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Chapter 1

Introduction

1.1 The starting point

When starting to verify distributed systems, the first thing to do is to describe the
system. For this, there are two main possibilities. First, it is possible to use a high-
level specification language. A programming language is too cumbersome because
of its many details, if the aim is a mathematical verification. On the other hand,
it is possible to use a programming language if special commments are added into
the code. These comments are used by a verification software during its correctness
analysis. This latter alternative has its supporters, but we concentrate in this course
on the first alternative.

First we define transition systems with which we describe single processes. A
transition system is a directed graph with labels added to its arcs. These labels are
called actions. An action describes either a communication with another process
or an internal computation. It is usual that in the distributed protocols it is not
necessary to describe internal computations in a detailed way, but only very abstract
descriptions are sufficient.

Transition systems must be represented in one way or another, if they are given
as input to the verification software. There are several specification languages for
this purpose. A simple specification language just enumerates the nodes and the
labelled arcs between the nodes. But usually a language contains additional features,
as for example a possibility to define internal computations or the descriptions of
infinite systems. An example of an older language is Estelle which contains a lot
of features from Pascal. More modern languages are based on process algebras. In
these languages, transition systems are represented by an algebraic notation. This
leads to compact representations and the syntax and especially semantics of the
representations are formally defined. Lotos is an example of these languages and we
will study it in this course. It is based on the process algebras CCS and CSP.

There are still other possibilities for specification languages. Petri nets resemble
transition systems, but are richer in their structure. Languages based on temporal
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2 CHAPTER 1. INTRODUCTION

logics are also popular in practice.

1.2 Global state graph

A single process in a distributed system is often quite simple. On the other hand, it
is hard to analyse a system consisting of several, although simple processes. There
are new kind of errors such as deadlocks and livelocks. Furthermore, often it is
necessary to guarantee fairness in the sense that the processes of the system get
recources equally. It is not easy to quarantee these properties just by traditional
testing, because there are a huge amount of various execution sequences.

It is also possible to model the behavour of a large system using a single transition
system. In this case, the state is a vector whose i’th element represents the state
of the i’th process. When the process i changes its state, the vector changes at the
same time: the i’th element changes. A single process may change its state when
sending or receiving information, or when doing internal computations.

The first problem to be solved when modelling a system with a global state graph
is how to treat true concurrency. If processes p and q execute their actions at the
same time, the items in the global state vector corresponding to p and q should
also change at the same step. But it is possible that first p changes and only then
q, or vice versa. Should we take all the possibilities into account? If this is done
mechanically, there would be a huge number of different execution sequences. That
is why so called interleaving semantics is applied. In this approach it is thought that
concurrent events happen always in certain order and truely concurrent events do
not exist. This principle seems to work well in practice and most of the verification
software tools are based on interleaving semantics.

In spite of the interleaving semantics there are still a lot of different execution
sequences in the global state graph. It is called a state explosion. In the interleaving
semantics, all the execution orders are still visible and most of the these orders lead
to the same result. However, it is not easy to determine beforehand, which orders
are essential and which not. This is the reason why it is not possible to generate
the global state graph completely for the large systems. There are some suggestions
how to restrict the size of the global state graph. One possibility is to generate
states or rather paths in the global state graph randomly. It is also possible that
the true concurrency semantics results, if cleverly applied, in a smaller graph than
the interleaving semantics. However, we do not consider these alternatives during
this course.

1.3 Verification based on equivalences

By using a global state graph, it is possible to detect many errors in the protocol.
Deadlocks may be seen already when generating the global state graph. Livelocks
correspond the components of the state graph such that it is no more possible to
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go out of the component to the main cycle. These kind of mistakes are found, for
example, with the help of depth-first search. There are other kind of mistakes which
are difficult to find just by examining the state graph. For example, it may be
erroneous to perform some actions in a wrong order. In order to detect mistakes in
action orders it is necessary to compare execution sequences in the state graph to
real execution sequences. These real sequences must thus be represented in some
way or another.

First we introduce verification based on equivalences. In this case the starting
point is as follows. The operation of a system can often be described from the
viewpoint of an outsider. This outsider sees the actions transmitted between the
participants, but it does not see, at least not exactly, internal operations performed
by the processes. In other words, the observer sees what happens in the interfaces
of the processes. The behaviour of the interfaces can be described with the help
of transition systems. We call this description a service. It is also often the case
that the service can be constructed from the definition of the protocol. Thus the
service forms a reference with which the behaviour of the system or protocol can be
compared. This comparison is done as follows.

First we specify the protocol using some specification language. This means in
practice that every process in the protocol, such as sender, receiver, and timers, is
written for example in Lotos. After this, the global state graph is generated. This
state graph is itself a transition system and it is constructed automatically using
software which understands the specification language in use. The arcs of the state
graph show actions which are performed by the protocol.

The same is done for the service. Thus the service is described in Lotos and the
global state graph is formed. Usually the state graph of the service is much smaller
than the graph of the protocol. Next we hide all the actions in the state graph of
the protocol which are not present in the service. This hiding means that we change
the name of the action to a special name which represents an internal action.

Now we compare the graphs. There are various equivalences for this purpose.
Often it does not matter which of the equivalences we use, but sometimes the choice
of the equivalence is important, because some equivalences are coarser than the
other. For example, some equivalences do not pay attention on cycles which consist
of internal actions. In some situations it may be necessary to consider these kind of
cycles, for example in real time applications.

One of the most popular equivalences is weak bisimilarity. Processes P and Q are
weakly bisimilar, if the other process can simulate the visible actions of the other.
In addition, the simulation order can be changed on the fly. This means that for
example P simulates first Q, but in the middle of the simulation Q starts to simulate
P from the point that was reached in the previous simulation.

In order to be efficient, the equivalence must be calculated quickly, in polynomial
time. Bisimilarity is such an equivalence. There are other equivalences, for example
trace-based equivalences, which demand an exponential time in the worst case, but
in practice they perform quickly, in linear or polynomial time. Such equivalences
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are useful, too.

If it possible to show that a protocol and its service are equivalent, the protocol is
consired correct. In this approach the computer makes most of the work. The task
of humans is to write the specifications and to choose a right equivalence. Extra
work is sometimes needed, if the chosen equivalence does not detect all the possible
mistakes. For example, fairness may be verified using other methods, for example
temporal logic. Another reason why verification is sometimes difficult is the sizes
of global state graphs. These are often too large in practical situations. There are
various methods to try to tackle this problem: partitioning the state graph or just
performing random walk in the graph.

1.4 Model Checking

Model checking is an alternative approach to the verification instead of equivalence-
based approach. It means usually that temporal logic is used to check some prop-
erties of the system. Properties are expressed by logical formulas, state graph is
formed, and then it is checked if the formulas are valid in the graph, i.e. in the
model. In this way it is easy to express only certain properties that are to be ver-
ified. On the other hand, the total correctness is not so easily reached as in the
equivalence and serviced based approach.

There are many kinds of temporal logics. Two of the most common are linear
time logic (LTL) and branching time logic (CTL). In LTL, the validity of formulas
depends on all the paths in the graph. In CTL, the validity may depend only
on some paths. These logics are independent in the sense that both can express
properties which cannot be expressed by the other. That is why stronger logics have
been developed, for example CTL*. It contains both LTL and CTL.

Traditionally, the basic model to represent timed systems is a graph, where the
arcs do not contain labels, i.e. actions. Instead, the states have properties or
structures. If we use graphs generated from process algebraic formulas, the states
have no structure, but the arcs contain labels. That is one reason why other kind
of formalisms have been developed. There is ACTL which is developed from CTL.
Others are Hennessy-Milner logic and µ-calculus. In this course, we concentrate
only on LTL and CTL.

1.5 Practical Experiences

Formal methods have been applied for more than 20 years. Much of the applications
have been done in academic research projects, but industry has been interested, too.
The best results in industry seem to be in hardware design. For example, Intel has a
verification team. The verification is done mainly with the help of model checking.

Also protocols have been verified succesfully. The best known examples are as
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follows. IEEE Futurebus and cache coherence protocols have been found to contain
errors.Verification methods found 122 mistakes in ISDN/SUP protocol. A big error
was found in Active structural control system. It could have worsen the effects of
vibrations.

The serious problem in practical verification is that the methods demand deep un-
derstanding. Companies are not willing to invest such sums for specialists, because
it takes a long time to analyse systems and the results are not always complete.

Formal verification methods have been tried to apply in security protocols as
well. Some mistakes have been found, but this application area is more difficult to
model and analyse than communication protocols or hardware systems. The whole
area is still in active reseach phase.
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Chapter 2

State Transition Systems

2.1 Alternating Bit Protocol

Before defining formally state transition systems, we show an example how a prac-
tical data link protocol can be specified with the help of transition systems.

Alternating bit protocol (AB protocol) is one of those simple protocols which have
been analysed a lot in scientific literature of this area. It is elegant mathematically
and non-trivial logically.

The protocol consists of a sender process S and receiver process R. These pro-
cesses change messages through a half duplex channel. The channel may drop or
distort messages. It is half duplex, which means that the messages can pass from S
to R and from R to S, but there can not be messages in the channel which travel
in opposite directions at the same time. The order of the messages in the channel
cannot be changed. Also, a message cannot duplicate in the channel.

A receiver of a message is able to detect, if the message is distorted. This is a
practical assumption which can be implemented with the help of modern codes, for
example using the CRC field.

The goal of the protocol is to make sure that the receiver gets the messages sent by
S correctly. Clearly S must get some information about the data messages d from R:
has R received d correctly or not? This information comes as an acknowledgement
a which is sent by R. Only positive acknowledgements are used. If a message is
distorted, R does not sent an acknowledgement. The following diagram shows the
behaviour of the protocol.

7



8 CHAPTER 2. STATE TRANSITION SYSTEMS

S

d
a

d

a

..

.

R

Thus S must wait for an acknowledgement before it can send next message. If the
acknowledgement disappears, the sender sends no more, even if there are messages
waiting for sending. That is why the protocol has a timer. The timer times out,
if an acknowledgement does not come after a certain time. We get the following
scenario:

d
a

d R

d
a

a
S

timeout

There is now a possibility that the same message is sent two times and the receiver
does not recognise this, but considers the messages different. This duplication is
the result of acknowledgments. We must add some information to messages and
acknowledgements so that different successive messages can be separated. It is
enough to add only 0 or 1 to messages. We can now write the previous scenario as
follows:

d0
a0

d1 R

d1
a1

a1
S

timeout
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Let us model the sender and receiver as transition systems. We must first solve
some details:

• Do we mark, if an action is a send or receive action? For example, if a sender
sends a data message d, we have a transition Si

d
−→Sj . Should we use only d on

the arc or some other notation, like −d to point out that d is sent, not received?

• How is the timer modeled?

• How do we model the distortion or disappearing of packets?

We solve the questions as follows. We do not mark, if an action is a send or
receive action. This must follow from the context. Send and receive actions are
separated explicitly only, when we start to use a specification language, for example
Lotos, instead of transition systems.

In this first example we model the timer as a part of the sender process. Later
we consider cases, where timers are modelled separately.

The disappearence of a message is modelled with the help of so called internal or
silent action τ . It makes possible for a process to move from one state to another
so that other processes do not notice it. The internal action has an important role
in other contexts, too.

In addition, we use non-determinism. Non-determinism models situations, where
more than one kind of an event may happen and a process cannot alone decide the
event that really happens.

We get the following sender system S:

S1 S4

S2 S3

t

a1

t

a0

d0 | d1|τ τ
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Receiver R:

R1 R4

R2 R3

d1
d1

d1

d0

d0

d0

a1|

a0|τ

τ

We have now written single processes participating in the system. Later we will see
how to analyse the whole system as a single transition system.

