, real numbers, integers mod p, etc.). In
classical algebraic geometry, the field was always the field of complex
numbers. In modern arithmetic geometry, the field is often the
algebraic closure of a finite field. In cryptography, the field is a finite
field.

When drawing elliptic curves, it is usually assumed that the field is
the field of real numbers. If complex numbers are used, the curves are
in four dimensional space. Below is a figure of an elliptic curve:
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Elliptic curves II
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Elliptic curves III

If the field is finite, the curve is a set of points, not forming a curve in
a usual sense. For example, if the field is Z5 and the curve is

y2 = x3 + 2x − 1,

then the possible values for x are 0, 1, 2, 3, 4 and the points on the
curve are

(0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4).

There is one not so intuitive feature here. Namely, we include a
special point into every elliptic curve, a point at infinity, denoted by
∞. It can be thought to sit at the top of the y -axis. It can treated
rigorously in the context of projective geometry, but this intuitive
notion suffices for what we need.
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Historical point

Elliptic curves are not ellipses. They received their name from their
relation to elliptic integrals such as∫ z2

z1

dx√
x3 + bx + c

and

∫ z2

z1

x dx√
x3 + bx + c

.

that arise in the computation of the arc length of ellipses.Many
mathematicians encountered these integrals (Leibniz, Bernoulli
brothers, Euler) at the end of 1600 century and in the beginning 1700
century. They concluded that the integrals cannot be expressed in a
closed form of elementary functions.Elliptic curves were also decisive
in Andrew Wiles’ proof of Fermat’s conjecture. And nowadays they
are important in cryptography.
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Addition of elliptic curve points I

What makes elliptic curves interesting is the fact that it is possible to
define an addition between the points of a curve.

Let E be an elliptic curve defined by y2 = x3 + Ax + B over a field of
characteristics other than 2. Let P1 = (x1, y1) and P2 = (x2, y2) be
points on E with P1,P2 6=∞. Define P1 + P2 = P3 = (x3, y3) as
follows:

1 If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where

m =
y2 − y1
x2 − x1

.

2 If x1 = x2 but y1 6= y2, then P1 + P2 =∞.
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Addition of elliptic curve points II

3 If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1,

where

m =
3x2

1 + A

2y1
.

4 If P1 = P2 and y1 = 0, then P1 + P2 =∞.

Moreover, define

P +∞ = P

for all points P on E .
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Addition of elliptic curve points geometrically I

If the field is R, the addition has a geometrical interpretation.

Draw the line through P1 and P2. The line intersects E in a third
point Q. Reflect Q through the x-axis to get P3.

Now it is perhaps easier to understand the motivation for the infinity
point. If we draw a line through two arbitrary points on an elliptic
curve, it does not necessarily intersect the curve. We can think that it
intersects, however, at infinity.
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How to represent plaintexts as elliptic curve points I

Before we can start to apply elliptic curves to cryptography, we must
decide how to represent plaintexts. The following method was
suggested by Koblitz.

Suppose E is an elliptic curve given by y2 = x3 + Ax + B over
GF (p) = Zp. Let m be a message, expressed as a number
0 ≤ m < p/100.

Let xj = 100m + j for 0 ≤ j < 100. For j = 0, 1, 2, ..., 99, compute
sj = x3

j + Axj + B.

If s
(p−1)/2
j ≡ 1 (mod p), then sj is a square mod p in which case we

do not need to try any more values of j .

When p ≡ 3 (mod 4), a square root of sj is then given by

yj = s
(p+1)/4
j (mod p).

When p ≡ 1 (mod 4), a square root of sj can also be computed, but
the procedure is more complicated. We obtain a point (xj , yj) on E .
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How to represent plaintexts as elliptic curve points II

To recover m from (xj , yj), simply compute the greatest integer less
than or equal to xj/100.

Since sj is essentially a random element of GF (p), which is cyclic of
even order (multicatively), the probability is approxomately 1/2 that
sj is a square. So the probability of not being able to find a point for
m after trying 100 values is around 2−100.
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Massey-Omura Encryption I

Suppose Alice wants to send a message to Bob over a public channel.
They can base their public key encryption on the elliptic curve version of
the discrete logarithm problem: If P is a point on an elliptic curve E and n
is an integer, then is computably not feasible to recover n from the
knowledge of E , P and nP.

1 Alice and Bob agree on an elliptic curve E over a finite field GF (q)
such that the discrete log problem is hard. Let N be the number of
points of E .

2 Alice represents her message as a point M on E .

3 Alice chooses a secret integer mA with gcd(mA,N) = 1, computes
M1 = mAM, and sends M1 to Bob.

4 Bob chooses a secret integer mB with gcd(mB ,N) = 1, computes
M2 = mBM1, and sends M2 to Alice.
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Massey-Omura Encryption II

5 Alice computes m−1A ∈ ZN . She computes M3 = m−1A M2 and sends
M3 to Bob.

6 Bob computes m−1b ∈ ZN . He computes M4 = m−1B M3. Then
M4 = M is the message.
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Recent developments in cryptography I

There have been some interesting developments cryptography during
the last ten years.

Identity-based encryption (IBE) was introduced already in 1984 by
Adi Shamir, but his system was quite limited. It was only in 2001,
when Boneh and Franklin developed a parctical, pairing-based method
to realize identity-based encryption.

In IBE, any unique string such as email address or telephone number,
can be a public key. The disadvantage of IBE is a trusted third party
which generates secret keys. Thus the system has a key escrow
feature.

In order to avoid the third party in IBE, certificateless public key
systems were invented. They resemble IBE systems, but the secret
key generation is done with the owner of the secret key in such a way
that the third party does not know the key.
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Recent developments in cryptography II

IBE and certificateless encryption are based on pairings on elliptic
curves. This is a bilinear mapping from E × E into a finite field.
Pairings were studied in algebraic geometry before the world war II.
Well-known pairings are Weil and Tate pairings.

More recent development is homomorphic encryption. This means an
encryption such that the following properties are satisfied: Let F a
function class (for example from binary strings to binary strings) and
E an encryption, D its decryption method. Then

D(f (E (x))) = f (x),

for all f ∈ F . In other words, it is possible to make calculations with
encrypted blocks and the result is meaningful when blocks are
decrypted.

The first general homomorphic system was created by Greg Gentry in
2009. These systems have potential applications in cloud computing
and network protocols.
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