
Some Details of C and C Environment

Timo Karvi

October, 2013

Timo Karvi () Some Details of C and C Environment October, 2013 1 / 1

Some Details of C and C Environment

In this last lecture, we look at

Bit orders and storage alignment,

Advanced aspects of C operators, and

Some aspects of numerical calculations.

Timo Karvi () Some Details of C and C Environment October, 2013 2 / 1

Little and big endian systems I

Suppose we have the definition

unsigned int n = 257;

Normally n takes 4 bytes. In this case, two bytes contain the number 1 and
the other two only zero bits. Is the situation in these Linux machines

100 101 102 103

1 1 0 0
(little endian)

or

100 101 102 103

0 0 1 1
(big endian)?

We can test this by defining

Timo Karvi () Some Details of C and C Environment October, 2013 3 / 1

Little and big endian systems II

unsigned int n = 257;

uint8_t* u_ptr;

u_ptr = &n;

printf("Mem addr of n: %lu\n", u_ptr);

printf("First byte: %d ", *u_ptr);

printf("Second byte: %d \n ", *(u_ptr+1));

If 1 and 1 are printed, the system is little endian. If the system is big
endian, maybe zeros are printed or the system crashes (segmentation
fault).

Timo Karvi () Some Details of C and C Environment October, 2013 4 / 1

Bit order in a byte I

Assume the definitions

uint8_t byte = 1;

Is the byte now

1000 0000

or

0000 0001 ?

We can examine this with shift operations. If the first were the case, then

byte >> 1;

would produce the value 2. If the latter, then

byte << 1;

would produce 2. It turns out that the second alternative happens in Linux
machines.

Timo Karvi () Some Details of C and C Environment October, 2013 5 / 1

Storage alignment I

Consider the following structure definition:

typedef struct {

short Data1;

short Data2;

short Data3;

short Data4;

} Data;

Then sizeof(Data) = 8. Let’s consider another structure

typedef struct {

char Data1;

short Data2;

int Data3;

char Data4;

} MixedData;

Timo Karvi () Some Details of C and C Environment October, 2013 6 / 1

Storage alignment II

The size of MixedData is 8, but the actual size is 10. So padding bytes are
added by the compiler.

In Linux systems, malloc reserves memory blocks so that the number of
the first byte is divisible by four. However, it seems possible to store an
integer so that it starts from a byte not divisible by four. This kind of
integer position may, however, slow down an execution.

Timo Karvi () Some Details of C and C Environment October, 2013 7 / 1

Operators

We deal with the following:

Assignment combinations.

Lazy evaluation.

Evaluation order and side-effect operators.

Conditional operator.

Timo Karvi () Some Details of C and C Environment October, 2013 8 / 1

Operators: Assignment

All the assignment-combination operators have the same very low
precedence and associate from right to left. Consider for example the
expression

t /= n -= m *= k += 7;

The evaluation starts with k = k + 7 and continues from right to left. So
+ is made before ∗ even if in normal expressions the precedence of
multiplication is higher than the precedence of addition.

Timo Karvi () Some Details of C and C Environment October, 2013 9 / 1

Operators: Lazy evaluation I

With lazy evaluation, when we skip, we skip the right operand.

This is not confusing, when the right operand is only a simple variable.
However, sometimes it is an expression with several operators.

Consider an example:

y = a < 10 || a >= 2 * b && b != 1;

The left operand is a<10 and the right operand is
a>=2*b && b!=1.

If a = 7, we skip all after || and y get the value 1. If a = 17 and
b = 20 the expression after && is not evaluated and y becomes 0.

A usual assumption is that && is executed first, because it has higher
precedence. Although precedence controls the construction of the
parse tree, precedence simply is not considered when the tree is
evaluated.

Timo Karvi () Some Details of C and C Environment October, 2013 10 / 1

Operators: Lazy evaluation II

Sometimes lazy evaluation can substantially improve the efficiency of
a program. A much more important use of skipping is to avoid
evaluating parts of an expression that would cause machine crashes or
other kinds of troubles.

Assume that we want to divide a number x , compare the answer to a
minimum value, and do an error procedure if the answer is less than
the minimum. But it is possible for x to be 0 and that must be
checked. We can avoid a division-by-0 error and do the computation
and comparison in one expression by using a guard before the division:

if (x != 0) && total / x < minimum) do_error();

The skipping may happen in the middle of an expression. Consider

y = a < 0 || a > b && b > c || b > 10;

for a = 3 and b = 17. The subexpression b > c is not evaluated, all
the other are and y becomes 1.

Timo Karvi () Some Details of C and C Environment October, 2013 11 / 1

Operators: Evaluation Order and Side Effects I

When used in isolation, the increment and decrement operators are
convenient and relatively free of complication. When side-effect
operators are used in long, complex expressions, they create the kind
of complexity that fosters errors. If such an operator is used in the
middle of a logical expression, it may be executed sometimes but
skipped at other times.

A second problem with side-effect operators relates to the order in
which the parts of an expression are evaluated. Recall that the
evaluation order has nothing to do with precedence order. We have
stated that logical operators are executed left to right. This is also
true of two other kinds of sequencing operators: the conditional
operator ?...: and the comma (for example, for (i = 1, j = 1; ...)).
Most other operators can be evaluated right-side first or left-side first.

Timo Karvi () Some Details of C and C Environment October, 2013 12 / 1

Operators: Evaluation Order and Side Effects II

This leads to one important warning: If an expression contains a
side-effect operator that changes the value of a variable V , do not use

V anywhere else in the expression. The side-effect could happen
either before or after the value of V is used elsewhere in the
expression and the outcome is unpredictable.

Timo Karvi () Some Details of C and C Environment October, 2013 13 / 1

Operators: Conditional Operator I

Even if the evaluation in an expression with the conditional operator
starts by calculating true or false value, the value of the entire
conditional operator, in general, will not be true or false.

If the condition contains any postincrement operators, the increments
must be done before evaluating the true clause or the false clause.
Therefore, it is ”safe”to use postincrement in the condition.

Timo Karvi () Some Details of C and C Environment October, 2013 14 / 1