2.2 Client/Server-system

Let us consider one more example which consists of unlimited number of processes.
There are a server process S and n client processes Ci, i = 1, · · · , n. A client Ci

asks a service from S with a message csi. S sends the answer sbi into the buffer Bi,
and the client can take it from there with the help of a message bci. The protocols
follows the round robin principle. This means that a token moves from one client
to another. Every time a client gets the token, it asks for the service. After this
the client gives the token to the other client. The token is modelled using messages.
When a client Ci receives the message ti, it can ask for a service. After this it sends
the message t(i+ 1) to Ci+1. The addition is interpreted so that n+ 1 = 1.

Client Ci as a transition system:

C1

C5

C2 C3

C4t(i+1)

ti csi

bci

t(i+1)bci

The starting state is C1 except in C1, where it is C2. Thus round robin starts in
C1.
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Server S:

S1

S3

S0Sn S2

cs1 sb1

cs2

sb2
sb3 cs3

csn

sbn

.
.

.

Buffer Bi:

B2

bci

sbi

B1

2.3 The Definition of a Transition System

We consider the situation where a system consists of two or more processes. Process
means the same as in the operating systems, i.e.

• Process is a program, whose execution has started and not yet finished.

• The same code may generate several processes.

• A process proceeds with discrete steps from one state to another. State is
defined using the values of variables and the next instruction or instructions –
we allow non-determinism.

A process proceeds by performing actions which can be for example

• internal computation (updating variables etc),

• sending or receiving of a message,

• some other action involving other processes.
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One example of the last case is synchronization. Of course, synchronization is
possible also in sending or receiving.

Usually we use a high level of abstraction when describing systems with transition
systems. It means in practice that the main point is the communication of the pro-
cesses. Internal events are abstracted as much as possible. On the other hand, some
specification languages offer many possibilities to represent internal events, while in
transition systems the internal computations must be reduced to the minimum.

Definition 1 A labelled transition system is a structure (S,A,−→, s0), where

• S is the set of states;

• A is the set of actions which contains the internal or silent actions τ .

• −→ ⊂ S × A× S is the transition relation;

• s0 is the initial state.

Often S and A are finite, but they could be enumerably infinite in principle.
The elements in A represent actions which are involved in the communication of
processes. We do not mark in any way, when a message is sent or received in the
processes. We could define the sending and receiving separately, but we focus on a
formalism which is compatible with the specification language Lotos. (In full Lotos,
the actions are ports or gates through which the processes communicate by sending
data. In our first formalism we do not distinguish between ports and data messages.)

A transition system shows how the process proceeds. The execution starts from
the initial state. The transition relation dictates the alternatives the process can
next perform. At the end of this chapter we define some formal concepts needed
later.

1. If in a transition system (s1, a, s2) ∈ −→, then we usually write s1
a

−→s2.

2. If a τ -path
s1

τ
−→s2

τ
−→· · ·

τ
−→sn,

starts from a state S1, then we write s1
ε

=⇒sn. The notation
ε

=⇒ covers also
the case when there are no movement from the state. Thus always s1

ε
=⇒s1.

3. The notation s1
τ

=⇒sn means that s1
ε

=⇒sk
τ

−→sr
ε

=⇒sn.

4. The action sequence u = a1a2 · · · an leads from state r to state s, if there is a
path

r
ε

=⇒r1
a1−→s1

ε
=⇒r2

a2−→s2
ε

=⇒· · ·
ε

=⇒rn
an−→sn

ε
=⇒s.

The we use the notation r
u

=⇒s.



Chapter 3

Global State Graph

3.1 Introduction

In the previous chapter we modelled single processes. We see the messages sent
and reveived by every process, but it is impossible to figure out if the whole system
behaves correctly. However, it turns out that the behaviour of the whole system can
also be modelled as a transition system which is constructed from the graphs of the
single processes. This transition system is called global state graph.

A state in a global state graph is vector, whose components are states of the
single processes. Thus a state in a global state graph describes the states of every
process in the system at that particular moment. Before we are able to give an
exact definition, we must decide how we will model concurrency. In principle, we
have two alternatives.

If the modelling is based on true concurrency, the model shows what events
happen concurrently and waht sequentially. There are formalisms based on true
concurrency, but they are complicated and they demand time-consuming algorithms.
True concurrency is, however, an important concept.

The other method is based on interleaving. In this approach we assume that
two events can always be ordered temporally, i.e. two events can never happen
simultaneously. This principle seems at first incredible, but it works well in prac-
tice. Nearly all the verification programs are based on this assumption, because it
simplifies definitions and algorithms. Our global state graph is based on interleaving.

3.2 The Global State Graph of the AB-protocol

Before defining global state graphs formally we show a concrete example based on
the AB-protocol. In this protocol, sender S sends messages d0 and d1 to receiver
R. Receiver R sends acknowledgements a0 and a1 to S. Suppose that the com-
munication between S and R is rendezvous-type. Thus before a sender can send, a

13
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reveiver must be ready to receive. If a receiver is not ready, a sender cannot send.
For example, if S sends d0, S moves to a next state with the action d0 and at the
same time R moves to the next state with d0.

The internal transition τ does not cause other processes to change their states.
Similarly, the timer action t changes only the state of the sender.

A state in the global state graph is a pair (Si, Rj), where Si is a state of the
sender and Rj is a state of the receiver. Let us draw now the global state graph.
We make no assumptions about the timer. It may timeout too early, but this should
cause no problems.

S1 R1

S3 R1

S1 R2

S2 R3 S1 R3

S4 R3

S3 R4

S4 R1

S4 R4

S3 R3

S2 R2

S2 R1

t

d0

d0

t

t

t

t

t

d0|

d1

d1

d1|

a1

a0

τ

τ

τ τ

τ

τ

τ

τ
τ

τ
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The global state graph shows that there are no deadlocks. Also the basic cycle
of the protocol is visible. Communication errors and timer actions lead away from
the basic cycle, but in every case it is possible to return to the basic cycle. Thus
the global state graph seems to show that the protocol works properly.

3.3 Parallel Operator

Next we define the global state graph formally with the help of the parallel operator.
Let P ja Q be transition systems. Suppose that the states in P are P1, P2, · · · , Pm

and the states in Q are Q1, Q2, · · · , Qn. The initial state of the whole system is
(P1, Q1), where P1 is the initial state in P and Q1 is the initial state in Q. The
states in the global state graph are of the form (Pi, Qj), i = 1, · · · , m, j = 1, · · · , n.
We write Pi

a
−→Pi′ , if there is a transition from Pi to Pi′ with an action a. Similarly

in the case of Q.

The global state graph P |[a1, · · · , ak]|Q of the processes P and Q is defined now
formally by giving the rules which show how to move from one state to another. The
actions a1, · · · , ak are synchronizing action. If one process is to perform ai, then the
other synchronizes and performs it, too. If the other cannot perform ai, then neither
the first nor the second can perform it. Other actions can and must be performed
without synchronization.

We define now the transitions between the states. This is done with the help of
a so called parallel operator |[a1, · · · , ak]|. It is demanded that τ 6= ai for all i =
1, · · · , k. If we apply the parallel operator to the state pair (Pi, Qj), the synchronizing
actions are marked by writing Pi|[a1, a2, · · · , ak]|Qj . The following rules define what
transitions are possible from a given global state, i.e. from a state pair (Pi, Qj).

1. If a ∈ {a1, · · · , ak}, Pi
a

−→Pi′ and Qj
a

−→Qj′, then

Pi|[a1, a2, · · · , ak]|Qj
a

−→ Pi′|[a1, a2, · · · , ak]|Qj′.

2. If a 6∈ {a1, · · · , ak} and Pi
a

−→Pi′ , then

Pi|[a1, a2, · · · , ak]|Qj
a

−→ Pi′|[a1, a2, · · · , ak]|Qj .

3. If a 6∈ {a1, · · · , ak} and Qj
a

−→Qj′, then

Pi|[a1, a2, · · · , ak]|Qj
a

−→ Pi|[a1, a2, · · · , ak]|Qj′.

The application determines what is a suitable synchronizing set. If k = 0, i.e. no
action synchronizes, we speak about complete interleaving and use the notation |||.
If the synchronizing set consists of all the visible actions, we use the notation ||.

The final global state graph consists only of those states that can be reached from
the initial state. If we use the parallel operator to construct the global state graph
of the AB-protocol, we start from the formula

S|[d0, d1, a0, a1]|R
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and deduce all the other states and transitions from this formula. The result as a
graph is the same as before. Some more examples:

P2

P3

P1 Q1

P3 Q2 P4 Q2

P2 Q1

P1 Q1

P2 Q1

P3 Q2 P4 Q2

P4

P1

Q2

Q1

a a

aτ

Q:

|[ a ]| Q:P

a a

τ

P ||| Q:

P1 Q2

P2 Q2

P4 Q1P3 Q1

a

a

a a

aa a a

τ τ

P:
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P2

P1

a

Q1

Q2

b |[ a,bP |] Q: P1 Q1
P: Q:

3.4 Properties of the Parallel Operator

3.4.1 Multisynchronization

It is possible to synchronize several processes at the same time. For example, in the
formula

P |[a]| (Q |[a]| R)

the action a can happen in Q and R only if both processes perform that action at
the same time. On the other hand,

Q |[a]| R

is a process, too, and thus a can happen in it and in P only if all the three processes
perform it at the same time.

3.4.2 The Nature of the Synchronization

Synchronization is symmetric. We do not distinguished which process starts it. Thus
the sender and receiver are equal when a message is sent: both must be ready and
perform an action.

Synchronization is nameless. If a process offers synchronization, any process
with an suitable action may take part in the synchronization. It is not possible for
a process to demand that a synchronization is directed to a particular process. This
property has advantages and drawbacks in applications.

3.4.3 Associativity of the Parallel Operator

In general, the parallel operator is not associative. Thus it is not that

P |A1| (Q |A2| R) = (P |A1|Q) |A2| R.
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In the following cases the parallel operator is, however, associative:

1. CSP’s case. Let P , Q and R be processes and AP , AQ, AR the action sets of
the processes. Then

P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R) ≡ (P |AP ∩ AQ|Q) |(AP ∪ AQ) ∩ AR| R,

where ’≡ means that the corresponding transition systems are the same, only
the names of the states are different (notice that when using the parallel oper-
ator state in a global state graph contains that operator).

2. If B is an arbitrary action set, then

P |B| (Q |B| R) ≡ (P |B|Q) |B|R.

3. With synchronizing sets B1 and B2 we have

P |B1| (Q |B2| R) ≡ (P |B1|Q) |B2| R,

if AP ∩ B2 = ∅ and AR ∩ B1 = ∅.

Proof of the item 1. It is enough to prove that every transition in

P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R)

corresponds exactly the same transition in

(P |AP ∩AQ|Q) |(AP ∪ AQ) ∩ AR| R

and vice versa. It is possible to follow two strategies in the proof. In the first strategy
we examine a single transition with a and deduce what action sets a belongs to. In
the other strategy we we examine what components in the system change their states
and deduce what kind of transition takes place in the other system. Let us follow
the second strategy.

