
Table 3.1 Reasons for Process Creation

New batch job The operating system is provided with a batch job control

stream, usually on tape or disk. When the operating system

is prepared to take on new work, it will read the next

sequence of job control commands.

Interactive logon A user at a terminal logs on to the system.

Created by OS to provide a service The operating system can create a process to perform a

function on behalf of a user program, without the user

having to wait (e.g., a process to control printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user

program can dictate the creation of a number of processes.

Table 3.2 Reasons for Process Termination

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include total

elapsed time ("wall clock time"), amount of time spent executing, and, in the

case of an interactive process, the amount of time since the user last provided

any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource or a file that it is not allowed to use, or it

tries to use it in an improper fashion, such as writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries to

store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event to

occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure to

read or write after a specified maximum number of tries (when, for example, a

defective area is encountered on a tape), or invalid operation (such as reading

from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of

branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the process

(for example, if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate all

of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

 Table 3.3 Reasons for Process Suspension

Swapping The operating system needs to release sufficient main

memory to bring in a process that is ready to execute.

Other OS reason The operating system may suspend a background or utility

process or a process that is suspected of causing a problem.

Interactive user request A user may wish to suspend execution of a program for

purposes of debugging or in connection with the use of a

resource.

Timing A process may be executed periodically (e.g., an

accounting or system monitoring process) and may be

suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a

descendent to examine or modify the suspended process, or

to coordinate the activity of various descendents.

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and

programs that may be modified.

User Program
The program to be executed.

System Stack
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A

stack is used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process (see Table 3.6).

Table 3.5 Typical Elements of a Process Control Block (page 1 of 2)

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include

•Identifier of this process

•Identifier of the process that created this process (parent process)

•User identifier

Processor State Information

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the

processor executes. Typically, there are from 8 to 32 of these registers, although some RISC

implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor.

These include

•Program counter: Contains the address of the next instruction to be fetched

•Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,

equal, overflow)

•Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used

to store parameters and calling addresses for procedure and system calls. The stack pointer points to

the top of the stack.

Table 3.5 Typical Elements of a Process Control Block (page 2 of 2)

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical

items of information:

•Process state: defines the readiness of the process to be scheduled for execution (e.g., running,

ready, waiting, halted).

•Priority: One or more fields may be used to describe the scheduling priority of the process. In

some systems, several values are required (e.g., default, current, highest-allowable)

•Scheduling-related information: This will depend on the scheduling algorithm used. Examples are

the amount of time that the process has been waiting and the amount of time that the process

executed the last time it was running.

•Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
A process may be linked to other process in a queue, ring, or some other structure. For example, all

processes in a waiting state for a particular priority level may be linked in a queue. A process may

exhibit a parent-child (creator-created) relationship with another process. The process control block

may contain pointers to other processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two

independent processes. Some or all of this information may be maintained in the process control

block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed. In addition, privileges may apply to the use of system utilities and

services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory

assigned to this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of

the processor or other resources may also be included; this information may be needed by the

scheduler.

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

•Process creation and termination

•Process scheduling and dispatching

•Process switching

•Process synchronization and support for interprocess communication

•Management of process control blocks

Memory Management

•Allocation of address space to processes

•Swapping

•Page and segment management

I/O Management

•Buffer management

•Allocation of I/O channels and devices to processes

Support Functions

•Interrupt handling

•Accounting

•Monitoring

Table 3.8 Mechanisms for Interrupting the Execution of a Process

Mechanism Cause Use

Interrupt External to the execution of the

current instruction

Reaction to an asynchronous

external event

Trap Associated with the execution of

the current instruction

Handling of an error or an

exception condition

Supervisor call Explicit request Call to an operating system

function

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in Memory Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main

memory (a blocked state).

Ready to Run, Swapped Process is ready to run, but the swapper must swap the process into

main memory before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to

secondary storage (a blocked state).

Preempted Process is returning from kernel to user mode, but the kernel

preempts it and does a process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent

process to collect.

Table 3.10 UNIX Process Image

User-Level Context

Process Text Executable machine instructions of the program

Process Data Data accessible by the program of this process

User Stack Contains the arguments, local variables, and pointers for functions

executing in user mode

Shared Memory Memory shared with other processes, used for interprocess

communication

Register Context

Program Counter Address of next instruction to be executed; may be in kernel or

user memory space of this process

Processor Status Register Contains the hardware status at the time of preemption; contents

and format are hardware dependent

Stack Pointer Points to the top of the kernel or user stack, depending on the mode

of operation at the time or preemption

General-Purpose Registers Hardware dependent

System-Level Context

Process Table Entry Defines state of a process; this information is always accessible to

the operating system

U (user) Area Process control information that needs to be accessed only in the

context of the process

Per Process Region Table Defines the mapping from virtual to physical addresses; also

contains a permission field that indicates the type of access

allowed the process: read-only, read-write, or read-execute

Kernel Stack Contains the stack frame of kernel procedures as the process

executes in kernel mode

Table 3.11 UNIX Process Table Entry

Process Status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process Size Enables the operating system to know how much space to allocate

the process.

User Identifiers The real user ID identifies the user who is responsible for the

running process. The effective user ID may be used by a process

to gain temporary privileges associated with a particular program;

while that program is being executed as part of the process, the

process operates with the effective user ID.

Process Identifiers ID of this process; ID of parent process. These are set up when the

process enters the Created state during the fork system call.

Event Descriptor Valid when a process is in a sleeping state; when the event occurs,

the process is transferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and

user-set timer used to send alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready

to execute).

Memory Status Indicates whether process image is in main memory or swapped

out. If it is in memory, this field also indicates whether it may be

swapped out or is temporarily locked into main memory.

Table 3.12 UNIX U Area

Process Table Pointer Indicates entry that corresponds to the U area.

User Identifiers Real and effective user IDs. Used to determine user privileges.

Timers Record time that the process (and its descendants) spent executing

in user mode and in kernel mode.

Signal-Handler Array For each type of signal defined in the system, indicates how the

process will react to receipt of that signal (exit, ignore, execute

specified user function).

Control Terminal Indicates login terminal for this process, if one exists.

Error Field Records errors encountered during a system call.

Return Value Contains the result of system calls.

I/O Parameters Describe the amount of data to transfer, the address of the source

(or target) data array in user space, and file offsets for I/O.

File Parameters Current directory and current root describe the file system

environment of the process.

User File Descriptor Table Records the files the process has open.

Limit Fields Restrict the size of the process and the size of a file it can write.

Permission Modes Fields Mask mode settings on files the process creates.

Table 3.13 VAX/VMS Process States

Process State Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must

wait for the page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an

existing page fault wait in another process, or a private page that

is in the process of being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit

interprocess signaling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the

collection of pages in main memory devoted to this process (the

working set of the process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually

I/O completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait Process waiting for miscellaneous system resource.

