
Some observations of the exercise solutions of the students

I

You can make no assumptions about the default initial values of
variables. Thus when defining pointers, for example, and you expect
them to be NULL after the definition, you must explicitly make them
NULL.

The space for all the local variables is freed when the execution leaves
the block where the definitons have been done (for example in
functions). Only space reserved with malloc continues to exists and
to be available.

If you want to return several values from a function, you have the
following options:

Make the return type struct and return the values in the structure.
Make the return type struct pointer and return a pointer to the
structure containing the return values.

Timo Karvi () Bit operations September, 2012 1 / 49

Some observations of the exercise solutions of the students

II

Return a pointer to the memory block where the values are. Then you
must know in the calling program how many units you will check from
the byte the pointer points to.
Put the values to global variables.

If the algorithm is not trivial, think of it before starting to write the
code and make a sketch on paper. If you start at once to program,
the program will probably be unnecessary complicated or erroneous.

When you program basic operations for a data structure, think typical
uses of that data structure. For example, the list data structure is
meant for applications, where you store items one by one into the list
and sometimes go through all the items. The list data structure is not
meant for applications, where you must search single elements from
the list. Thus the operations insert and delete should be as fast as
possible, as a matter of fact the time requirement should be constant

Timo Karvi () Bit operations September, 2012 2 / 49

Some observations of the exercise solutions of the students

III

O(1). It follows that with lists you should avoid solutions or
checkings where you go through all the list elements when executing
the basic operations insert and delete.

Timo Karvi () Bit operations September, 2012 3 / 49

Bit operations

Timo Karvi

September, 2012

Timo Karvi () Bit operations September, 2012 4 / 49

Hexadecimal notation I

On some occasions base-10 representation is not convenient for input
or is confusing for output. For example, if a programmer needs to
write a mask value or see the value of a pointer to debug a program,
the value should be written as an unsigned integer and often is easiest
to work with when written in hexadecimal form.

The following table shows the specifiers needed with different
representations when using scanf and printf.

int long short char

Decimal input %u %lu %hu
Decimal output %u %lu %hu %u
Hex input %i or %x %li or %1x %hi or %hx
Hex output %04x or %08x %081x %04hx %02x

Timo Karvi () Bit operations September, 2012 5 / 49

Example of various numerical types I

The following example shows different integer types which are use in bit
manipulations.

#include <stdio.h>

void main(void)

{

unsigned ui, xi;

unsigned short sui;

unsigned long lui;

printf("\n Please enter an unsigned int: ");

scanf("%u", &ui);

printf(" = %u in decimal and = %x in hex. \n",

ui,ui);

printf("\n Please enter an unsigned int in hex: ");

Timo Karvi () Bit operations September, 2012 6 / 49

Example of various numerical types II

scanf("%x",&xi);

printf(" = %u in decimal and = %x in hex. \n",

xi,xi);

printf(" short and long unsigned ints: ");

scanf("%hu%lu", &sui, &lui);

printf(" short in hu = %hu in hx = %hx\n",

sui, sui);

printf(" long in lu = %lu in lx = %lx\n",

lui, lui);

printf(" Error: short unsigned in hi format = %hi\n",sui);

printf(" Error: long unsigned in li format = %li\n",lui);

}

Timo Karvi () Bit operations September, 2012 7 / 49

Example of various numerical types III

If first is given unsigned int 123, it is printed in decimal 123 and 7b in
hex.
If then an unsigned int is given in hex as 0xa1, it is printed in decimal
161 and in hex a1.

If we gave instead a negative -132 in the first phase, it is accepted
and the output in decimal would be 4294967164 and in hex ffffff7c.
The output in base 10 looks like a garbage but from the hexadecimal
output we see that the value has a 1 in the high-order position and, if
interpreted as a negative signed integer, it would be a relatively small
number.

In the second group of print commands, if we give short and long
unsigned ints 4096 and 65548, the output in hu and hx is 4096 and
1000c, and in lu and in lx 65548 and 1000c.

Timo Karvi () Bit operations September, 2012 8 / 49

Example of various numerical types IV

If in second phase we give 65530 and 4294967200, then we would get
in hu and in hx 65530 and fffa, and in lu and in lx 4294967200 and
ffffffa0.

If we enter faulty data in the second phase, 65548 and -65548, it is
accepted and the output is in hu 12 and in hx c, and in lu
4294901748, in lx fffefff4. The result seems to be garbage. The
output shown for the unsigned short integer is too small by 216
because the high-order bit of the value does not fit into the variable
and, therefore, is dropped: 12 + 65536 = 65548.

