
Cryptography and Network Security, PART IV:

Conference Protocols

Timo Karvi

11.2013

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 1 / 40



Introduction to Conference Protocols I

Conference protocols establish keys for groups of principals. There is a
great variety of different practical requirements that may be appropriate in
different applications.
The following four factors influence the requirements:

Application type: A fundamental feature is how many of the parties
must be able to send information. Corporate teleconference: all wish
to send. Satellite broadcast: only one sender.

Group size and dynamics: If groups are small, all can take part in
interactive key establishment. If groups are very large, this is
impractical. If members can be added or deleted, it must happen
without too heavy a burden.

Scalability: The efficiency of protocols may vary as the size of the
group of users changes.

Trust model: It is important to define which principals are trusted to
generate and authenticate keys.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 2 / 40



Introduction to Conference Protocols II

More concepts:

Forward secrecy (for multiparty protocols): An adversary who knows a
set of groups keys cannot derive any subsequent group key.

Backward secrecy: An adversary who knows a set of groups keys
cannot find any earlier group key.

Key independence: An adversary who knows a set of groups keys
cannot find any other group key.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 3 / 40



GDH-Protocols I

Steiner, Tsudik and Waidner proposed three protocols which generalize
Diffie-Hellman key agreement. Consider the first version GDH1:

As in ordinary Diffie-Hellman, we have a public group Zp and its public
generator g . There are m users U1,U2, · · · ,Um. The protocol assumes
that every user knows its neighbours, i.e. Ui knows Ui−1 and Ui+1. Every
user Ui chooses its secret number ri randomly.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 4 / 40



Phase 1 Ui−1−→Ui : g r1 , g r1r2 , · · · , g r1r2,··· ,ri−1

Ui−→Ui+1: g r1 , g r1r2 , · · · , g r1r2,··· ,ri

Phase 2 Ui+1−→Ui : hi+1, h
r1
i+1, h

r1r2
i+1, · · · , h

r1r2···ri−1

i+1 ,

where hi+1 = g ri+1ri+2···rm

Ui−→Ui−1: hi , h
r1
i , h

r1r2
i , · · · , h

r1r2···ri−2

i ,
where hi = g ri ri+1···rm

After a user Ui has received the message in the second phase, it can
compute the session key as K = g r1r2···rm by raising the last part of the
message to power ri .

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 5 / 40



GDH2

Version 2 is more efficient.

Phase 1 Ui−1−→Ui : pi−1, p
r
−1
1
i−1, p

r
−1
2
i−1, · · · , p

r
−1
i−1

i−1

where pi−1 = g r1r2···ri−1

Ui−→Ui+1: pi , p
r
−1
1
i , p

r
−1
2
i , · · · , p

r−1
i

i

where pi = g r1r2···ri

Phase 2 Um broadcasts: K r
−1
1 ,K r

−1
2 , · · ·K r

−1
m

where K = g r1r2···rm

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 6 / 40



GDH3 I

Version 3 minimizes the average computation of each principal. It has four
phases:

Phase 1: Partial information is generated by the first m− 1 principals.

Phase 2: Principal Um−1 broadcasts g r1r2···rm−1 = K r
−1
m .

Phase 3: Each of the principals U1, · · · ,Um−1 removes its exponent
from the broadcast information and sends the result to principal Um

to add the final exponent to these partial values.

Phase 4: Principal Um applies its exponent rm to all the received
partial calculations and broadcasts the results. This allows each
principal to find K by applying its exponent to the correct partial
value.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 7 / 40



GDH3 II

Phase 1: Ui−1−→Ui : g r1r2···ri−1

Ui−→Ui+1: g r1r2···ri

Phase 2: Um−1 broadcasts g r1r2···rm−1

Phase 3: Ui−→Um: (g r1r2···rm−1)r
−1
i

Phase 4: Um broadcasts K r
−1
1 , · · · ,K r

−1
m−1

Ui calculates (K
r
−1
i )ri = K

Addition and deletion of members is basically easy and we return to this
topic in the exercises.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 8 / 40



Burmester-Desmedt Protocol I

This is an efficient protocol, both in the number of messages sent per user
and in the amount of computation required.
Protocol principals are arranged in a ring so that U1 = Um+1. The
protocol is simplest to understand in the version that allows broadcast
communications:

Phase 1 Ui−→Ui−1,Ui+1: ti = g ri

Then Ui calculates Xi = (ti+1/ti−1)
ri ,

Zi−1,i = t
ri
i−1

Phase 2 Ui broadcasts Xi

Ui calculates K = (Zi−1,i)
mXm−1

i Xm−2
i+1 · · ·Xi−2

A straightforward calculation shows that every user can compute the same
secret key:

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols 11.2013 9 / 40



Burmester-Desmedt Protocol II

K = (Zi−1,i)
mXm−1

i Xm−2
i+1 · · ·Xi−2

= (Zi−1,i)
m ·

(

ti+1

ti−1

)(m−1)ri

·

(

ti+1

ti

)(m−2)ri+1

· · ·

(

ti−1

ti−3

)ri−2

= (Zi−1,i)
m

(

Zi ,i+1

Zi−1,i

)m−1

·

(

Zi+1,i+2

Zi ,i+1

)m−2

· · ·

(

Zi−2,i−1

Zi−3,i−2

)

= Zi−1,iZi ,i+1Zi+1,i+2 · · ·Zi−2,i−1

= g r1r2+r2r3+···+rmr1 .

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 10 / 40



Burmester-Desmedt without Broadcasts I

Broadcasts can be expensive. Burmester and Desmedt also proposed a
protocol version that uses only communication between adjacent
principals. The first phase of this version is the same as in the broadcast
version. In the following algorithm,

b0 = c0 = 1.

Phase 1 Ui−→Ui−1,Ui+1: ti = g ri

Then Ui calculates Xi = (ti+1/ti−1)
ri ,

Zi−1,i = t
ri
i−1

Phase 2 Ui−→Ui+1: bi , ci , where recursively
bi = Xibi−1, ci = bi−1ci−1.

Ui−→Ui+1: bi , ci
Phase 3 Ui−→Ui+1: di , where recursively

di = di−1/X
m
i

and Ui calculates K = di−1 · Z
m
i−1,i

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 11 / 40



Burmester-Desmedt without Broadcasts II

When Phase 2 is complete, U1 has received the value

cm = Xm−1
1 Xm−2

2 · · ·Xm−1

from Um and sets the value c0 to d0. It is left to exercises that every user
can compute the same secret key. In the case of U1, this key is

K = d0 · Z
m
4,1

.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 12 / 40



TGDH Protocol I

This protocol was invented by Kim, Perrig and Tsudik in 2004. It is based
on Diffie-Hellman, but in a different way than our earlier conference
protocols. It uses key trees. In the next figure, there is an example of a
key tree:

(0,0)

(1,0)

(2,0) (2,1)

(3,0) (3,1)

(1,1)

(2,2) (2,3)

(3,2) (3,3)
M1 M2

M3 M4

M5 M6

Users or members are attached to leaves: < 3, 0 >: M1, < 3, 1 >: M2, · · ·
< 3, 3 >: M6.
General notions and notations:

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 13 / 40



TGDH Protocol II

The root is located at level 0 and the lowest leaves are at level h (in
figures h = 3). Since we use binary trees, every node is either a leaf
or a parent of two nodes.

The nodes are denoted (l , v), where 0 ≤ v ≤ 2l − 1, since each level l
hosts at most 2l − 1 nodes.

Each node (l , v) is associated with the key K(l ,v) and the blinded key
(bkey, public key) BK(l ,v) = f

(

K(l ,v)

)

, where the function f is
modular exponentiation in prime order groups, that is

f (k) = αk
mod p,

where α is a primitive root.

Members are associated to leaves only. The other nodes in the tree
are called internal nodes. The tree is logical, i.e. in reality it is not
formed, but the leaves manage the logical structure of the tree.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 14 / 40



TGDH Protocol III

The member Mi at node (l , v) knows every key along the path from
(l , v) to (0, 0), referred to as the key-path and denoted KEY

∗

i . For
example, in the figure M2 knows every key K(3,1),K(2,0),K(1,0),K(0,0)

in KEY ∗

2 = {< 3, 1 >,< 2, 0 >,< 1, 0 >,< 0, 0 >}.

Every member knows every blinded key. Every member at leave (l , v)
has a secret key K(l ,v).

Every other key (not at leave) is computed recursively as follows:

K(l ,v) =
(

BK(l+1,2v+1)

)K(l+1,2v)
mod p

=
(

BK(l+1,2v)

)K(l+1,2v+1)
mod p

= αK(l+1,2v)K(l+1,2v+1) mod p

= f
(

K(l+1,2v)K(l+1,2v+1).

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 15 / 40



TGDH Protocol IV

Members are only in leaves, while the other nodes in the tree are
called internal or intermediate nodes. The tree is logical, i.e. in reality
it is not constructed completely, but the keys in nodes must be
calculated.