In what follows we denote by a apostrophe the process that changes in the tran-
sition. We have to check several alternatives.

a) P |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR| R)
a

−→P ′ |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR| R).

b) P |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR| R)
a

−→P |AP ∩ (AQ ∪ AR)| (Q
′ |AQ ∩AR| R).

c) P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R)
a

−→P |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR| R
′).

d) P |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR| R)
a

−→P ′ |AP ∩ (AQ ∪AR)| (Q
′ |AQ ∩ AR|R).

e) P |AP ∩ (AQ ∪AR)| (Q |AQ ∩ AR| R)
a

−→P ′ |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R
′).

f) P |AP ∩ (AQ ∪ AR)| (Q |AQ ∩ AR|R)
a

−→P |AP ∩ (AQ ∪AR)| (Q
′ |AQ ∩ AR| R

′).

g) P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R)
a

−→P ′ |AP ∩ (AQ ∪AR)| (Q
′ |AQ ∩AR| R

′).
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Case a). In this case the transition takes place only inside P . Thus a ∈ AP ja
a 6∈ AQ ∪AR. Hence a 6∈ AP ∩AQ and a 6∈ (AP ∪AQ)∩AR, and we can deduce that
the transition happens also in (P |AP ∩AQ|Q) |(AP ∪AQ) ∩AR|R only in P . And
the transition is the same.

Cases b) and c) are proved in the same way as a).

Case d) Now the transition happens both in P and in Q. Thus a ∈ AP and
a ∈ AQ ∪ AR, but a 6∈ AQ ∩ AR, hence a ∈ AQ and a 6∈ AR. We can deduce that
a ∈ AP ∩ AQ, but a 6∈ (A∪AQ) ∩ AR. Because of this, the transition with a in the
global state graph (P |AP ∩AQ|Q) |(AP ∪AQ)∩AR|R happens only in P and Q, and
they change in the same way as in the graph P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R).

Cases e) ja f) are proved in the same way as d).

Case g). Now all the processes change their states and thus a ∈ AP ∩ (AQ ∪ AR)
ja a ∈ AQ ∩ AR. Hence a ∈ AP , a ∈ AQ and a ∈ AR. Furthermore, a ∈ AP ∩ AQ

and a ∈ (AP ∪ AQ) ∩ AR. Thus the transition takes place in the graph (P |AP ∩
AQ| Q) |(AP ∪ AQ) ∩ AR| R in all the processes and exactly in the same way as in
P |AP ∩ (AQ ∪AR)| (Q |AQ ∩AR| R). 2

Item 2) is proved in the same way as 1). Item 3) is a modification of item 1).

3.5 Implementing the Global State Graph

3.5.1 Global State Graph as a Data Structure

The global state graph is used in two ways. In some applications, it is enough to
traverse the graph without constructing it completely. In some other applications, it
is necessary to construct the whole graph explicitly. In this latter alternative there
is a problem that the graph may be too large. As matter of fact, many practical
protocols and systems lead to such a large graph that it is not possible to generate it
completely. For example, it has not been easy to analyse formally the collaboration
of several layers in network environments.

The global state graph is usually sparse. Thus there are only few out-going arcs
from the states. Hence matrix representations are not promising, but adjajency list
representations perform better. Usually the generation and analysis is done depth-
first. Thus we start from the initial global state and generate all the states one step
away from the initial state. These new states are pushed into a stack. Then continue
as follows as long as the stack is non-empty: Take a state from the stack, generate all
the neighbours of the chosen state, push the neighbours into the stack and draw the
arcs from the chosen state to the neighbours. It is necessary to check always during
the generation of new states, if the new states are really new or already generated.
Usually this check is done with the help of hashing.
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3.5.2 Bit Hashing and Alternatives

Because a global state graph is often large, we need a large hash table, too. It would
be temptating to use the virtual memory, but this brings problems. The reason is
that during the generation of states new and old states come in unpredictable order.
This leads to the fact that it is necessary to fetch pages continually from the disk.
This makes the processing too slow. That is why one tries to use only the central
memory.

The solution of G. Holzmann was to use bit hashing. In this method, a global
state is interpreted as a bit string and furthermore as an integer. Reserve now a
boolean array, whose size is such that the index space includes the largest integer
corresponding a global state. This kind of an array can be used efficently for hashing
and one state demands only one bit.

The whole transition system can be represented in an alternative way. Boolean
functions can be represented in a compact way and transition system can be rep-
resented with the help of boolean functions. This representation is called BDD
or binary decision diagram. Neither is this solution universal: in some situations
BDD’s help to compress the global state graph, but not always. Moreover, many
algorithms work easier with adjajency lists than with BDD’s.



Chapter 4

Basic Principles in Modelling

4.1 Non-determinism

Let P and Q be transition systems and a an action. There are three ways to model
non-determinism in transition systems:

1
Pa

τ

1

1

Q

Q

Pa

P

τ

a

τ

Q

In the case 1 the environment has a chance to interact with the system, if a
happens before the internal action τ . In the case 2, the system itself decides, at the
same time when the environment reacts, which one of a’s it chooses. The case 3
says that the system decides internally, if it behaves according to P or Q.

For example when modelling a communication channel it is best to choose the
alternative 3, if P represents the delivery of a message and Q the loss of a message.
The environment, in this case the sender and receiver, cannot affect the behaviour
of the channel. The delivery or loss of a packet is only dependent on the channel. If
we used the alternative 1, the environment could in some cases affect the behaviour
of the channel, what could not lead to realistic modelling.

21
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The second example is the seat reservation system of airlines, whose one feature
is described by the following transition system:

1

No Seats
Available

System Not Available

τ τ

Confirmed
Seat

2

3

4

5

6

7

τ

Thus the result of a seat reservation is totally unpredictable from the point of
view of a customer, because a normal customer does not know, how the system is
built or are there free seats available. The incapability of a customer to affect the
system is modelled using internal transitions.

4.2 Channels and Environments

Communication in the computer networks is not ususally synchronized. The parallel
operator, however, demands synchronization. It is possible to produce asynchronous
communication by specifying a channel as a transition system. A process sends a
message into the channel synchronously and continues then its computation. When
it is ready, another process takes the message from the channel synchronously. In
this way there is an asynchronous communication between the two processes. For
this asynchronous communication one has to pay a price: the size of the global state
increases, sometimes considerably. This increase depends on the amount of packets
which can travel simultaneously in the channel.

Sometimes it is also necessary to model the environment of a protocol. For
example, it is possible to assume in the AB-protocol that the sender gets the data
in get message from the environment, i.e. from the upper layer or other process,
and that the receiver gives the data in give message to its own environment.

We model now the AB-protocol in a more orthodox way with the help of channels
and environments. In addition, the timer is now a separate process. We make the
following agreements:

• The sender sends the messages d0 and d1 into the channel.

• The receiver takes the messages dd0 and dd1 from the channel.

• The receiver sends the acknowledgements a0 and a1 into the channel.

• The sender takes the acknowledgements aa0 and aa1 from the channel.
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• The sender and environment communicate synchonously with the message get.

• The receiver and environment communicate synchronously with a message
give.

• The sender sets the timer synchronouosly with the help of a message setT.

• The timer informs the sender about the timeout synchronously with the help
of a message timeout.

• The sender informs the timer synchronously with a message reset that the
timer can return to its initial state.

Below the processes are represented as transition systems.It is assumed of the
channel that it can contain only one message at a time. Furthermore, it is the task
of the channel to lose or distort messages.

S1

R3

S4

S3

S2

S:

get

aa0

d0

setT
aa0 reset

d1

aa1

aa1

get

setT

timeout

reset

R2

R1

R4

R5

R6a1

dd0

give

a0

dd0

dd1

dd1

dd1

give

R:

dd0
timeout

S5 S6

S7

S8

S9S10

There are some new transitions in the sender process (states S2 and S7), where
acknowledgements are received. This is because of the channel and the timer which
may send timeout even if an acknowledgement is in the channel. It is necessary to
take all the messages from the channel so that the channel can send new messages.
If some message stayed in the channel, it would block all the traffic and the result
would be a deadlock.

The timer can be represented with the help of two states.

T2

T: T1

setT resettimeout
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The channel has been modelled in such a way that the environment cannot af-
fect if messages disappear or not. It is thought that the channel takes the data
messages d0 and d1 from the sender and delivers them as messages dd0 and dd1.
Notice that it is not possible to take and deliver exactly the same message forms,
because this would disturb the asynchronous communication. The same is true with
the acknowledgements: a0 and a1 are taken by the channel and aa0 and aa1 are
delivered.

C4C5 C1 C2 C3

C8

C9

C6

C7

d1

a0 a1aa0 aa1

d0

dd0dd1

τ
τ τ

τ

ττ

τ τ

AB=((S |[timeout, reset, setT]| T) 

|[

C)

R

d0,d1,aa0,aa1

dd0,dd1,a0,a1 ]||[

]|

C:

The global state graph is now a combination of four processes. It is essentially
more complicated than the earlier global state graph and that is why it is not wise
to draw it completely manually. The start of the the graph is seen below.
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S1 T1 C1 R1 (0)

S3 T1 C6 R4 (15)

setT
τ

S3 T1 C1 R1 (4)

S4 T2 C1 R1 (7) S4 T2 C2 R1 (3)

S3 T1 C2 R1 (0) S3 T1 C3 R1 (5) S3 T1 C1 R2 (9)

S3 T1 C1 R3 (12)S2 T1 C2 R1 (6)

S2 T1 C3 R1 (10)

S2 T1 C1 R2 (13)

S4 T2 C3 R1 (8)

S4 T2 C1 R2 (11)

S4 T2 C1 R3 (14)

get

d0

setT

dd0

give

timeout

timeout

timeout

timeout

dd0

give

d0 give

a0

dd0

setT

setT

τ

τ

τ

τ

τ

τ

timeout

S2 T1 C1 R1 (1) 11

setT

τ

a0

.   .   .   .

.   .   .   .

.   .   .   .
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Chapter 5

Equivalences and Verifications

5.1 Modelling Services

The global state graph can be generated mechanically from the descriptions of the
processes in the system. If the graph is small, let us say less than one million
states, it is possible to examine the graph systematically and search for mistakes,
for example deadlocks, livelocks (it is not possible to back to main cycle) etc. It
is difficult, however, to find all the mistakes in this way. Messages may disappear
without deadlocks, the same message may be delivered two times to a receiver etc.

If a graph is too large or even infinite, it is still possible to make a random walk
in the graph. If there is a mistake in a specification, it turns out often in many
places in the global state graph. Even if we examine only 5 percent of the nodes,
practical experiments have shown that most of the mistakes are revealed.

If we want to verify the specification more completely, we need a different ap-
proach. There are two basic approaches: equivalences and temporal logics. We
consider first methods based on equivalences.

The central concept in the methods based on equivalences is a service description.
This is a transition system which describes the service the protocol gives to its user
(environment, observer). Let us examine two example.

The AB-protocol offers a data transfer service. The protocol takes data packets
from the environment (upper layer) and delivers them to a receiving participant
(again upper layer in another computer). Thus it is easy to describe the service of
the AB-protocol:

AB_P1 AB_P2get

give

27



28 CHAPTER 5. EQUIVALENCES AND VERIFICATIONS

If we base our verification on equivalences, the next step is compare the global
state graph of the AB-protocol to the global state graph of the service. If they
are same in some respect (specified later in more detail), the AB-protocol can be
considered correct. It seems clear that we must abstract away many details from
the graph of the AB-protocol. How this is done depends on the equivalence.

Our second example is the client/server system shown in the chapter 2, when
there are four clients. The whole system can be described with the help of the
parallel operator:

SystemRR :=

Server

| [cs1, sb1, cs2, sb2, cs3, sb3, cs4, sb4] |

((Client1 |[bc1]| Buffer1 )

| [t1, t2] |

((Client2 |[bc2]| Buffer2 )

| [t3] |

((Client3 |[bc3]| Buffer3 )

| [t4] |

(Client4 |[bc4]| Buffer4 ))))

Suppose now that we are interested in the round robin principle. The principle
is realized in the system, if the tokens ti travel in the following order:

t2, t3, t4, t1.

