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Introduction I

Before 1990, there were no formal proofs of key agreement protocols.
Proof methods for cryptographical primitives had, however, started to
develop in the 1980’s. One of breakthroughs at that time, 1982, was the
public key system of Goldwasser and Micali. They developed the concept
of semantic security and proved formally that their system is correct. After
1990, the proof theory of protocols started to developed quickly:

Bellare and Rogaway I, 1993.

Bellare and Rogaway II, 1995.

Bellare, Pointcheval, Rogaway, 2000.

Canetti and Krawczyk, 2001.

LaMacchia, Lauter and Mityagin, 2006.
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Introduction II

We present the model of Bellare, Pointcheval and Rogaway. It is
reasonably effective but at the same time straightforward, and it is easy
after this model to familiarize oneself with later models. The basic game
theoretic approach is the same in all the models.

Our presentation follows the book Kim-Kwang Raymond Choo: Secure
Key Establishment, Springer 2008.
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Adversarial Powers I

Adversary A is a probalististic, polynomial-time machine that is in
control of all communications between a fixed set of protocol
participants.

A interacts with a set of oracles Πi
Uu ,Uv

, where Πi
Uu ,Uv

is the i’th
instantiation of a protocol participants Uu and Uv . The participants
wish to establish a common secret session key.

A controls the channels via the queries to the targeted oracles. The
possible queries are:

Send(Uu ,Uv , i ,m): Πi
Uu ,Uv

responds according to the protocol
specification. Also reactions accept and reject m are delivered to A.
Session−Key − Reveal(Uu ,Uv , i): Any oracle Πi

Uu ,Uv
, upon receiving

this query, will send the session keys it possesses to A.
Session− State− Reveal(Uu,Uv , i): The oracle Πi

Uu ,Uv
will send all

its internal data to A except long-term secret parameters. However,
the oracle answers only if it has no session keys.
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Adversarial Powers II

Corrupt(Uu,KE ): This query allows A to corrupt Uu and will thereby
learn the complete internal state of Uu. KE is the session key possessed
by the participant.

Test(Uu ,Uv , i): If Π
i
Uu,Uv

has a session key, then when the query
arrives, the oracle chooses a random bit b and sends to A either a
random key or the actual session key. A succeeds if it can guess the bit
b.
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Definition of Security I

Security is defined using the game G, played between A and a collection of
oracles Πi

Uu ,Uv
. Before defining the game, we need one oracle concept:

Definition

Oracle Πi
Uu ,Uv

is fresh or holds a fresh session key at the end of execution,
if and only if

1 Πi
Uu ,Uv

has terminated successfully with or without a partner oracle

Πi
Uv ,Uu

.

2 Both Πi
Uu ,Uv

and Πi
Uv ,Uu

have not been sent a Reveal query.

3 Uu and Uv have not been sent a Corrupt query.

A runs the game G, whose setting is as follows:
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Definition of Security II

Stage 1: A can send oracle queries.

Stage 2: At some point during G, A will choose a fresh session and
send a Test query to a fresh oracle in the test session.

Stage 3: A continues to make oracle queries, but it cannot make
Corrupt or Session-Key-Reveal queries.

Stage 4: Eventually, A terminates G and outputs a bit b′.

The advantage of A in the game is defined by the formula

AdvA = |2 · Prob[b = b′]− 1|.
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BPR 200 Model I

Bellare, Pointcheval and Rogaway 2000.

In this model it is assumed that sessions have identifiers (SIDs).
Every message contains a SID which shows the session the message
belongs to. Protocol designers can construct SIDs as they choose.
But the way SIDs are constructed can have an impact on the security
of the protocol in this model.

An oracle who has terminated successfully (or accepted as the term is
called) will hold the associated session key, a SID and a partner
identifier.

Timo Karvi () Cryptography and Network Security, PART V: Proof Theory 11.2013 8 / 1



BPR 200 Model II

Definition

Two oracles Πi
A,B and Πj

B,A are partners, iff both oracles

1 have accepted the same session key with the same SID,

2 have agreed on the same set of principals (i.e. initiator and
responder), and

3 no other oracles have terminated successfully with the same SID.
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BPR 200 Model III

Definition

A protocol is secure in the BPR 2000 model, if

a) Key Establishment: For all probabilistic polynomial time
adversaries A, the advantage of A, AdvA in game G is
negligible.

b) Entity authentication goal: The probability of any
probabilistic polynomial time adversary violating entity
authentication is negligible.
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3PKD Protocol I

We present the basic version of the 3PKD protocol and show an attack
against it. Then we present a modified protocol and prove that it is secure
in the BPR 2000 model. The goal of the protocol are:

to distribute a session key between two communicating partners with
the help of a server;

no forward secrecy;

no mutual authentication;

concurrent executions possible.
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3PKD Protocol II

The protocol:

1. A−→B : RA

2. B−→S : RA, RB

3a. S−→A: {SKAB}KE
AS
,
[

A,B ,RA, {SKAB}KE
AS

]

KMAC
AS

3b. S−→B : {SKAB}KE
BS
,
[

A,B ,RA, {SKAB}KE
BS

]

KMAC
BS

However, there is an attack against this protocol:
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3PKD Protocol III

1. A−→IB : RA

1’. IA−→B : RE

2’. B−→IS : RE , RB

2. IB−→S : RA, RB

3a. S−→A: {SKAB}KE
AS
,
[

A,B ,RA, {SKAB}KE
AS

]