As we have seen, computing a key at (l , v) requires the knowledge of
the key of one of the two child nodes and the bkey of the other child
node.

K(0,0) at the root is the group secret shared by all members. This
value is never used directly as an encryption or authentication key.
Instead, special-purpose sub-keys are derived from the group key, for
example by setting Kgroup = h(K (0, 0)), where h is a hash function.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 16 / 40



Example I

Consider our example tree with six members. Assume that the keys of
the members are r1, r2, · · · , r6.

The corresponding blinded keys are

BK3,0 = αr1 , BK3,1 = αr2 , · · · ,BK3,3 = αr6 .

Let us show how the keys for internal nodes (2, 0) and (1, 0) are
calculated by M2:

K2,0 = BK
K3,1

3,0 = (αr1)r2 = αr1r2

BK2,0 = αα
r1r2

BK2,1 = αr3

K1,0 = BK
K2,0

2,1 = (αr3)α
r1r2

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 17 / 40



Example II

Notice that calculating the key K0,0 demands knowledge of BK1,1. So
also the right branch of the tree must be calculated in order to get
the shared secret for all.

To simplify subsequent protocol description, we introduce the term
co-path, denoted as CO∗

i , which is the set of siblings of each node in the
key-path of member Mi .

For example, the co-path of M2 in the figure is

< 3, 0 >,< 2, 1 >,< 1, 1 > .

Every member Mi at leaf node (l , v) can derive the group secret K(,0)

from all bkeys on the co-path CO∗

i and its session random key K(l ,v).

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 18 / 40



TGDH Operations I

TGDH protocols consists of five protocols:

Join: a new member is added to the group.

Leave: a member is removed from the group.

Merge: a group is merged with the current group.

Partition: a subset of members are split from the group.

Key refresh: the group key is updated.

We check only the first two. Some of the others are left to exercises.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 19 / 40



TGDH Join I

We assume the group has n members M1, · · · ,Mn.

The new member Mn+1 initiates the protocol by broadcasting a join
request message that contains its own bkey.

Each current member receives this message and determines the
sponsor point in the tree. The sponsor is the rightmost leaf with the
least depth in the tree.

Next, sponsor creates a new intermediate node and a new member
node, and promotes the new intermediate node to be the parent of
both the sponsor node and the new member node. After updating the
tree, all members, except the sponsor, block.

The sponsor proceeds to update its share and computes the new
group key; it can do this since it knows all the necessary bkeys. Next,
the sponsor broadcasts the new tree that contains all bkeys.

All other members update their trees accordingly and compute the
new group key.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 20 / 40



Sponsor

Sponsor New member

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 21 / 40



TGDH Leave I

Suppose there are n members in the group and Md leaves.

The sponsor is now the rightmost leaf node of the subtree rooted at
the leaving member’s sibling node.

First, each member updates its key tree by deleting the leaf node of
Md .

The former sibling of Md is promoted to replace Md ’s parent node.

The sponsor generates a new key share, computes all (key,bkey) pairs
on the key-path up to the root, and broadcasts the new set of bkeys.
This allows all members to compute the new group key.

Note that Md cannot compute the group key, though it knows all the
bkeys, because its share is no longer part of the group key.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 22 / 40



deleted sponsor

M1 M2 M3

M4 M5

M1 M2 M3 M5

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 23 / 40



Authentication in Conference Protocols I

In many cases, the issue of key authentication have been ignored. Or
it has been simply said that authentication using the digital signatures
may be added.

When there are no long-term keys providing authentication, forward
secrecy is meaningless.

Burmester and Desmedt proposed that their generalized
Diffie-Hellman protocol could provide key authentication if each ti
value was authenticated by any chosen means.

However, Just and Vaudenay (Authenticated multi-party key
agreement, in Kim et al., editors, Advances in Cryptology – Asiacrypt
’96, pp. 36-49) pointed out that authenticating messages is not
sufficient, since it does not show that the party authenticating knows
the random input ri and consequently unknown key-share attacks are
possible.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 24 / 40



Authentication in Conference Protocols II

Just and Vaudenay also propose a generalized form of the
Burmester-Desmedt protocol, using their two party key agreement
protocol as the building block, but it still provides weak key
authentication.

In the case of TGDH protocol, the key authentication was not
assumed to be part of group key management. All communication
channels are thus considered public but authentic.

The latter means that all messages are digitally signed by the sender
with some sufficiently strong public key signature method such as
DSA or RSA. All receivers are required to verify signatures on all
received messages and check the aforementioned fields.

