
www.informatics.uiuc.edu

Programming Models for
Supercomputing in the Era of

Multicore

Marc Snir

http://www.uiuc.edu/

www.informatics.uiuc.edu

MULTI-CORE CHALLENGES

1

http://www.uiuc.edu/

www.informatics.uiuc.edu
2

Moore’s Law Reinterpreted

 Number of cores per chip doubles every two years, while clock
speed decreases

– Need to handle systems with millions of concurrent threads

 And contemplate with horror the possibility of systems with
billions of threads

– Need to emphasize scalability – not best performance for fixed
number of cores.

– Need to be able to easily replace inter-chip parallelism with
intra-chip parallelism

 Homogeneous programming model (e.g., MPI all around) is
preferable to heterogeneous programming model (e.g.,
MPI+OpenMP).

http://www.uiuc.edu/

www.informatics.uiuc.edu

Memory Wall: a Persistent Problem

 Chip CPU performance increases
~60% CGAR

 Memory bandwidth increases
~25%-35% CGAR

 Memory latency decreases ~5%-
7% CGAR

 Most area and energy chip
budget is spent on storing and
moving bits (temporal and
spatial communication)

 Locality and communication
management are major
algorithmic issues, hence need
be exposed in programming
language

3

http://www.uiuc.edu/

www.informatics.uiuc.edu

Reliability and Variance

 Hypothesis: MTTF per chip does not decrease – hardware is
used to mask errors
– Redundant hardware, redundant computations, light-weight

checkpointing
 Programmers do not have to handle faults
 Programmers have to handle variance in execution time

– Variance due to size – square root growth
– Variance due to error correction
– Variance due to power management
– Manufacturing variance
– Heterogeneous architectures
– System noise (jitter) – not much of a problem, really
– Application variance: adaptive codes (e.g., AMR), multi-

scale codes
 Loosely synchronous SPMD model with one thread per core

breaks down – need virtualization

4

http://www.uiuc.edu/

www.informatics.uiuc.edu

NEW OPPORTUNITIES

5

http://www.uiuc.edu/

www.informatics.uiuc.edu

Ubiquitous Parallelism

 Effective leverage of parallelism is essential to the business
model of Intel and Microsoft

 Focus on turnaround, not throughput

 Need to enable large number of applications – need to
develop parallel application development environment

However:

 Four orders of magnitude gap

 Focus on ease of programming and scalability, not peak
performance

 Little interest in multi-chip systems

Q: how can HPC leverage the client parallel SW stack?

6

http://www.uiuc.edu/

www.informatics.uiuc.edu

Expected “Trickle-Up” Technologies

 New languages (much easier to “stretch” well-supported
parallel languages than have DARPA create a market for
new HPC languages)

 Significantly improved parallelizing compilers, parallel run-
times, parallel IDEs (bottleneck has been more lack of
market, less lack of good research ideas)

 New emphasis on deterministic (repeatable) parallel
computation models – focus on producer-consumer
synchronization, not on mutual exclusion

– Serial semantics, parallel performance model

 Parallel algorithms are designed by programmers, not
inferred by compilers

 Every computer scientist will be educated to “think parallel”

7

http://www.uiuc.edu/

www.informatics.uiuc.edu

Universal Parallel Computing Research
Centers

“Intel and Microsoft are
partnering with academia to
create two Universal Parallel
Computing Research
Centers…located at UC
Berkeley and UIUC”.

Goal:

Make parallel programming
synonymous with
programming

8

http://www.uiuc.edu/

www.informatics.uiuc.edu

UPCRC One Slide Summary
 Parallel programming can be a child’s play

– E.g., Squeak Etoys
– No more Swiss army knifes: need, and can

afford, multiple solutions
 Simplicity is hard

– Simpler languages + more complex
architectures = a feast for compiler
developers

 Need more abstraction layers that abstract both
semantics and QoS
– What is a QoS preserving mapping?
– What hooks can HW provide to facilitate

programming?
 Sync primitives, debug/perf support

 Performance will enable new client applications
– An intelligent PDA will need, eventually, the

compute power of a human brain

9

http://www.uiuc.edu/

www.informatics.uiuc.edu

KEY TECHNOLOGIES

10

http://www.uiuc.edu/

www.informatics.uiuc.edu

Task Virtualization
 Multiple logical tasks are scheduled on each physical core; tasks

are scheduled nonpreemptively; task migration is supported

– Hides variance and communication latency

– Helps with scalability

– Needed for modularity

– Improves performance

– E.g., AMPI, Charm++ (Kale, UIUC), TBB (Intel) …

– Supported by hardware and/or run-time

– Can be implemented below MPI or PGAS languages

 Two styles:

– Varying, user controlled number of tasks (AMPI)

 Locality achieved by load balancer

– Recursive (hierarchical) range splitter (TBB)

 Locality achieved implicitly

11

http://www.uiuc.edu/

www.informatics.uiuc.edu

Compiled Communication

 Replace message-passing library (e.g., MPI) with compiler
generated communication (e.g., PGAS languages)

– Avoids SW overhead and memory copies of library calls

– Maps directly to platform specific HW communication
mechanisms, in a portable manner

 Transparently port from shared memory HW to
distributed memory HW

– Enables compiler optimization of communications,
across multiple communications

12

http://www.uiuc.edu/

www.informatics.uiuc.edu

Shared Memory Models

 Global name space – variable name does not change when its
location changes – simplifies programming

– Not copying but caching

– Well explored alternatives: Pure HW caching (coherent
shared memory); and pure SW caching (compiled, e.g. for
PGAS languages).