KMAC
AS

3b. S−→B : {SKAB}KE
BS
,
[

A,B ,RA, {SKAB}KE
BS

]

KMAC
BS

After A and B have terminated successfully and accepted the session key
SKAB , A sends a Reveal query to A and obtains the key SKAB . Now A
can send a Test query to B , because the protocol run B has done is still
fresh. Because the adversary now knows the session key, he has a
complete knowledge of the answer B is sending back. So AdvA = 1.
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3PKD Protocol IV

In order to get more familiar with the game, we present all the queries
used in the attack:

Query Response

SendClient(A,B , i , ∗) RA

SendClient(B ,A, j ,RE ) RE , RB

SendServer(A,B , s, (RA,RB)) (αA,i , βA,i ), (αB,j , βB,j )
SendClient(A,B , i , (αA,i)) AcceptA,i
SendClient(B ,A, j , (αB,j )) AcceptB,j

Reveal(A,B , i) SKA,B,i
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Improved 3PKD Protocol I

1. A−→B : RA

2. B−→S : RA, RB

3a. S−→A: {SKAB}KE
AS
,
[

A,B ,RA,RB , {SKAB}KE
AS

]

KMAC
AS

,RB

3b. S−→B : {SKAB}KE
BS
,
[

A,B ,RA,RB , {SKAB}KE
BS

]

KMAC
BS
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Principles of a Security Proof I

The correctness is proved by finding a reduction to the security of the
encryption scheme and the message authentication scheme.

The assumption is that the encryption and message authentication
schemes are secure. Then we make an assumtion that A has a
non-negligible advantage in the game against the protocol.

We show that this advantage leads to a non-negligible advantage in
the game against the encryption and message authentication schemes.

We define again the advantage functions. Let Ω = (K,E ,D) be an
encryption scheme and CKA

and CKB
two challengers with secret keys

KA and KB . (CKA
can also be called an encryption oracle.)

Let IΩ be a single eavesdropper testing the scheme Ω.

Let MΩ be a multiple eavesdropper. This means that when MΩ sends
challenges m1 and m2, he will receive two encrypted messages back;
one of the messages encrypted by two different keys.
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Principles of a Security Proof II

Let IΩ choose two plaintexts m0, m1. CKA
chooses b ∈ {0, 1}

randomly and calculates c = EKA
(mb). Let IΩ(c) = b′ denote the bit

IΩ has guessed. Then

AdvIΩ = 2× Prob(b = b′)− 1.

Consider next MΩ. MΩ sends plaintext messages m0 and m1 to two
different challengers who choose the same random bit and send
CA = EKA

(mb) and CA = EKB
(mb) back to MΩ. MΩ then calculates

a bit b′. The advantage function is now the same as in the case of IΩ:

AdvMΩ = 2× Prob(b = b′)− 1.
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Principles of a Security Proof III

Lemma

Suppose AdvIΩ = ε. Then AdvMΩ ≤ 2× ε.

Proof. Check Bellare, Boldyreva, Micali: Public-key Encryption in a
Multi-User Setting: Security Proofs and Improvements, EUROCRYPT
2000, LNCS 1807, pp. 259-274.
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Secure MAC under ACMA

The first part of the proof deals with the MAC function and we define
the MAC security under an adaptive chosen message attack (ACMA).

Suppose a challenger has chosen a MAC key k . An adversary chooses
a message m, and using a polynomial time random MAC forger
calculates a tag T for m. Then he sends (m,T ) to the challenger to
be verified.

Definition

MAC is secure under ACMA, if

Prob[Verification(m,T ) = Valid]

is negligible.
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Proof of Authentication in 3PKD I

Assume that at some stage A makes SendClient(B ,A, j , (αB,j , βB,j ))

query to some fresh oracle Πj
B,A who accepts.

Assume furthermore that the MAC tag βB,j in the query was not
previously output by a fresh oracle. Hence Prob[ForgerySuccess] is
non-negligible.

We construct an adaptive MAC forger F against the security of the
message authentication scheme using as a helper A. The attack
game proceeds as follows:
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Proof of Authentication in 3PKD II

Stage 1. F is provided permanent access to the MAC oracle Ok′

associated with the MAC key k ′ throughout the game.

F randomly chooses a principal U ′, where U ′ ∈ {U1, · · · ,Un}. U
′ is

F ’s guess that A will choose U ′ for the attack.

F randomly generates the list of MAC keys for principals
{U1, · · · ,Un}\{U

′}.

F randomly generates the list of encryption keys for the principals
U1, · · · ,Un.

n is polynomial with respect to the security parameter of the MAC.
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Proof of Authentication in 3PKD III

Stage 2.

F runs A and answers all oracle queries from A as required using the
keys chosen in Stage 1 and Ok′ .

In addition, F records all the MAC tags it receives from Ok′ .

If, during its execution, A makes an oracle query that includes a
forged MAC digest for U ′, then F outputs the MAC forgery as its
own and halts.

Otherwise, F halts when A halts.

The random choice of U ′ by F means that the probability that U ′ is the
participant for whom A generates a forgery (if A generates any forgery at
all) is at least 1/n. Hence the success probability of F is

Prob(ForgerySuccess)F ) ≥ Prob[MACforgery]/n.
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Proof of Authentication in 3PKD IV

It was assumes that the MAC scheme is secure so this leads to a
contradiction. It follows that

Prob[MACforgery] ≤ n · Prob(ForgerySuccess)F ),

and both probabilities are negligible. �
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