Thus the round robin principle is described by the following process.

RR1 RR2 RR3 RR4

t1

t2 t3 t4

We could now generate the global state graph of the process SystemRR and exam-
ine, if the token travels in that order. If we do not want to examine the graph man-
ually, we shoul write a program that does the task. This would be time-consuming.

A quicker method is to compare the process SystemRR to the process RR. The
round robin principle is realized in the system, if the functioning of SystemRR,
abstracted in a suitable way, corresponds the functioning of RR. In this case, a
suitable abstraction is such that all the actions except t1, t2, t3 ja t4 are changed
to invisible action τ . If after this change we traverse the paths in the global state
graph of SystemRR, then the actions ti should appear in the RR-order and all the
other actions are invisible.

A strong side of the process algebras is that it is possible to define several equiv-
alences for different purposes. Moreover, these equivalences can be effectively com-
puted, at least in most cases. The simplest equivalence is the trace equivalence. One
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of the most used equivalence is the weak bisimulation equivalence which is sufficient
for the most purposes. It can be computed effectively and it is included nearly in
all the verification programs. We consider only these two in this course.

5.2 Relations

The Definition of a Relation

Let A and B be sets. Every set R ⊂ A×B is called a relation from the set A to the
set B. The set

MR = { x ∈ A | ∃ y ∈ B such that (x, y) ∈ R }

is the domain of R and the set

AR = { y ∈ B | ∃ x ∈ A such that (x, y) ∈ R }

is its range or codomain. If R ⊂ A × A, i.e. if R is a relation from A to A, then
it is said that R is a relation in A. If R a relation in A and if (x, y) ∈ R, then we
usually use the notation xRy.

Equivalence Relations

Define first some concepts that are useful when defining equivalence relations.

Sets A and B are disjoint, if A ∩ B = ∅. If I is a set, whose elements are sets,
then I is disjoint, if any two elements in I are always disjoint.

If H is a collection of subsets of X , then it is a partition of X , if it satisfies the
following conditions:

H1. Every A ∈ H is non-empty,

H2. the union of the sets in H is X ,

H3. H is disjoint.
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The concept of a partition is closely connected to the equivalence relations which
are defined next.

Definition 2 The relation R in X is an equivalence, if it satisfies the following
conditions:

E1. aRa for every a ∈ X (reflexive);

E2. if aRb, then bRa (symmetric);

E3. if aRb and bRc, then aRc (transitive).

If a ∈ X, then the set R(a) = {x ∈ X | aRx} is the equivalence class of a with
respect to the equivalence R.

Theorem. If R is an equivalence in X, then the set X/R of the equivalence classes
is a partition in X. For elements a and b in X, aRb if and only if a and b belong
to the same equivalence class.

Proof. Let us go through the proof, although the same is done in the elementary
courses in mathematics.

Let a ∈ X . Because aRa, then a ∈ R(a). It follows that every equivalence class
is non-empty and that the union of the classes is X . In order to prove condition H3
it is enough to show that given two equivalence classes, they are either identical or
disjoint. Suppose that R(a)∩R(b) 6= ∅. Then there exits an element c ∈ R(a)∩R(b).
Let x ∈ R(a), i.e. aRx. Because c ∈ R(a), it follows aRc and also cRa, because
every equivalence relation is symmetric. Because cRa and aRx, then cRx, because
of transitivity. Because c ∈ R(b), also bRc. This shows that R(a) ⊂ R(b). Exactly
in the same way it is shown that R(b) ⊂ R(a). Thus R(a) = R(b) and the union of
the equivalence classes is a partition of X .

Let aRb. Then b ∈ R(a), and thus a and b belong to the same equivalence
class R(a). Coversely, suppose that a ja b belong to the same class R(c). Then
a ∈ R(c) ∩ R(a) and hence R(c) ∩ R(a) 6= ∅. Now the first part of the proof shows
that R(c) = R(a). It follows b ∈ R(c) = R(a) or aRb. Thus the latter claim is true,
too 2

Theorem. Let H be a partition of X. If we define for elements a and b of X that
aRHb if and only if a and b belong to the same set U ∈ H, then RH is an equivalence
relation of X such that the union of all the RH-equivalence sets is H.

Proof. Let a ∈ X . Because H is a partition of X , there exists a set U ∈ H such
that a ∈ U . Now a and a belong to the same set U so that aRHa. Thus the relation
RH is reflexive.
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Let aRHb. Then a and b belong to the same set U ∈ H and hence bRHa. Thus
the relation is symmetric.

Suppose now aRHb and bRHc. There exists sets U and V ∈ H such that a and
b ∈ U , and b and c ∈ V . Because b ∈ U ∩ V , we have U ∩ V 6= ∅ and hence U = V ,
because H is disjoint. Thus a and c belong to the same set U = V ∈ H, and hence
aRHc. The relation RH is thus transitive and it is an equivalence relation.

Let RH(a) be an arbitrary RH-equivalence class. Because the union of the sets
in H is X , there exits a U ∈ H such that a ∈ U . If x ∈ U , then a and x belong to
the same set U ∈ H, hence aRHx or x ∈ RH(a). Coversely, suppose x ∈ RH(a) or
aRHx. Then a and x belong to the same set V ∈ H. Because a ∈ U ∩ V , we have
U ∩ V 6= ∅, and furthermore U = V , because H disjoint. Hence x ∈ V = U . The
results show that RH(a) = U . Conversely, if U ∈ H, then U 6= ∅. If a ∈ U , then,
because of the previous, RH(a) ∈ H. Because RH(a) ∩ U 6= ∅, we have U = RH(a).
Thus the union of theRH- equivalence classes is the same as H. 2

Transitive Closure

Let R be a relation in a set V . Define the powers of a relation as follows:

R0 = {(a, a) | a ∈ V },

R1 = R,

R2 = {(a, c) | ∃b ∈ V : aRb ja bRc},

Rn = R(Rn−1), n > 2.

Transitive closure is now defined with the help of the powers of a relation. The
reflexive transitive closure of a relation R, R∗, is the set

R∗ =
∞
⋃

i=0

Ri,

and transitive closure R+ is the set

R+ =

∞
⋃

i=1

Ri.

Writing out the formulas recursively we see that aR∗b, if there exists elements a =
c1, c2, · · · , cn = b in V such that ciRci+1, i = 1, · · · , n− 1.

Relation R in a set V can be represented as a directed graph: The node set of
the graph is V and if aRb, then (a, b) is an arc in the graph. The transitive closure
has an illustrative interpretation in the graph. That is, R+ means all the pairs
(a, b) ∈ V × V such that there is a path from a to b in the graph R. Similarly, R∗

R+ with arcs added from every node to itself.
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There are many algorithms to compute the transitive closure of a given rela-
tion. However, in many situations in verification, it is not necessary to compute
a transitive closure beforehand, but on the fly. This means that when one needs
to traverse the arcs of the transitive closure starting from one node, a depth-first
search is started from this node and it finds all the paths from that node. It may
seem that this method is very time consuming, but it behaves very well in practice.

5.3 Trace Equivalence

The simplest process equivalence is based on the comparisons of event sequences.
Let A be the set of actions. We assume in what follows that the actions of all the
processes belong to this set.

Definition 3 Let u ∈ (A\{τ})∗ be an action sequence. Sequence u is a trace of P ,
if P

u
=⇒P ′ for some process P ′. We denote the set of all the traces of P by tr(P ).

Definition 4 Processes P and Q are trace equivalent, P ≈tr Q, if tr(P ) = tr(Q).

Clearly ≈tr is an equivalence relation. It also is compositional with respect to
the parallel operator. Thus if P ≈tr P ′ ja Q ≈tr Q′, then P |[a1, · · · , an]|Q ≈tr

P ′|[a1, · · · , an]|Q
′ (exercise).

If P ≈tr Q, then there may be deadlocks in P even if Q is deadlock-free. For
example, the processes P and Q below are trace equivalent.

a b

c

a b

c

a

P2 P3

P4

Q1 Q2 Q3P1

It is generally thought that deadlocks are the most serious errors in distributed
systems. That is why the trace equivalence is not always appropriate when compar-
ing a protocol and its service. However, the trace equivalence reveals other types of
mistakes quite effectively. In addition, deadlocks are easy to detect already when
generating global state graphs. Thus the trace equivalence may be used sometimes.
We will see its usefulness when analysing mutual exclusion algorithms. Furthermore,
the trace equivalence is a starting point for the whole family of so called decorated
trace equivalences which includes failure and test equivalences.

5.4 Weak Bisimulation Equivalence

The bisimulation equivalence was invented by Robin Milner and further developed
by David Park at the end of the 70’s and early 80’s. If P and Q are processes, then
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the idea of the equivalence is to simulate the behaviour of visible actions in P by Q
and vice versa. If the simulation succeeds all the time, the processes are equivalent.
In order to define this precisely, we need auxiliary concepts.

Let a be an action, a 6= τ . Remember the notation

P
a

=⇒P ′,

which means that there is a transition chain

P = P1

τ
−→P2

τ
−→· · ·

τ
−→Pk

a
−→Pk+1

τ
−→Pk+2

τ
−→Pk+3

τ
−→· · ·

τ
−→Pk+m = P ′,

k ≥ 1, m ≥ 0. In other words, P
a

=⇒P ′, if there is a path from the initial state of
P to the in initial state of P ′ and one of the arcs belonging to the path contains a,
and others τ . We can also write

P
ε

=⇒P ′

if P = P ′ or there is a chain of τ transitions

P = P1

τ
−→P2

τ
−→· · ·

τ
−→Pk = P ′,

k > 1.

Example. Consider the the following transition system.

P1

P2 P3

P4 P5 P7

P6

a

ab b

τ

τ

τ

There are the following paths from P1: P1
ε

=⇒P6, P1
a

=⇒P2, P1
a

=⇒P5, P1
a

=⇒P7,
P1

b
=⇒P7, P1

ε
=⇒P3, P1

ε
=⇒P1. 2

Definition. Let P and Q be processes and A the action set of P and Q. Processes
P and Q are weakly bisimilar, P ≈wbis Q, if there is a set R, weak bisimulation,
consisting of process pairs such that for every action a ∈ (A\{τ}) ∪ {ε}:

1. (P,Q) ∈ R;

2. if (P1, Q1) ∈ R ja P1

a
=⇒P2, there exists Q2 such that Q1

a
=⇒Q2 ja (P2, Q2) ∈ R;

3. if (P1, Q1) ∈ R ja Q1

a
=⇒Q2,there exists P2, such that P1

a
=⇒P2 ja (P2, Q2) ∈ R.
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Example. The following processes are weakly bisimilar, P ≈wbis Q:

P4

P1

P2 P3 τ

a
b

a

a b
b

a
b

Q2

Q1

Q3

Equivalence follows, becauseR = {(P1, Q1), (P2, Q2), (P3, Q3), (P4, Q1)} is a weak
bisimulation and
(P,Q) ∈ R (P = P1, Q = Q1). 2

Example. The following processes are not weakly bisimilar:

P1

P2 P3

Q3

Q4

Q1
ba

b

a τ

Q2

If we try to construct a weak bisimulation R, then the pair (P1, Q1) must belong
to that relation . Let us use next the condition 3 in the definition: Q makes a
transition from Q1 to Q2 using an internal action. The only way to simulate this
transition in P is such that we must stay in P1. Hence the pair (P1, Q2) must
belong to the bisimulation relation R. After this, we apply the condition 2 to
the pair (P1, Q2): P moves from P1 with a to P2. Now Q cannot simulate this
transition, because there are no a-transitions from Q2. Thus there cannot exists a
weak bisimulation between P and Q and hence the processes are not bisimilar. 2

Example. The following processes are weakly bisimilar:
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P1

P2

P3

Q1

Q3Q2

a
a

b

τ
c

τ

d

Q9

Q8
Q7

Q6

τ
c

τ

d

P7

P6
P5

P4

Q5

b

a a

c τ

d

d

Q4

Q10 Q11 Q13

Q12

The weak bisimulation is as follows:

(P1, Q1), (P2, Q2), (P4, Q3), (P6, Q4),

(P3, Q5), (P4, Q6), (P5, Q7), (P6, Q8), (P7, Q9)

(P5, Q10), (P6, Q11), (P7, Q12), (P7, Q13)

2

Theorem. The relation ≈wbis is an equivalence relation between transition systems.