– Need to better explore HW-assisted caching (fast, HW-
supported, cache access; possibly slow cache update)

– Probably need some user control of caching (logical cache
line definition)

– Probably don’t need user control of home location (as done in
PGAS languages)

 Conflicting accesses must be synchronized

– Current Java and soon to be C++ semantics

 Races must be detected and generate exceptions

– Can be done with some variants of thread level speculation

http://www.uiuc.edu/

www.informatics.uiuc.edu

Synchronization Primitives

 Frequently needed: Deterministic synchronization

– producer-consumer: barrier, disciplined use of
full/empty bits (single writer)

– Accumulate (reduction)

 Rarely needed: Nondeterministic synchronization

– mutual exclusion, atomic sections
(transactions)

 Note: transactional memory HW good for lightly
contested atomic sections; not efficient for
producer-consumer synchronization and for
reductions

 Simple accumulates best done on memory side (if
core contributes few values)

– Significant reduction of memory bus traffic

– Requests can be combined, to avoid
congestions

14

CPU Mem

id, opc, addr, data

id, opc, addr, DATA

CPU Mem

id, opc, addr

id, DATA

load

store

load

store

Bad

Good

http://www.uiuc.edu/

www.informatics.uiuc.edu

EASY TO EXPLAIN
PARALLEL ALGORITHM =
SIMPLE CODE

Parallel Patterns Challenge

15

http://www.uiuc.edu/

www.informatics.uiuc.edu

Matrix Product

 Need to easily express 3D computation domain

– One 3D iterator, not a triple nested loop

 Need to easily express partition into subcubes

– Automatically generate parallel reduction

– Avoid allocation of n3 variables

16

i

j
k

Data ParallelGeneric Control Parallel

A x B = C

B

http://www.uiuc.edu/

www.informatics.uiuc.edu

Less Trivial Example: NAMD

17

(Kale)
 Patches object: atoms in

cell

– Change each iteration
(or each few iterations)

 Computes object: pairs of
atoms from neighboring
cells (to compute forces)

– Avoid allocation of
variable for each pair

 Can one go from such
declarative description to
code?

Patches

Computes

http://www.uiuc.edu/

www.informatics.uiuc.edu

NAMD Communication

Bonded
Computes

Non-bonded
Computes

Patch Integration

Patch Integration

Reductions

Multicast
Point to Point

Point to Point

PME

 Can one have composition language that
expresses above diagram in natural way?

18

http://www.uiuc.edu/

www.informatics.uiuc.edu

Algorithmic Changes, for Scale

 If cell size < cutoff radius,
then computes object
should consist of pairs of
atoms from subset of cells
within cutoff radius
[Snir/Shaw]

 Can choose 1D FFT or 2D
FFT

 Can one delay binding until
problem and machine
parameters are known?

19

http://www.uiuc.edu/

www.informatics.uiuc.edu

THE SOLUTION IS
MULTITHREADED

20

http://www.uiuc.edu/

www.informatics.uiuc.edu

Multiscale Programming

 Multiple languages (C, C++, Fortran, OpenMP, Python, CAF,
UPC) and libraries

 Multiple levels of code generation & tuning

– Domain specific code generators & high-level optimizers
(Spiral – Puschel et al, quantum chemistry --
Sadayappan et al)

– Library autotuning – tuning pattern selection

– Algorithm selection

– Refactorings and source to source transformations

– Static compilation

– Template expansion

– Run-time compilation – continuous optimization

 Do not think parallel language; think programming
environment that integrates synergistically all levels

21

http://www.uiuc.edu/

www.informatics.uiuc.edu
22

Multiscale Compilation

Low-Level
Code Objects

High-Level
Code Objects

Implicit Parallel

Code

Explicit Parallel
Code

Domain Specific
Code

Enhanced Intermediate
Representation

Tunable Library

Library Gen.

Tools

User Annotations, Refactoring Logs, System Annotations

QoS Annotations, System Annotations

Deep
Compiler
Analysis

Run-Time/OS/HW

Link-time/Run Time

Adaptation

Correctness

Tools

DSE Gen. Tools

DSE

http://www.uiuc.edu/

www.informatics.uiuc.edu

Summary

 The frog is boiling:

– tuning code is ridiculously hard and is getting harder

 We have the power to change:

– We can build much better parallel programming
environments – the problem is economics, not
technology

 There is no silver bullet:

– Not one technology, but a good integration of many

 I ran out of platitudes

– Time for

23

http://www.uiuc.edu/

