
Linked Structures in C

T. Karvi

October 2015

T. Karvi () Linked Structures in C October 2015 1 / 13

Linked Lists I

A linked list consists of nodes. A node has a value and a link to a next
node. As a diagram:

1 3 4 7L

A list may have a header node which contains information about the list,
for example the length of the list, and a link to the first data node.

1 3 4 7

4
L

T. Karvi () Linked Structures in C October 2015 2 / 13

Linked Lists II

A list can be doubly linked:

T. Karvi () Linked Structures in C October 2015 3 / 13

Linked Lists III

Or a list can be circular:

1 3 4 7L

T. Karvi () Linked Structures in C October 2015 4 / 13

Linked Lists IV

So what is a link? In C, it is typically a pointer. And what is a node? It is
a structure. We have the definitions (singly linked list):

typedef struct node {

Datatype value;

struct node *next;

} NodeT, *NodeTpr;

Before giving examples of list functions, some words about the use of lists.

A list is a data structure which contains several items of data of the
same type.

It is easy and efficient to add an item to a list as the first item.

Deletion of an item an item is more complicated, if the item happens
to be in the middle of the list.

First, there should be a pointer pointing to a node to be deleted:

T. Karvi () Linked Structures in C October 2015 5 / 13

Linked Lists V

1 3 4 7L

pq

to be deleted

However, how to find the previous node q which is needed when
updating the links?

Of course, it is always possible to start from the beginning of the list
and proceed step by step forward until q and p are found.

But this can be time-consuming, if a list is long.

That is why you should never use lists for searching purposes, if lists
can become long. For searches we have better data structures such as
has tables and search trees.

T. Karvi () Linked Structures in C October 2015 6 / 13

Linked Lists VI

So how to arrange the deletion of a list node in such a way that the
operation is efficient? Consider the following diagram:

1 3 4 7

q p r

to be deleted

In the previous diagram we thought that p is given as a parameter to
the delete function and q must be searched for.

But if we give q as a parameter, then the node p can be found in one
step and r can be found in two steps. So everything can be done in a
constant time, independent of the length of the list.

One question remains: How do we know q beforehand, if p is to be
deleted?

T. Karvi () Linked Structures in C October 2015 7 / 13

Linked Lists VII

Usually the operations in a list proceed step by step starting in the
beginning of the list. For example, we must examine every node in a
list and sometimes delete a node. In this case we can keep track of
two or more nodes around the node we are dealing with. If we must
do search operations, then probably we have a wrong data structure.

T. Karvi () Linked Structures in C October 2015 8 / 13

Insert Operation I

Next we implement the operation insert(L,p,a) which inserts a
value a into the list L.

We assume that the list is singly linked and without a header. Then
we must define the place into which the new node is put. It must be
said that using a header node makes many operations simpler than
without a header node.

If L==NUL, then the list is empty and the insert operation creates a
new list.

If (L<>NULL) and (p==NULL), then we add a as the first node.

Finally, if (L<>NULL) and (p<>NULL), then we add a to the right
side of the node p.

T. Karvi () Linked Structures in C October 2015 9 / 13

Insert Operation II

Remember that all the parameters in a function are value parameters.
Suppose we have the insert operation insert(L,p,a) and L is empty. If
we create a new node and set L to point to this new node, then when the
execution of the function is ended, L still points to its original value, i.e. it
is NULL. What we must do in the function is to return the pointer to the
new node and catch this return value in the main program.
The next code shows the insert function which adds a node into a list.
(The outlook of the code seems bad. The verbatim environment in Latex
Beamer does not work properly.)

T. Karvi () Linked Structures in C October 2015 10 / 13

Insert Operation III

NodeT* insert(NodeT *L, NodeT *p, int a){

NodeT * q;

if (L== NULL){

if ((q = malloc(sizeof(NodeT))) == NULL)

return NULL;

q -> value = a;

q->next = NULL;

return q;

}

T. Karvi () Linked Structures in C October 2015 11 / 13

Insert Operation IV

if (p == NULL) {

if ((q = malloc(sizeof(NodeT))) == NULL)

return NULL;

q->value = a;

q->next = L;

return q;

}

T. Karvi () Linked Structures in C October 2015 12 / 13

Insert Operation V

if ((q = malloc(sizeof(NodeT))) == NULL)

return NULL;

q->value = a;

q->next = p->next;

p->next = q;

return L;

}

T. Karvi () Linked Structures in C October 2015 13 / 13

Delete Operation I

We implement also the operation delete(L,P) which deletes the node
after p. If p is NULL, then the first node is deleted. If p points to the last
node, an error arises.

NodeT * delete(NodeT *L, NodeT *p){

NodeT * S;

NodeT * q;

NodeT * r;

if (L == NULL) return NULL;

if (p == NULL){

S = L->next;

free(L);

return S;

T. Karvi () Linked Structures in C October 2015 14 / 13

Delete Operation II

}

if (p->next == NULL) return NULL;

r = p->next;

q = r->next;

p-> next = q;

free(r);

return L;

}

T. Karvi () Linked Structures in C October 2015 15 / 13