Proof. We must show that the relation ≈wbis is reflexive, symmetric, and transitive.

If ≈wbis is reflexive, then we should have P ≈wbis P for all processes P . Symmetry
means that from P ≈wbis Q it follows thatQ ≈wbis P . Both properties follow directly
from the definition.

We still must show that the relation is transitive, i.e. from the conditions P ≈wbis

Q ja Q ≈wbis R it follows that P ≈wbis R. Let R a bisimulation between P and Q,
S a bisimulaatio betweenQ and R. Construct the set T of process pairs as follows:

T = {(P1, R1)| ∃Q1 : (P1, Q1) ∈ R, (Q1, R1) ∈ S}.

Let us show that T is a weak bisimulation between P and R. Because of the
definition of T we have (P,R) ∈ T . Let (P1, R1) ∈ T an arbitrary element and
P1

a
=⇒P2. We know that there exists Q1 such that (P1, Q1) ∈ R ja (Q1, R1) ∈ S.
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Because R and S are weak bisimulations, there exist processes Q2 and R2 such that
Q1

a
=⇒Q2 and (P2, Q2) ∈ R, and further R1

a
=⇒R2 ja (Q2, R2) ∈ S. But by the

definition of T we have (P2, R2) ∈ T , and thus the condition 2 has been shown. The
condition 3 is shown in the same way. 2

Denote by P the set of all finite processes or labelled transition systems. Relation
≈wbis thus defines an equivalence relation in P. In mathematics, an equivalence
relation is defined as a subset of the cartesian product of the basic set with itself.
Thus in our case it should be that ≈wbis⊂ P×P. We could indeed define that ≈wbis

is the maximal bisimulation

≈wbis=
⋃

{R| R on bisimulaatio}.

If P is a process, then the equivalence class [P ]≈wbis
of P is the set of those

processes equivalent with P . The classes [P ]≈wbis
form a partition of P.

Minimal Process

If P is a labelled transition system (S,A,−→, s0), then every state s ∈ S can be
considered as a transition system which is the same as P , but the initial state is now
s. It is now possible to restrict the equivalence ≈wbis to the set S × S. Then ≈wbis

is an equivalence relation in S and it partitions S into equivalence classes. We can
now form a new transition system whose states are the equivalence classes. There is
an arc with a from one class to another, if there is a state s1 in the first class and a
state s2 in the second class and an arc s1

a
−→s2 in the original transition system. The

transition system constructed in this way is the minimal transition system among
those systems that are weak bisimulation equivalent with the original one.

For example, the following processes are equivalent and the latter is minimal.

P1 P2 P3a τ

P1 P2 P3a τ

P4 P5

P7P6

a

b τ

τ τ

τ

ττ

τ

τ b

P:

P_min:
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The equivalence classes of P are E1 = {P1, P5}, E2 = {P2, P4, P6, P7} ja E3 =
{P3}.

If we draw all the transitions mechanically from one class to another, the result
may contain too many useless arcs. However, the minimization of arcs is more
complicated than that of states. More details can be found in the dissertation of
Jaana Eloranta and in the article Eloranta, Tienari, Valmari: Essential Transitions
To Bisimulation Equivalences, Theoretical Computer Science 179 (1997) 397-419.

Weak Bisimilarity and the Parallel Operator

The weak bisimulation equivalence behaves well with respect of the parallel operator.

Theorem. If P ≈wbis Q, then P |B| R ≈wbis Q |B| R for all action sets B and
processes R.

Proof. Let
R = {(P1|B|P3, P2|B|P3) | P1 ≈wbis P2}.

Let us show that R is a weak bisimulation between P |B|R and Q|B|R. Because
P ≈wbis Q, we have (P |B|R,Q|B|R) ∈ R. Let P |B|R

a
=⇒P ′|B|R′. We have to check

two cases.

i) a ∈ B. Now a 6= i and P
a

=⇒P ′, R
a

=⇒R′. Because P ≈wbis Q, there exists a
weak bisimulation E between P and Q. We know, because of the definition of
the weak bisimulation, that there exists Q′ such that Q

a
=⇒Q′ and (P ′, Q′) ∈ E .

Hence also P ′ ≈wbis Q
′. We can directly see that Q|B|R

a
=⇒Q′|B|R′. The

definition of R implies now that (P ′|B|R′, Q′|B|R′) ∈ R.

ii) a 6∈ B. Now either P
a

=⇒P ′ and R=⇒R′ or P=⇒P ′ and R
a

=⇒R′. Notice that a
can be ε. If P

a
=⇒P ′, then also Q

a
=⇒Q′ and P ′ ≈wbis Q

′, as we saw in the previ-
ous case. Thus Q|B|R

a
=⇒Q′|B|R′ and (P ′|B|R′, Q′|B|R′) ∈ R. If, on the hand,

R
a

=⇒R′, P=⇒P ′, then there also exists Q′ such that Q=⇒Q′ and P ′ ≈wbis Q
′.

Furthermore Q|B|R
a

=⇒Q′|B|R′. Now it is true that (P ′|B|R′, Q′|B|R′) ∈ R.

Thus R satisfies the conditions of the weak bisimulation as for the transitions of in
P |B|R. The transitions in Q|B|R are handled in the same way and we can conclude
that R is a weak bisimulation. 2

5.5 Examples

5.5.1 AB-protocol

Consider the version of the AB-protocol where there are the messages get and give.
This version defines a service which is easily described:
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give

P1 P2get

Let us apply the weak bisimulation equivalence to check the correctness of the
protocol. Thus we have to show that the global state graph of the protocol is
equivalent with the service. Evidently this is not true, if we do not change the
global state graph in some way. One usual way is to hide some actions. For this
purpose we define the operation hide:

hide a1, a2, ..., an in P

transforms P in such a way that all the actions ai, i = 1, · · · , n, in P are replaced
with τ .

Now we can phrase the verification problem of the AB-protocol in the following
form. We have to show that

hide d0, dd0, d1, dd1, a0, aa0, a1, aa1, st, rt, t in AB-protocol

≈wbis AB-service.

The global state graph of the AB-protocol is a little too large for a manual
construct so that it is necessary to use software to generate it. In order to do this,
we must first write the protocol and its service in some spesification language. After
this the software generates the global state graphs of the protocol and service and
finally compares these two to check if they are equivalent or not. We will do all this
after we have studied Lotos.

5.5.2 FE-protocol

In the old protocol articles there was one erroneous protocol which has been in
practical use. (W. C. Lynch: Reliable full-duplex transmission over half-duplex
lines, Comm. ACM, Vol. 11, No. 6, pp 362-372, June 1968). Its mistakes appeared
so seldom that the errors were not observed in testing, but sometimes they were
encountered in the production use. It is a protocol that is illustrative to analyse.

Our protocol, shortly FE-protocol, is a symmetric link layer protocol. Two par-
ticipants S and R change messages alternatively using a half-duplex channel. Ac-
knowledgements a (positive acknowledgement) are added into every message and
this tells that the previous message has arrived correctly. The acknowledgement is
n (negative ackknowledgement), if the previous message was distorted in the chan-
nel.
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The sending logic was as follows: If the previous message contained n or it was
distorted (maybe n was destroyed), send the earlier message again. Otherwise send
a new message. In both cases ACK or NAK is added into the message according to
the situation.

The receiving logic is not given explicitly in the article. The article shows only
that it is impossible to design a receiving logic so that the protocol works correctly.
We must use some logic and one possible logic would be as follows: When a message
arrives correctly and contains ACK, it is delivered to the client. If a message contains
NAK, the message is not delivered further (it is assumed that the message is a
repetition of an older message).

First we build the modell of the protocol in a simplified form. If the protocol
behaves incorrectly in this model, it behaves incorrectly in a more general model,
too. If, on the other hand, the simplified version works correctly, it is still necessary
to check the behaviour of the more general version. In the simplified version the
communication is synchronous, we do not use separate channels. Data is sent only
from S to R. The notation da means data with a positive ackknowledgement, and
dn is data with a negative acknowledgement. R will send only acknowledgements
a or n. The notations de and e represent distorted data and acknowledgement,
respectively. The labelled transition graphs S and R are given below:

R1

R2

R3 R4

S2

S3

S4

get
give

S1

da | de

e

da

dn a | e

n | e

de
dn | de

a

n

The global state graph is in the following diagram:
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S1R3 S2R3 S3R1 S3R2

S3R4

get

e dn

giveda

n

e

de

de

a

S4R3

We can see the basic cycle of the protocol,

S1R3 S2R3 S3R1 S3R2get giveda

a

which describes the messages when the communication is error-free. The protocol
recovers from a single communication error using an additional path:

S2R3
de
−→S3R4

n
−→S2R3

or

S3R2
e

−→S4R3
dn
−→S3R2

Two sequential communication errors may cause that the protocol does not be-
have correctly. This we can see, if we traverse the following path in the global state
graph:

S1R3
get
−→S2R3

de
−→S3R4

e
−→S4R3

dn
−→S3R2

a
−→S1R3

get
−→S2R3

da
−→S3R1

give
−→S3R2

In this scenario two data messages are sent, but only one of them is really delivered
to the receiver. The protocol may thus lose messages. Moreover, it is possible that
the protocol delivers the same message to the receiver:

S1R3
get
−→S2R3

da
−→S3R1

give
−→S3R2

e
−→S4R3

de
−→S3R4

n
−→S2R3

da
−→S3R1

give
−→S3R2.

The former analyses were based on a detailed scrutiny of the global state graph.
This erroneous behaviour can also be detected automatically. For this purpose we
need the service description which happens to be the same as in the AB-protocol.
With the help of a software we can show that

hide da, de, a, n, e in FE− protocol 6≈wbis FE− service.
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It is easy to see this manually, too. Let us try to construct a weak bisimulation:

R = {(S1R3, P1), (S2R3, P2), (S3R2, P2), (S1R3, P2) · · ·}.

Now take can be done in state S1R3, but in P2 only give is possible. Thus it is
not possible to construct a weak bisimulation and the processes are not equivalent.

5.6 Conclusions and Problems

It is possible to develop the formalisms based on labelled transition systems further.
If we will apply these methods in practice, we must pay attention on the following
points:

1. How are labelled transition systems represented? Diagrams are not suitable for
computers.

2. How is the collaboration of several processes described? We must decide the
following questions:

• how is time modelled;

• is the communication synchronous or asynchronous;

• is multisynchronization allowed;

3. How is data taken into account in the messages?

4. Transitions may depend on the content of data. How is this handled?

5. In the modelling of real time systems we need time constraints. How are these
expressed in the formalism?

6. Transitions may have completely different probabilities (for example, the prob-
ability of a communication error may be very small). Is it wise to assume that
all the transitions happen with the same probability?