The negative number −65548 is entered for the long unsigned variable
and converted with a %lu format. Even though the input format code
was inappropriate for the input value, the hex output shows that the
number was converted and stored correctly for a signed number. The
garbage answer happened because of a mismatch between the stored
value and the output format code. If we printed the same value with
a %i format, the result would be the number we entered.

Timo Karvi () Bit operations September, 2012 9 / 49

Example of various numerical types V

Note also the library stdint, where there are types of the form intN_t

or uintN_t. In other words, you can explicitly show the number of
bits you are going to use. Usually, N is 8, 16, 32 or 64.

Timo Karvi () Bit operations September, 2012 10 / 49

Bitwise Logical Operations I

Complement operator ∼:

∼ (00000000) == (11111111).

AND operator &:

(01010101)&(10101011) == (00000001).

Inclusive OR |:

(01010101)|(10101011) == (11111111).

Exclusive OR ˆ :

(01010101)ˆ(10101011) == (11111110).

Timo Karvi () Bit operations September, 2012 11 / 49

Bitwise Logical Operations II

Left Shift <<:

(00000010) << 2 == (00001000).

Right Shift >>:

(00001000) >> 2 == (00000010).

Timo Karvi () Bit operations September, 2012 12 / 49

Masks I

When a program manipulates codes or uses hardware bit switches, it
often must isolate one or more bits from the other bits that are stored
in the same byte. The process used to do this job is called masking.

In a masking operation, we use a bit operator and a constant called a
mask that contains a bit pattern with a 1 bit corresponding to each
position of a bit that must be isolated and a 0 bit in every other
position.

Example: We split a short integer into four portions, A (3 bits), B (5
bits), C (4 bits) and D (4 bits), and put them back together in the
scrambled order C, A, D, B. We start by writing out the bit patterns,
in binary and hex, for isolating the four portions. The hex version
then goes into a #define statement. The masks are shown in the
table below:

Timo Karvi () Bit operations September, 2012 13 / 49

Masks II

Part Bit pattern #define, with Hex constant

A 11100000 00000000 #define A 0xE000

B 00111111 00000000 #define B 0x1F00

C 00000000 11110000 #define C 0x00F0

D 00000000 00001111 #define D 0x000F

If the original bit string is in the variable b, we can now form the
portions with the and operation:

P1 = b && A; P2 = b && B; P3 = b && C; P4 = b && D;

Then we can move the portions into the right positions:

P1 = P1 >> 3; P2 = P2 >> 5; P3 = P3 << 8; P4 = P4 << 4;

and combine:

b = P1 | P2 | P3 | P4;

Now b has been ”encrypted”.

Timo Karvi () Bit operations September, 2012 14 / 49

Bit Fields in Structures

struct {

unsigned Yorn : 1;

unsigned status : 2;

} bitFields;

declares a structure variable that contains 2 bit field members: Yorn is 1
bit, status is 2 bits.

bitFields.Yorn = 1; (only 0 and 1 can be used for assignment value)
bitFields.status = 2; (0,1,2,3 can be used for assignment value)

Timo Karvi () Bit operations September, 2012 15 / 49

Decoding an Internet address I

In the next example the program reads a 32-bit Internet address in
the form used to store addresses internally and print it in the
four-part dotted form that we customarily see.

Thus input could be fa1254b9 in hexadecimal form and the program
prints 250.18.84.185.

We use a common technique in bit manipulations: mask. Using
bitwise operations, mainly &, and a mask we can take part of a bit
string. For example, if we have a bit string

b = 10101010101010101010101010101010,

and a mask

m = 11111111000000000000000000000000,

Timo Karvi () Bit operations September, 2012 16 / 49

Decoding an Internet address II

then

m & b

forms a bit string

10101010000000000000000000000000.

Thus we have the first eight bits as in b and the rest are zero.

The mask in the example is needed, if a machine is a 64-bit machine.
If all the machines were 32-bit machines, the mask would not be
needed.