GDH.2 has authenticated versions, and we check two of them in more
detail.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 25 / 40



Authenticated GDH.2

In the first authenticated version, only the final broadcast message is
changed. It is assumed that the distinguished principal Um shares a
secret Ki with each Ui .

It is suggested that this secret should be calculated from the static
DH key

S(i ,m) = gxixm ,

shared between Ui and Um.

Then the first phase is the same as in the original protocol.

Let us denote the group secret by Z . It is now known to Um, and
Z = g r1r2...rm .

In the second phase Um sends Z r
−1
i

Ki to Ui . On receipt of this
message Ui can find the shared secret

Z = g r1r2···rm

by raising the received message to the power riK
−1
i .

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 26 / 40



Authenticated GDH.2 Algorithm

Phase 1 Ui−1−→Ui : pi−1, p
r
−1
1
i−1, p

r
−1
2
i−1, · · · , p

r
−1
i−1

i−1 ,

where pi−1 = g r1r2···ri−1.

Ui−→Ui+1: pi , p
r−1
1
i , p

r−1
2
i , · · · , p

r
−1
i

i

Phase 2 Um broadcasts Z r
−1
1 K1 ,Z r

−1
2 K2 , · · · ,Z r

−1
m Km ,

Ui calculates Z =
(

Z r
−1
i

Ki

)riK
−1
i

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 27 / 40



Analysis of Authenticated GDH.2 I

The use of the shared secret Ki values means that principals can be
sure that the value they calculate for Z will be known only to those
that actually participate in the protocol with Um.

This is on the assunption that Um follows the protocol faithfully. In
this sense the protocol provides implicit key authentication.

However, in common with many multi-party protocols, principals have
no direct assurance of which other principals are participating in the
protocol. This means that the principals really know which other
parties have the shared secret only if the group is fixed or assured by
some other means.

Pereira and Quisquater conducted an analysis of the security of the
protocol. They showed that strong key authentication can fail if the
group membership varies. They showed the following attack.

m = 4.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 28 / 40



Analysis of Authenticated GDH.2 II

The adversary takes part in the protocol as U3 but alters the message
sent from U3 to U4 by replacing g r1r3 with g r1r2 .

As a consequence, U4 will include g r1r2r4K2 in the broadcast part
intended for U2, instead of the correct value g r1r3r4K2 .

The adversary also obtains g r1r2r4 from the last broadcast part, since it
knows K3. The adversary records the values exchanged in this run.

The adversary observes a new protocol run involving only the other
three principals from the first run.

In the new run suppose that new values r ′1, r
′

2 and r ′3 are chosen by U1,
U2 and U3.

The adversary replaces the message from U1 by g r1r2r4 obtained from
the first run. Then U2 will send g r1r2r4r

′

2 as part of its message to U4.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 29 / 40



Analysis of Authenticated GDH.2 III

Finally, the adversary can replace the part of the broadcast message to
U2 by g r1r2r4K2 recorded from the first run. This means that U2 will
calculate

Z = g r1r2r4r
′

2

which was sent by U2 in the second message and so is known to the
adversary.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 30 / 40



A Second Authenticated GDH.2 I

The general idea is to allow each principal to mutually authenticate
each other principal through use of a lon-term shared secret.

Each pair of principals Ui and Uj shares two keys Ki ,j and Kj ,i . An
obvious way to calculate them is to use two different derivations of
the long-term static static Diffie-Hellman key Si ,j .

There are m users U1, · · · ,Um as before. The first phase of the
algorithm starts at U1 and then proceeds through U2, · · · ,Um in that
order.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 31 / 40



A Second Authenticated GDH.2 II

Phase 1 Rounds i , 0 < i < m: Ui receives m values Vk , 1 ≤ k ≤ m,
where

Vk =

{

g
r1···ri−1

rk
Kk1···Kk(i−1), k≤ i − 1

g (r1···ri−1Kk1···Kk(i−1), k >i-1

Ui updates each Vk as follows:

Vk =







V
Kikri
k

, k<i,

V
Kikri
k

, k>i,
Vk k = i

In the initial round U1 sets V1 = g .

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 32 / 40



A Second Authenticated GDH.2 III

Phase 2 (round m): Um broadcasts a set of all Vk values to the
group. On receipt, each Ui selects the appropriate Vi , where

Vi = g
r1···rm

ri
(K1i ···Kmi )

Ui proceeds to compute

V
ri (K

−1
1i ···K

−1
mi

)
i .

Notice that the exponent K−1
1i · · ·K−1

mi can be calculated by
calculating a single inverse of K1i · · ·Kmi , because
(K1i · · ·Kmi )

−1 = K−1
1i · · ·K−1

mi .