7. In ordinary transition systems synchronization points (messages) are known
beforehand and their use is fixed when the spesification is written. There are,
however, a lot of applications, where the synchronization points are dynamically
created. For example, when one needs services, it may be that the address or
permit for the service is obtained first from some authority, who answers by
giving the port or address of the service. How are these kinds of situations
taken into account?

All the previous tasks have been implemented in one form or another. Especially,
the items 1-4 have been solved in a generally accepted way.

Labelled transition systems are usually described with the help of process alge-
bras, for example Milner’s CCS, Hoare’s CSP, and Bergstra’s and Klop’s ACP. In
these, the items 1) and 2) have been solved in a similar way:
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• A labelled transition system is described using algebraic expressions.

• Cycles are generated with the help of recursion. Recursion also enables the defi-
nitions of an infinite systems. Furthermore, it makes possible to start processes
dynamically.

• Processes communicate synchronously. It means that a process cannot finish
the sending of a message before the receiver has really received the message.
Asynchronous communication is achieved by using separate channel processes
as we saw in the AB-protocol.

• Concurrent actions are performed sequentally using interleaving:

– Events are atomic.

– If actions a and b are executed concurrently, then we think that either
a happens before b or b before a. Thus we have two possible execution
sequences ab and ba which are present in the global state graph of a system.

– Because concurrency is modelled using interleaving, there are a lot of dif-
ferent alternatives for execution sequences. Thus global state graphs tend
to be large (abc, acb, cab, bac, bca, cba).

• In CCS, only two processes can synchronize with each other whereas in CSP
and ACP multi-synchronization is possible.

In process algebras, it is possible to state conditions for transitions. On the other
hand, it is not possible directly to express real time constraints or probabilities in
these traditional process algebras. There are newer formalisms which tackle these
questions.

Lotos has many features from CCS and CSP. It has

• synchronous communication,

• multi-synchronization,

• interleaving semantics.

In Lotos, it is possible to combine processes in a more general way than in the
previous process algebras. This causes both advantages and disadvantages. For
example, in the previous process algebras it is possible to prove useful algebraic
properties for parallel operators. Lotos has not these properties (for example the
operator is not associative).

The representation of data is the most distinct feature in Lotos. In Lotos, data
is defined using the algebraic specification of abstract data types. This algebraic
specification style was developed since 1970 and it was closely connected to deno-
tational semantics. In algebraic specification, the meaning, or semantics, is created
by defining relations the operators satisfy. This is a very powerful technique. For
example, it is possible to defined natural numbers without basing the definition on
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any other constructions. On the other hand, the data types thus defined are very
inefficient (for example, number 3 is succ(succ(succ(0)))). In this course, we skip
the data part of Lotos.

Lotos is practice-oriented. It is larger than the theoretical languages CCS, CSP,
and ACP. Especially the data definition part of Lotos is different. Even if we con-
centrate solely on basic Lotos, it is not wise to use only that part in practice. In
practical verifications, full Lotosa should be used, because in this way the descrip-
tions become clearer and more concise.

There are also extensions of Lotos (E-Lotos). They include real time properties.
Furthermore, dynamical synchronization is essential and there have been suggestions
to include it into Lotos, but the results have not been successful. Instead, CCS has
been extended to include dynamical synchronization and this extension is known by
name π-calculus.

There are many more process algebras nowadays. They have been designed for
specific purposes. Ambient calculus describes concurrent systems with mobility.
There can be two kinds of mobility: devices move or code moves. Ambient calculus
can handle both. PEPA is a stochastic process algebra which has been designed
for modelling computer and communication systems. It has probabilistic branching
and transitions may have timed conditions. Fusion calculus is a modification of
π-calculus. Spi-calculus, also a modification of π-calculus, has been designed for the
verification and analysis of security properties.

Finally, we should mention Robin Milner’s latest invention, bigraphs. They are
designed to be a platform for ubiquitos computing systems. Bigraphs are powerful
objects and it is possible to describe various structures, even biological structures,
with the help of them.
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Chapter 6

Basic Lotos

6.1 Introduction

First, let us clarify the terminology. Assume that a labelled transition system con-
tains a transition Si

a
−→Sj . Symbol a is often called action. When we take into

account the point where the action happens, we speak about an event. For ex-
ample, if a process has an execution sequence abcaade, then it contains action a
and three different events with a. Sometimes it is difficult to separate events from
each other. In these cases it is possible to use extra marks to denote the event, for
example subscripts. Thus in the sequence abcaade we have events a1, a2 ja a3.

In Lotos, an action is divided into two parts, gate and data. It is thought that
a gate is like a socket and data, i.e. data packet, is sent and received through
that socket. Thus in full Lotos a could be g!2?x : Boolean, where g is a gate, !2
means that 2 is sent synchronously through g and the last part means that Boolean
data, coming at the same time synchronously through g, is received into variable x.
However, in basic Lotos we do not use data part at all. Thus it is same, if we speak
about a gate or a data.

Simplifying a little, we can say that basic Lotos is an algebraic way to describe
labelled transition systems. It resembles CCS and CSP and it contains:

• two ready-made Lotos processes, stop and exit,

• mechanism how to call a process,

• two ready-made actions:

– i or silent or internal action,

– δ or succesful termination action,

• 9 operators.

A specifier can use the internal action i freely. On the contrary, δ is used only
when defining the behaviour of the operators. With the help of the operators and

45
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action names it is possible to construct all the processes (what can be constructed
in Lotos). Next we define the operators.

6.2 Ready-Made Processes

Lotos has two processes that have been defined beforehand, stop and exit. Stop,
inaction, is a stopped or empty process that does nothing. Exit is a successful
termination. It informs its environment of a successful termination by sending δ
and then stops.

We define the behaviour of the operators formally with the help of transition
rules. The rules give operational semantics to the operators. A rule has three parts:

• process expression P ,

• action a which can be activated in P ,

• a new expression Q which is got after P has done a.

We use the notation P
a

−→Q.

Expression stop has no transition rules. Thus it can not make no actions or
transitions.

Prosess exit is defined by the rule

exit
δ

−→stop.

6.3 Action Prefix

If P is a process and a an action, then we can construct a new process a;P . It
makes first s and continues then as P . The transition rule is simple:

a;P
a

−→P.

It is not allowed to write P ;Q or δ;P , where P and Q are Lotos prosesses.

We can already specify simple system in Lotos:
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Example 1. Let a transition system be as follows:

−→S1
a

−→S2
b

−→S3
c

−→S4.

An equivalent Lotos process is

process P[a,b,c] := a; b; c; stop endproc

We see the formal definition of a Lotos process. The definition is started with
the reserved word process. Then come the name of the process and the action or
gate names in brackets. After := the Lotos expression is written and the reserved
word endproc is at the end.

Example 2. A cycle can be realized using recursion. Consider the transition system
below:

S1 S2 S3

a

ba

An equivalent process is

process Q[a,b] := a; b; a; Q[a,b] endproc

Esimerkki 3. One more example.

S1 S2 S3ba

c

process R[a,b,c] := a; S[b,c]

where

process S[b,c] := b;c; S[b,c] endproc

endproc

Usually it is not wise to draw first a labelled transition system and after this
translate it mechanically into Lotos. It is better at once to design a Lotos process.
The further operators make this task even more straightforward.

6.4 Hiding

Hiding changes visible actions into internal actions. The syntax of the operator is
as follows:

hide a1, a2, · · · , an in P
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This process behaves as P , but makes the action i, when P makes some of the
actions ai. The transition rules are easy to understand:

• If P
a

−→Q and a ∈ {a1, · · · , an}, then

hide a1, · · · , an in P
i

−→ hide a1, · · · , an in Q.

• If P
a

−→Q and a 6∈ {a1, · · · , an}, then

hide a1, · · · , an in P
a

−→ hide a1, · · · , an in Q.

Example. If R is as in the example 3 of the previous section, then process
hide b, c in R as a transition system is

R2 iaR1 R3

i

6.5 Choice

The symbol of the choice operator is ’[]’, for example P [ ] Q. The system composed
by using the choice operator is non-deterministic in its initial state. The first event
may be either the event of P or Q. After the first event, the process continues as P
or Q would continue. This can be expressed using transition rules:

• If P
a

−→P ′, then P [ ] Q
a

−→P ′.

• If Q
a

−→Q′, then P [ ] Q
a

−→Q′.

Now it is possible to describe any kind of transition systems.

Example 1. Let a transition system be as follows:

3

a b

i2

1

4

P:
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The corresponding Lotos expression is

process P[a,b] := (a; stop) [] (b; i; stop) endproc

Example 2. A labelled transition system is now:

1 4

4

3

2

R:
a

b

a

a

b

c

The corresponding Lotos expression is

process R[a,b,c] := (a; b; R[a,b,c]) []

(b; S[a,c]) []

(a; stop)

where

process S[a,c] := c; a; S[a,c] endproc

endproc

We show how the process changes when we execute the actions b,c,a,c:

(a; b; R[a,b,c]) [] (b; S[a,c]) [] (a; stop) --b-->

c; a; S[a,c] --c-->

a; S[a,c] --a-->

c; a; S[a,c] --c-->

a; S[a,c]

6.6 Parallel Operator

So far we can create only sequential and non-deterministic processes. With the help
of the parallel operator we can also model concurrent behaviours. If P and Q are
processes, then the notation

P |[a1, · · · , an]| Q
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means as follows:

• P and Q proceed concurrently.

• Actions a1, · · · , an and δ are possible only, if both P and Q make them at the
same time (a1, · · · , an are synchronizing actions or gates).

• P and Q perform other actions independently of each other.

The semantics of the parallel operator is defined by the following rules. It is assumed
that ai 6= i, δ, i = 1, · · · , n.

• If P
a

−→P ′ and a 6∈ {δ, a1, · · · , an}, then

P |[a1, · · · , an]| Q
a

−→P ′ |[a1, · · · , an]| Q.

• If Q
a

−→Q′ and a 6∈ {δ, a1, · · · , an}, then

P |[a1, · · · , an]| Q
a

−→P |[a1, · · · , an]| Q
′.

• If P
a

−→P ′, Q
a

−→Q′ and a ∈ {δ, a1, · · · , an}, then

P |[a1, · · · , an]| Q
a

−→P ′ |[a1, · · · , an]| Q
′.

If we applied the above rules, then also P |[a1, · · · , an]| Q can be considered
as a transition system, the global state graph or reachability graph of the system
consisting of P and Q. The next example shows this.

Q1

P2Q4

P3

P2

P1

Q3

Q2 Q4

Q5

P | [ a, b ] | Q :

P1Q1 P1Q2 P2Q3

a

c a

b

a

a

a

b b

c

P3Q5
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If [a1, · · · , an] consists of all the actions in P and Q ( 6= i), then we can use the
notation

P || Q.

If P and Q are as the previous example, then P || Q consists only of transitions:

P2Q4 P3Q5P1Q1 a b

Q can not now to perform c, because c belongs to the synchronization set, but P
does not have it.

If the synchronization set is empty, we can use the notation

P ||| Q.

This is called pure interleaving, because P and Q can make all the actions alone,
independently of the other process. If there are a lot of non-synchronizing actions
in a system, then the global state graph will often be very large. If we consider the
previous examples, then the pure interleaving produces the following graph:

a

c

a

a

aaa

a

b

b

b

b b

b

b

b

a
a

a

P2Q1 P1Q1 P1Q4

P1Q5
P2Q4

P2Q5P3Q4

P3Q5

P3Q3

P3Q2 P2Q3

P1Q3P2Q2

P3Q1
P1Q2

a

c

c

These examples show how concurrency is modelled. First of all, processes proceed
independently of each other, interleaving their events. In synchronization events,
both processes perform the same action at the same time. A process cannot pro-
ceed before the other has reached the same phase where it can perform the action.
The synchronization is of the form of rendezvous. This kind of synchronous com-
munication is suitable for applications that take place in the same machine or that
are really such that processes must wait for other processes before they proceed.
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Often the communication is asynchronous. It is possible to model these kind of
systems also as systems with synchronous communication, but then it is not possible
to detect all the mistakes. However, if a mistake is found in the synchronouos
version, then it is in asynchronous version as well. But if we really want to analyse
asynchronous versions, then we must model a channel as a separate process.