Timo Karvi () Bit operations September, 2012 17 / 49

Decoding an Internet address III

#define BYTEMASK 0xffL /* L to make a long integer */

#include <stdio.h>

void main(void)

{

unsigned long ip_address;

unsigned f1, f2, f3, f4;

printf("Please enter an IP address as 8 hex digits: ");

scanf("%lx", &ip_address);

printf("You have entered %08lx\n", ip_address);

f1 = ip_address >> 24 & BYTEMASK;

f2 = ip_address >> 16 & BYTEMASK;

Timo Karvi () Bit operations September, 2012 18 / 49

Decoding an Internet address IV

f3 = ip_address >> 8 & BYTEMASK;

f4 = ip_address & BYTEMASK;

printf("The IP address in standard form is: ");

printf("%i.%i.%i.%i \n\n", f1, f2, f3, f4);

}

Timo Karvi () Bit operations September, 2012 19 / 49

Encrypting and Decrypting I

In modern cryptography, before the actual encryption a plain text is
shuffled in many ways in order to reduce regularities. The following
program permutes the bytes of a plain text. This is done using a fixed
permutation.

Consider a 16-bit block of a plain text. Divide that block into four
unequal-length fields of 3, 5, 4, and 4, respectively, and permute
those fields such that

the first field becomes the second,

the second the fourth,

the third the first, and

the fourth the the third.

Timo Karvi () Bit operations September, 2012 20 / 49

Encrypting and Decrypting II

#include <stdio.h>

#define AE 0xE000

#define BE 0x1F00

#define CE 0x00F0

#define DE 0x000F

unsigned short encrypt (unsigned short n);

Timo Karvi () Bit operations September, 2012 21 / 49

Encrypting and Decrypting III

void main (void)

{

short in;

unsigned short crypt;

printf("\n Enter a short integer to encrypt: ");

scanf("%hi", &in);

/* Cast the int to unsigned before calling encrypt. */

crypt = encrypt((unsigned short) in);

printf("\n The input number in base 10 is: %hi \n"

" The input number in hexadecimal is: %hx \n\n"

" The encrypted number in base 10 is: %hu \n"

" The encrypted number in base 16 is: %hx \n\n",

in, in, crypt, crypt);

}

Timo Karvi () Bit operations September, 2012 22 / 49

Encrypting and Decrypting IV

unsigned short encrypt (unsigned short n)

{

unsigned short a, b, c, d;

a = (n & AE) >> 4; /* Isolate bits 0:2, shift to 4:6 */

b = (n & BE) >> 8; /* Isolate bits 3:7, shift to 11:15 */

c = (n & CE) << 8; /* Isolate bits 8:11, shift to 0:3 */

d = (n & DE) << 5; /* Isolate bits 12:15, shift to 7:10 */

return c | a | d | b;

}

Timo Karvi () Bit operations September, 2012 23 / 49

A Device Controller I

From a book ”Fischer, Eggert, Ross: Applied C: An Introduction and
More.”

An artist has a studio with a high sloping ceiling containing skylights.
Outside, each skylight is covered with louvers that can be opened
fully under normal operation to let the light in or closed to protect
the glass or keep heat inside the room at night.

The louvers are opened and closed by a small computer-controlled
motor with two limit switches that sense when the skylight is fully
open or fully closed. To open the skylight, one runs the motor in the
forward direction until the fully open limit switch is activated. To
close the skylight, one runs the motor similarly in the reverse
direction. To know the current location of the skylight, one simply
examines the state of the limit switches.

Timo Karvi () Bit operations September, 2012 24 / 49

A Device Controller II

The motor is controlled by a box with relays and other circuitry for
selecting its direction, turning it on and off, and sensing the state of
the limit switches. The controller box has an interface to the
computer through a multifunction chip using a technique known as
memory-mapped I/O. This means that when certain main memory
addresses are referenced, bits are written or read from the
multifunction chip, rather than real, physical memory.

In this program, we assume that the multifunction chip interfaces
with the computer through two memory addresses: 0xffff7100 refers
to an 8-bit data register (DR) and 0xfff7101 refers to an 8-bit data
direction register (DDR). Each bit of the data register can be used to
send data either from the chip to the program or vice versa. Data
flows from chip to program through a bit if the corresponding bit of
the DDR is 0 and from program to chip if the corresponding bit is 1.