The advantage of this protocol is that a stronger form of implicit key
authentication is achieved. Each Ui knows that only principals that
possess one of the shared keys Kij are able to calculate the same
value of the key calculated by Ui .

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 33 / 40



A Second Authenticated GDH.2 IV

There is still no confirmation that any other principal does actually
possess that key and again Ui must know the other group members’
identities by some external means.

Furthermore, the computational cost for each principal, with the
exception of Um, is greatly increased.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 34 / 40



On the Performance I

In the article Amir, Kim, Nita-Rotaru, Tsudik: On the Performance of
Group Key Agreement Protocols, ACM Transactions and Information
System Security, Vol. 7, No. 3, August 2004, pp. 457-488, group key
agreement protocols have been compared for perfomances. These
protocols were GDH, TGDH, BD, STR and CKD. Of these, CDK is a
simple group key management scheme and STR is an extreme version of
TGDH with the underlying tree completely unbalanced.

General conclusions:

Experiments show that communication cost for group-oriented
cryptographic protocols over long delay networks can dominate the
computational cost.

When designing group-oriented protocols, most cryptographers
focused on computational overhead and number of rounds. However,
simultaneous n broadcast message for relatively large n is also very
expensive in practice, and it, therefore, is recommended to be avoided.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 35 / 40



On the Performance II

The cost of BD roughly doubles as the group size grows in increment
of the total number of machines and degrades significantly when the
group size hits the number of processors.

The best and worst case costs for TGDH can be theoretically
analysed. The results show that TGDH is the best overall protocol in
practice, if only one protocol has to be selected.

Application areas:

Peer groups of long-running servers:

This group usually connects replicated servers that provide a service, as
if they were one logical server. The entire group of servers can reside
on one LAN, or they may be spread across WAN. These servers join
the group upon startup, and never voluntarily leave the group.
The most prevalent membership events in such a group are partitions
and merges. There may also be a limited number of server shutdowns
and startups, usually for maintenance reasons.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 36 / 40



On the Performance III

When small number of servers is considered, BD would fit best.
However, when the number of servers increases, TGDH would perform
much better.
Especially in a WAN setting, the self-clustering effect of TGDH would
play a major role in reducing its inefficient partition cost. When servers
are distributed over a high-delay WAN, STR can also be considered, as
it has the most efficient communication cost.

Conferencing:

In this group type, membership is built over time as participants join
the conference, with an occasional participant joining or leaving. The
group usually dissolves when most participants leave roughly at the
same time, although the time to complete the mass leave event is not
very important to the participants.
Again, for small number of participants, BD would fit best. Since most
hosts in this application type are expected to run a single member
process, BD would not show stepping behaviour.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 37 / 40



On the Performance IV

However, STR would fit better for large number of participants. Note
that the cost of a subtractive event does not matter much in this case,
since the group dissolves almost at the same time.

One-to-many broadcast:

In this case there is one source of multicasting to many receivers. The
group has no value without the presence of the source while receivers
join and leave at will.
It is obvious that group key distribution protocols are most appropriate
for this application class. In these protocols, one single member creates
the group key and delivers it to other members. However, CKD would
fit better for applications that require strong security properties.

Distributed logging:

This case has several logging servers that accept updates from many
participants, which may frequently join or leave the group.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 38 / 40



On the Performance V

For example, there are such systems with hundreds of participants,
each of which with a lifespan of several minutes. This translates into
several join or leave operations per second globally.
This model requires the most scalable and efficient solution; therefore,
TGDH would fit best.

Mobile state transfer

This group type has up to a few tens of participants that share soft
state. From time to time, participants join the group, exchange state,
stay connected for a while, and temporarily leave the group.
In such a setting, there are no long-term participants in the group, but
the group changes are usually less frequent than in the distributed
logging case.
However, this also requires relatively frequent joins and leaves.
Therefore, once again, TGDH would work best.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 39 / 40



Guidelines for Future Group Protocols I

In a recent article it was analyzed the use of security features in
practice (Johns, Kase, O’Mara, Cranor: A Survey to Guide Group Key
Protocol Development). The conlusions were:

Most respondents (47 %) rely on service providers for security.

Only 15% used security software for one-to-one communications.

As for group communications, most respondents wanted to add and
delete members from groups.

When meeting online there is no single group protocol that satisfies a
large portion of respondents trust establishment habits. For successful
group key protocol adoption, respondents’ online practices will have
to adapt to accept public key based protocols or a new type of group
key protocol is needed.

Timo Karvi () Cryptography and Network Security, PART IV: Conference Protocols11.2013 40 / 40