Before there was a lot of discussion about the interleaving. There are other
approaches, so called true concurrency models. Lotos has, for example, this kind
of semantics in addition to the interleaving semantics. True concurrency models
seem to be quite complicated and that is why they are seldom applied in concrete
verifications.

6.7 Sequental Composition

The notation for sequental composition is ’>>’. Process P >> Q acts as P until
P terminates successfully, and continues after this as Q. The termination of P is
expressed using the internal action. Transitions rules are simple:

• If P
a

−→P ′ and a 6= δ, then

P >> Q
a

−→P ′ >> Q.

• If P
δ

−→P ′, then
P >> Q

i
−→Q.

Example.

a; exit >> b; exit
a

−→

exit >> b; exit
i

−→

b; exit
b

−→

exit
δ

−→

stop

6.8 Disabling

The notation for disabling is P [ > Q. First, the system acts as P . At any time
before P has terminated successfully, Q can start. If Q starts, P terminates, but
not successfully. Q cannot start, if P has terminated successfully. Transition rules:

• If P
a

−→P ′ and a 6= δ, then

P [ > Q
a

−→P ′ [> Q.
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• If P
δ

−→P ′, then
P [> Q

δ
−→P ′.

• If Q
a

−→Q′, then
P [> Q

a
−→Q′.

Example.
a; b; exit [> r; stop

r
−→ stop





y

a

b; exit [> r; stop
r

−→ stop




y

b

exit [ > r; stop
r

−→ stop




y

δ

stop

6.9 The Precedence of the Operators

The operator precedences are as follows:

action prefix > choice > parallel composition > disabling > enabling > hiding.

Thus
hide a in a;P [ ] Q >> R || S [ > T

is the same as
hide a in (((a;P )[ ]Q) >> ((R || S)[> T )).

Operators with the same precedence are grouped starting from the right, as in

P |[a]|Q |[b]| R = P |[a]| (Q |[b]| R).

6.10 Process Instantiation

Calling processes is generally the same as the procedure call in programming lan-
guages, but in Lotos even this defined formally.

For this formal definition, we need one extra operator relabelling. It is denoted
by

[b1/a1, b2/a2, · · · , bn/an].

It means that the gates a1, · · · , an in the process are replaced by the gates
b1, · · · , bn. Relabelling does not belong to Lotos, but it is used only in the def-
inition of process instantiation. The semantics of the operator is defined by the
following transition rules:



54 CHAPTER 6. BASIC LOTOS

• If P
a

−→P ′ and a = ai ∈ {a1, · · · , an}, then

P [b1/a1, · · · , bn/an]
bi−→P ′[b1/a1, · · · , bn/an].

• If P
a

−→P ′ and a 6∈ {a1, · · · , an}, then

P [b1/a1, · · · , bn/an]
a

−→P ′[b1/a1, · · · , bn/an].

With the help of this operator we can write the rules for process instantiation.
Assume that process P is defined by the expression

process P [a1, · · · , an] := KL endproc

where KL is a Lotos process. If there is a transition

KL[b1/a1, · · · , bn/an]
a

−→Q

then there is the transition
P [b1, · · · , bn]

a
−→Q,

too. This rule defines process instantiation. In most cases the instantiation behaves
as expected. Sometime one must, howver, be careful. We should notice that the
process instantiation is dynamic. Relabelings are done continuously during the
execution of the process, not statically in the beginning. Consider for example the
following process:

process P[a,b,c] := a; b; stop |[a]| a;c; stop endproc.
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As a transition systen it is of the following form:

a ; b ; stop | [a] | a ; c ; stop

b ; stop | [a] | c ; stop

stop | [a] | c ; stop b ; stop | [a] | stop

stop | [a] stop

b

bc

a

c

Consider the call P [c, c, a]. If the relabeling were done statically, the call would
change P into

c; c; stop |[c]| c; a; stop

and this is the same as the transition system LTS2:

c; c; stop |[c]| c; a; stop




y

c

c; stop |[c]| a; stop




y

a

c; stop |[c]| stop

The dynamical relabelling in Lotos means that we change action names, but we
do not change arcs. We can see in the followin diagram how the relabelling is done
step by step.
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stop | [a] | c ; stop b ; stop | [a] | stop

a
(b ; stop | [a] | c ; stop)[c/a, c/b, a/c]

[c/a, c/b, a/c] [c/a, c/b, a/c]

ca

stop | [a] stop
[c/a, c/b, a/c]

p[c, c, a]

c

c

6.11 Exit and noexit

Usually exit or noexit is written after the parameter list of a process. Exit means
that it is possible to connect another process to this process using sequential com-
position operator. Thus there must be a branch in the process which terminates
successfully. Noexit says that there is no such branch and that is why sequental
composition cannot be used (it is of no use).

Example.

process P[a,b]: exit := (a; exit) [] b; stop endproc

process Q[c,d]: noexit := (c; c; d; stop) [] d; c; stop endproc

6.12 Examples

6.12.1 Specification of a Producer-Client System

We will write a complete basic Lotos specification. Our system consists of a producer
process which sends two messages to a client process using a channel. The channel
may lose one or both of the messages. The order of the messages in the channel
cannot change. The client is not confused even if messages are lost in the channel,
it takes all into account.

specification Producer_Consumer[pc1, pc2, cc1, cc2]: exit

behavior

(Producer[pc1, pc2] ||| Consumer[cc1, cc2])

||
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Channel[pc1, pc2, cc1, cc2]

where

process Producer[pc1, pc2]: exit :=

pc1; pc2; exit

endproc

process Consumer[cc1, cc2]: exit :=

cc1;

(

cc2;

exit

[]

exit

)

[]

cc2;

exit

[]

exit

endproc

process Channel[pc1, pc2, cc1, cc2]: exit :=

pc1;

(

pc2;

cc1;

exit

[]

cc1;

pc2;

exit

[]

i;

pc2;

exit

)

>>

(

cc2;

exit

[]

i;
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exit

)

endproc

endspec

6.12.2 Counter

The next example shows how it is possible to define a Lotos specification which
generates an infinite transition system.

process Counter[is0, not0, inc, dec]: noexit :=

(inc; C1[not0, inc, dec]

>>

Counter[is0, not0, inc, dec])

[]

(is0; Counter[is0, not0, inc,dec])

where

process C1[not0, inc, dec]: exit :=

(dec; exit)

[]

(inc; C1[not0, inc, dec] >> C1[not0, inc, dec])

[]

(not0; C1[not0, inc, dec])

endproc

endproc

As a transition system the process is of the following form:

inc

inc

inc

not0

not0

inc

not0

.

.

.

C1 >> C1 >> C1 >> C

C1 >> C1 >> C

C1 >> C

exit >> C1 >> C1 >> C

exit >> C1 >> C

exit >> C

Cis0 i

i

i

dec

dec

dec
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6.12.3 A Client Server System

Let us write the system described 2.2 in basic Lotos. This client-server system is a
good example where we will see how the parameter lists can be used in a flexible
way. We assume that there are three clients in the system. It is enough to describe
two clients, of which one models the starting client and the second the other clients.
By changing parameters we can describe the whole system.

specification Client_Server_System[t1,t2,t3]: noexit

behavior

hide cs1, cs2, cs3, sb1, sb2, sb3, bc1, bc2, bc3 in

Server[cs1, cs2, cs3, sb1, sb2, sb3]

|[cs1, cs2, cs3, sb1, sb2, sb3]|

( (Client1[bc1, cs1, t1, t2] |[bc1]| Buffer[sb1, bc1])

|[t1, t2]|

( (Client[bc2, cs2, t2, t3] |[bc2]| Buffer[sb2, bc2])

|[t3]|

(Client[bc3, cs3, t3, t1] |[bc3]| Buffer[sb3, bc3])

)

)

where

process Client1[bc,cs,t1, t2]: noexit :=

cs; (bc; t2; t1; Client1[bc, cs, t1, t2] []

t2; bc; t1; Client1[bc, cs, t1, t2] )

endproc

process Client[bc, cs, t1, t2]: noexit :=

t1; cs; (bc; t2; Client[bc, cs, t1, t2] []

t2; bc; Client[bc, cs, t1,t2] )

endproc

process Server[cs1, cs2, cs3, sb1, sb2, sb3]: noexit :=

cs1; sb1; Server[cs1, cs2, cs3, sb1, sb2, sb3]

[]

cs2; sb2; Server[cs1, cs2, cs3, sb1, sb2, sb3]

[]
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cs3; sb3; Server[cs1, cs2, cs3, sb1, sb2, sb3]

endproc

process Buffer[sb, bc] : noexit :=

sb; bc; Buffer[sb, bc]

endproc

endspec

6.13 CADP

CADP (Caesar/Aldebaran) is a full Lotos software which has been developed mainly
in France, but also in Canada ans Spain. Its user interface is graphical and easy to
use. The only more difficult task is to make the auxiliary files for data types. But
in this course we do not use data types.

The software package is large and it knows many equivalences and representa-
tions. There is a separate guide, published on the web page of the course, where
you can find all the details necessary to start the program and to use it for simple
tasks.

One word of warning: Mistakes in Lotos programs are not always visible to the
compiler. For example, if some gate name is missing in the gate list, then this can
cause a completely different global state graph compared to the situation where all
the gate names are in the list. If the system informs about deadlocks, it is wise to
analyse the situation, especially if the graph is smaller or larger than expected.

6.14 AB-protocol

We show a typical scenario of a verification. We verify the version of the AB-
protocol, where there are channels and messages get and give. Let us encode the
protocol presented in 4.2. into baseic Lotos:

specification AB[get, give]:

noexit

behavior

hide d0, d1, dd0, dd1, a0, a1, aa0, aa1, st, rt, t in

( (Sender[get, d0, d1, aa0, aa1, st,rt,t]
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|[t,st,rt]|

Timer[st,t,rt])

|||

Receiver[give, dd0, dd1, a0, a1]

)

|[d0,d1,dd0,dd1,a0,a1,aa0,aa1]|

Channel[d0,dd0,d1,dd1,a0,aa0,a1,aa1]

where

process Sender[get,d0,d1,aa0,aa1,st,rt,t]: noexit :=

get; Transmit[d0, aa0, aa1, st,rt,t] >>

get; Transmit[d1,aa1, aa0, st,rt,t] >>

Sender[get,d0,d1,aa0,aa1,st,rt,t]

where

process Transmit[d0, aa0, aa1, st,rt,t]: exit :=

aa0; Transmit[d0, aa0, aa1, st, rt, t]

[]

d0; st; (t; Transmit[d0, aa0, aa1, st,rt,t]

[]

aa0; rt; exit

)

endproc

endproc

process Timer[st,t,rt] :noexit :=

st;(t;Timer[st,t,rt] [] rt; Timer[st,t,rt])

endproc

process Receiver[give, dd0, dd1, a0, a1]: noexit :=

dd0; give; Ack0[give, dd0, dd1, a0, a1]

[]

dd1; Ack1[give, dd0, dd1, a0, a1]
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where

process Ack1[give, dd0, dd1, a0, a1]: noexit :=

dd1; Ack1[give, dd0, dd1, a0, a1]

[]

a1; Receiver[give, dd0, dd1, a0, a1]

endproc

process Ack0[give, dd0, dd1, a0, a1]: noexit :=

dd0; Ack0[give, dd0, dd1, a0, a1]

[]

a0; (dd0; Ack0[give, dd0, dd1, a0, a1]

[]

dd1; give; Ack1[give, dd0, dd1, a0, a1]

)

endproc

endproc

process Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1] : noexit :=

d0; (i; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

[]

i; dd0; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

)

[]

d1; (i; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

[]

i; dd1; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

)

[]

a0; (i; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

[]

i; aa0; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]
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)

[]

a1; (i; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

[]

i; aa1; Channel[d0,dd0, d1, dd1, a0, aa0, a1, aa1]

)

endproc

endspec

The global state graph consists now of 91 states and 177 transitions. Of the
transitions, 156 are τ -transitions. The graph does not contain deadlocks. Now we
can compare the global state graph with the service. We do this so that we minimize
the global state graph with respect to the bisimulation equivalence. The resulting
graph is exactly the same as the service. Thus we have shown that the AB-protocol
behaves correctly.
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Chapter 7

Model Checking

7.1 Introduction

This last chapter deals with the use of temporal logic in the verification of distributed
systems. Temporal logic is appropriate to represent and to verify liveness properties.
The other important feature is that with the help of temporal logic it is possible to
verify single properties; it is not necessary to model services. Modelling of services
is often difficult.