Timo Karvi () Bit operations September, 2012 25 / 49

A Device Controller III

Certain bits of the DR then are wired directly to the skylight
controller box as shown in the specification below:

Bit In/Out Purpose Setting

0 out Motor direction 0=forward
1=reverse

1 out Motor power 0=off
1=on

2 in Fully closed louver sensor 0=not fully closed
1=fully closed

3 in Fully open louver sensor 0=not fully open
1=fully open

We start to write declarations for the skylight controller:

We use four bits to communicate with the multifunction chip; two are
used by the prigram to receive status information from the chip and two
are used to send control instructions to the chip. The leftmost four bits in

Timo Karvi () Bit operations September, 2012 26 / 49

A Device Controller IV

the chip registers will not be used in this application. Therefore, the
bitfield type declaration used to model a register begins with unnamed
field for the four padding bits, followed by named fields for two status bits
and two control bits.

typedef struct REG_BYTE {

unsigned int :4;

unsigned int fully_open :1;

unsigned int fully_closed :1;

unsigned int motor_power :1;

unsigned int motor_direction :1;

} reg_byte;

typedef volatile reg_byte * device_pointer;

Timo Karvi () Bit operations September, 2012 27 / 49

A Device Controller V

The key word volatile means that something outside the program (in this
case, the controller box) may change the value of a register byte at
unpredictable times. We supply this information to the C compiler so that
its code optimizer does not eliminate any assignments or reads from the
location that, otherwise, would appear redundant.

Next follows the definitions of the codes for the multifunction chip:

enum power_values {motor_off = 0, motor_on = 1};

enum direction values {motor_forward = 0, motor_reverse = 1 };

char * position_labels[] = {"fully closed", "partially open",

"fully open"};

typedef enum {fully_closed, part_open, fully_open} position;

Timo Karvi () Bit operations September, 2012 28 / 49

A Device Controller VI

We have defined three enumerated types to give symbolic names to the
various switch settings and status codes. An array of strings is defined to
allow easy output of the device status.
Two of the enumerations are not within a typedef. They are used simply
to give names to codes. A series of #define commands could be used for
this purpose, but enum is better because it is shorter and it lets us group
the codes into sets of related values.

Next we want a pointer variable DR to point at the address of the data
register byte on the multifunction chip. We write its memory-mapped
address as a hex literal, cast it to the appropriate pointer type, and store it
in DR. The keyword const after the type name means that DR always
points at this location and can never be changed.
A bitmask is used when the program is started to initialize the data
direction register. The rightmost two bits are used to send control

Timo Karvi () Bit operations September, 2012 29 / 49

A Device Controller VII

information to the chip from the the program, while the other two will be
read by the program to check the chip’s status.

device_pointer const DR = (device_pointer)0xffff7100;

device_pointer const DDR = (device_pointer)0xffff7101;

const reg_byte DDR_mask = {0,0,1,1};

const reg_byte DR_init = {0,0,0,0};

The main program uses the following functions:

position skylight_status (void);

void open_skylight (void);

void close_skylight (void);

And the main program is:

Timo Karvi () Bit operations September, 2012 30 / 49

A Device Controller VIII

void main (void)

{

char choice;

char * menu[] = {"O: Open skylight", "C: Close skylight",

"R: Report position", "Q: Quit"};

*DDR = DDR_mask;

*DR = DR_init;

for (;;) {

choice = toupper(menu_c(" Select operation:", 4, menu));

if (choice = ’Q’) break;

switch (choice) {

case ’O’: open_skylight(); break;

case ’C’: close_skylight(); break;

case ’R’: /* Report on position */

Timo Karvi () Bit operations September, 2012 31 / 49

A Device Controller IX

printf("Louver is %s\n",

position_labels[skylight_status()]);

break;

default: puts("Incorrect choice, try again.");

}

}

puts(" Skylight controller terminated.\n");

}

We use functions

menu_c() and toupper()

in the main program. The former displays a menu and reads a selection.
The latter is used to recognize both lower-case and upper-case letters. We
do not show code for these interface functions.

Timo Karvi () Bit operations September, 2012 32 / 49

A Device Controller X

position skylight_status(void)

{

if (DR->fully_closed) return fully_closed;

else if (DR->fully_open) return fully_open;

else return part_open;

}

Timo Karvi () Bit operations September, 2012 33 / 49

A Device Controller XI

void open_skylight(void)

{

reg_byte dr = {0, 0, motor_on, motor_forward };

if (DR->fully_open) return;

*DR = dr;

while (!(DR->fully_open)); /* delay until open */

dr.motor_power = motor_off;

*DR = dr;

}

Timo Karvi () Bit operations September, 2012 34 / 49

A Device Controller XII

void close_skylight(void)

{

reg_byte dr = { 0, 0, motor_on, motor_reverse };

if (DR->fully_closed) return;

*DR = dr;

while (!(DR->fully_closed)); /* delay until closed */

dr.motor_power = motor_off;

*DR = dr;

}

Timo Karvi () Bit operations September, 2012 35 / 49