There are many kind of temporal logics. The most fundamental division divides
the logics into two classes: linear time and branching time logics. Traditionally, tem-
poral logics are not based on labelled transition systems but on Kripke structures.
This enforces us to introduce Kripke structures in this course. These structures
resemble transition systems, but transitions are without labels. Instead, states con-
tain information which can be analysed with the help of temporal logic. There is,
however, a complete correspondence between transition systems and Kripke struc-
tures.

In this chapter, we introduce Kripke structures, their correspondence with tran-
sition systems, linear time logic LTL and the basics of branching time logic CTL.
There are similar systems which have been developed for transition systems. ACTL
is a straightforward modification of CTL for transition systems. One other impor-
tant formalism is µ-calculus which is also near CTL. We do not deal with these
modifications in this course.

7.2 Kripke Structures

Traditionally, temporal logic uses models where processes are represented as graphs
in such a way that states contain information. Transitions are without labels. In
order to handle temporal logics in a formal way, we must somehow define the data
in the states. This is done as follows.

65
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Definition 5 Kripke structure is a tuple K = (S,AP, L,−→, S0), where

• S is a set of states;

• AP is a finite non-empty set of atomic propositions;

• L : S −→ P(AP ) is a function that labels each state with the set of atomic
propositions true in that state;

• −→ ⊂ S × S is a transition relation that must be total, that is, for every state
s there is a state s′ such that (s, s′) ∈ −→; the element (s, s′) ∈ −→ is called a
transition and it is denoted s−→s′;

• S0 is the set of initial states.

Example. Consider the following transition system (Dekker’s mutual exclusion
algorithm)

1

8

10

9

4

7

3

6

20

13 12

511

i enter 1

enter 2 enter 2

i

i

i

exit 2

i

i

exit 1 enter 2

enter 1

i

enter 1

exit 1exit 2

enter 1

exit 2

i

exit 1

Figure 7.1: Transition system derived from Dekker’s mutual exclusion algorithm

Next we show the same as a Kripke structure. As a graph, the Kripke structure
is the same as the transition system, see figure 7.2.

We must add the propositions. Let us take two atomic propositions, p1 and p2.
Proposition p1 says that process 1 is at the critical area and p2 says that process
2 is at the critical area. In the original (transition) graph p1 is true in states 4, 6
and 7. Similarly, p2 is true in states 3, 5 and 11. In other states p1 and p2 are false.
These conditions determine the set AP and the function L. The mutual exclusion
can now be expressed as a sentence “Both p1 and p2 are not true at the same time
at any state”. 2

In the above example the Kripke structure was formed ad hoc. It can be shown
that the transformation is always possible.

Proposition 1 Every labelled transition system can be transformed into an equiva-
lent Kripke structure.
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1

8

10

9

4

7

20

13 12

511

3

6

Figure 7.2: States and transitions in the Kripke structure

Proof. Let LTS = (S,A, T, s0) be a labelled transition system. Let us construct a
Kripke structure K = (S ′, AP, L,−→, 0S) as follows. The set of states S ′ = S × A.
Between states (s1, a1) and (s2, a2) there is a transition in K, (s1, a1)−→(s2, a2), if
and only if there is a state s ∈ S such that

s1
a1−→s2

a2−→s

in LTS. This defines a transition relation −→ in K. The set of initial states in K is

S0 = {(s0, a0) ∈ S ′ | s0
a0−→ in LTS} .

Let η be a variable that can get an action as its value. The propositions are of the
form η = a, where a ∈ A. The interpretation of the proposition is that if η = a is
true in some state in K, the the system can next perform a in that state. Set now
L : S ′ −→ P(AP ) by defining (s, a) 7→ (η = a). 2

Before we formed the Kripke structure of Decker’s algorithm manually ad hoc.
If the same is done with the help of the theorem’s construction, we will get the
structure in figure 7.3 (of which only half is drawn)

The vice versa transformation is possible, too.

Proposition 2 Every Kripke structure can be transformed into an equivalent tran-
sition system.

Proof. Exercise. Hint: Labels must be sets of propositions. 2

7.3 Linear Time Logic LTL

Linear time logic was the first temporal logic that was applied in the verification of
distributed computer systems. Its main developers were Manna and Pnueli.
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0,i 2,enter1 4,exit1

11,exit2

13,enter2
13,i

11,i

12,enter2

5,exit2

Figure 7.3: Lauseen mukaan johdettu Kripken struktuuri

The starting point of LTL is two operators, X and U . If p is a proposition, then
Xp means that next time or in the next state p is true. The formula pUq, on the
other hand, claims that p is true until q is true. We define the formulas of LTL
formally as follows:

Definition 6 Let AP the set of atomic propositions. A LTL formula is defined
inductively:

1. If φ ∈ AP ∪ {⊤,⊥}, then φ is a formula.

2. If φ and ψ are formulas, then also (¬φ), (φ∧ψ), (φ∨ψ), (φ→ ψ) and (φ ≡ ψ)
are formulas.

3. If φ and ψ are formulas, then also Xφ and φUψ are.

The semantics of the formulas are defined formally with the help of Kripke struc-
tures and their paths. A path π in a Kripke structure K is a finite or infinite
sequence of states, s0s1 · · · sn or s0s1 · · ·. State s0 is always the initial state of a
Kripke structure and there is a transition between successive states. A path can be
finite only, if it ends at a state where there are no out-going transitions. Sometimes
it is demanded that all the states must have out-going transitions. Then only in-
finite paths are possible. There is not difference between these two agreements in
practice. If π is a path s0s1 · · ·, then π

k means the part sksk+1 · · · of the path.

The truth of a LTL formula is defined first with respect to a path π. If φ is a
formula and it is true with respect to π, we denote π |= φ. In what follows we define
the truth of a formula precisely. The truth of the constants ⊤ and ⊥ is defined in
such a way that the former is true in every state and the latter is false in every state.

Definition 7 The truth of a formula φ with respect to a path π = s0s1 · · · is defined
as follows:

• If φ ∈ A∪{⊥,⊤} is an atomic proposition or a constant, then π |= φ iff s0 |= φ
(i.e. φ ∈ L(s0) or φ is ⊤).
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• π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2.

• π |= φ1 ∧ φ2 iff φ |= φ1 and π |= φ2.

• π |= ¬φ iff π 6|= φ.

• π |= Xφ iff π1 exists and π1 |= φ.

• π |= φ1Uφ2 iff π |= φ2 or there exists k > 0 such that πk is defined, πk |= φ2

and for all i, 0 ≤ i < k, πi |= φ1.

State s satisfies formula φ in a Kripke structure K, K, s |= φ, iff for every path
π, starting from s, π |= φ.

Formula φ is true in K, K |= φ, iff π |= φ for every path π in K.

Operations F , G and R

Consider the formula ⊤Uφ. Because ⊤ is true in every state, ⊤Uφ is true on the
path π iff πk |= φ for some k ≥ 0. Thus ⊤Uφ is true, if φ is true at some point in
the future. We use the notation Fφ for this formula.

Formula Gφ says that φ is true at every state on the path. It could be expressed
with the help of F by writing ¬F¬φ.

Formula φRψ says that after a finite amount of steps φ is true, and before that
ψ is true in every state including the first state where φ is true.

There are alternative symbols for the operators we have just defined:

• X = ©,

• G = �,

• F = 3,

• U = U .

These symbols are traditional, but the newer symbols are easier to remember.
We use both. Next we present some general laws using the traditional symbols:

• Operators � and 3 are dual:

¬�Φ ≡ 3¬Φ.

• 3 can be written with the help of U (as we have shown before):

3Φ ≡ ⊤UΦ.

• 3 is distributive with respect to ∨ and � with respect to ∧:

3 (Φ ∨Ψ) ≡ 3Φ ∨3Ψ,

�(Φ ∧Ψ) ≡ �Φ ∧�Ψ.
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• In addition,

¬© Φ ≡ ©¬Φ,

¬(ΦUΨ) ≡ (¬ΨU(¬Φ ∧ ¬Ψ)) ∨�¬Ψ.

Typical Formulas

Next we present typical situations where LTL expressions are easy to use:

1. Mutual exclusion:

G¬(critical1 ∧ critical2)

2. At most one request is acknowledged:

∧

i<j

G¬(acki ∧ ackj)

3. Liveness property, according to which my turn is infinitely often:

GF myturn

4. Liveness property that if succeeding to enter to try-area leads finally to the
critical area:

G(try → F critical)

5. After initialization the system stays initialized:

FG initialized

However, it is not easy to express all the usueful properties in LTL. Take for
example the following property of an elevator

Between the times the elevator is asked to a certain floor and it opens its door
at that floor, the elevator can pass the floor at most two times:

G( ( call ∧ Fopen) →

((¬atfloor ∧ ¬open)U

(open ∨ ((atfloor ∧ open)U

(open ∨ ((¬atfloor ∧ ¬open)U

(open ∨ ((atfloor ∧ ¬open)U

(open ∨ ((¬atfloor ∧ open)))))))))))
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N=noncritical, T=trying, C=critical User1, User2
N1, N2

turn=0

T1, N2

turn=1

N1, T2

turn=2

C1, N2

turn=1

T1, T2

turn=1
T1, T2

turn=2

N1, C2

turn=2

T1, C2

turn=2

C1, T2

turn=1

Figure 7.4: Another Kripke strukture, from a mutual exclusion algorithm

7.4 Example

Consider the Kripke structure of another mutual exclusion algorithm in figure
7.4.

Let us examine how various formulas behave with respect to this structure.
Formula

�¬(C1 ∧ C2)

is true, because the processes are never at the critical area at the same time.
On the other hand, formula

3C1

is not true, because there is an infinite path from the initial state such that
User1 has not tried to enter the critical area. But formula

�(T1 ⇒ 3C1)

is true. It means that if process User1 tries to enter the critical area, it succeeds
to enter the area in the future. Thus the algorithm is fair. Formula

�3C1

is not true, because without trying a process can never enter the critical area.
Furthemore,

�3T1 ⇒ �3C1

is true, because at every path where T1 is performed infinitely many times, the
critical area is also entered infinitely many times. Thus the algorithm is fair in
a strong sense.


