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Concurrency Terminologyy gy
• Process, thread
• “Ordinary” program

tavallinen ohjelma

• Ordinary  program
– Sequential process, one thread of execution

• Concurrent program rinnakkaisohjelmap g
– Many sequential process, that may be executed in parallel

• multi-threaded Java-program, runs in one system
W b li ti di t ib t d t

prosessi,
säie• Web-application, distributed on many systems

• Multiprocessor system, parallel program
– Many sequential or concurrent processes are executed in

säie

Many sequential or concurrent processes are executed in 
parallel

– Many architectures, no winner yet
Di t ib t d t di t ib t d

rinnakkaisohjelma, moniprosessorisovellus

• Distributed system, distributed program
– No shared memory
– Interconnected systems

hajautettu ohjelma
y
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Concurrency at HW-levely

• Processor 
– Execute many instructions in parallel
– Execute many threads in parallel
– Execute many processes in parallel

• System STI Cell
– Many processors/display processors
– Many I/O devices

• LAN or WAN
– Many systems (in clusters)

• Internet and other networks
– Many sub-systems
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Problem
• Moore’s Law will not 

give us (any more)give us (any more) 
faster processors
– But it gives us nowBut it gives us now 

more processors on 
one chip

• Multicore CPU
• Chip-level 

multiprocessor 
(CMP)

Herb Sutter, “A Fundamental Turn 
Toward Concurrency in SW”, 
D D bb’ J l 2005
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Dr. Dobb’s Journal, 2005.
http://www.ddj.com/web-development/184405990;jsessionid=BW05DMMAOT3ZGQSNDLPCKH0CJUNN2JVN?_requestid=1416784



(h(hyper-
threads)

B k D b K h t l “Pl tf 2015 ” I t l Whit P 2005
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Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005.
http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf



The Multicore Challengeg
• We have a heat-barrier dead-end to develop 

simple to program single core chipssimple to program single core chips
– So, we leap to multicore chips in pursuit for ever higher 

processing powerp g p

• Parallel Challenge: how to use these multicore 
computers efficiently to speed up computing?computers efficiently to speed up computing?
– Concurrent programming 

We should have launched a parallel programming– We should have launched a parallel programming  
“Manhattan Project” a long time ago

• Would need now 100’s of millions ($) not 10’s of• Would need now 100 s of millions ($), not 10 s of 
millions ($) per year for long term funding

David Patterson The Multicore Challenge The CCC Blog Aug 26 2008
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David Patterson, The Multicore Challenge, The CCC Blog, Aug 26, 2008,
http://www.cccblog.org/2008/08/26/the-multicore-challenge/



Concurrency at HW-levely
• Machine language code

– Many instructions at execution Comp.Org. I, II
(tito tikra)concurrently

– Logically “one at a time” (von Neumann arch.)
• At least one “instruction cluster” at a time

(tito, tikra)

• At least one instruction cluster  at a time
– Program execution may stop/pause after any instruction

• High level programming language codeHigh level programming language code 
– Process switch can occur at any time
– No “handle” on process switch times (in general)

• Operating system & external events decide
– Need to synchronize with other programs

Need to communicate with other programs– Need to communicate with other programs
– Need to get handle to process switch occurrences
– Other processes may be in execution at the same timep y
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Problem Free Concurrency?y
• No problems at all?

C h d i i– Concurrent threads in execution
– No shared data, no I/O (or private I/O)
– No communication, no synchonization 

• No shared data, but data in shared memory
– Bus congestion may be problem

• Concurrency problem (bus use) solved in HW
• Slows down execution

• Communication/synchronization is needed y
eventually
– Combine results from concurrent threadsCombine results from concurrent threads
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Concurrency Problemsy
• Keep data consistent

Update all fields of shared data– Update all fields of shared data
– Complete writing a buffer before reading starts

• Synchronize with someone• Synchronize with someone
– Complete writing before reading starts
– Give money only after bank card is takenGive money only after bank card is taken
– Compile new Java class before execution resumes
– Do not wait forever, if the other party is dead, p y

• Communicate with someone
– Send a short message to someoneSend a short message to someone
– Send data to be processed to someone
– Send 2 GB data for remote processing, wait for resultp g,
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Concurrency Examplesy p
• Playstation 3

U ff ti l 2 ll 9 t h ll– Use effectively 2 cells, 9 processors at each cell
• Use two different processor architectures

Divide and conquer or filtering approach?– Divide-and-conquer or filtering approach?

• Desktop PC
U ff i l 4 d hi d– Use effectively 4 processors and a graphics adapter to 
generate graphics for fast moving game
Di id i f CPU’ d hi d t ?– Divide processing for CPU’s and graphics adapter?

– Utilize all 4 processors
C t l h d t d t b– Control shared access to game data base

• In memory? In disk?
• In a file server in Japan?In a file server in Japan?
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Concurrency Examplesy p
• Multithreaded Java program on a multiprocessor 

system
– Access to shared clickvera: javac Plusminus1.java

vera: time java Plusminus1

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus1.java

data structures
clickvera: javac Plusminus8.java

i j Pl i 8 & &

vera: time java Plusminus1
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus8.java

vera: time java Plusminus8 >& a &

vera has 8 processors visible to operating system

vera: ps -eo pcpu,pid,user,args | sort -k 1 -r | head -10

– Synchronization between threads

vera has 8 processors visible to operating system
Why is result different with extra output?

y

• Displaying these slides from file server
– Transfer slides to local buffer and display themTransfer slides to local buffer and display them
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Concurrency ExamplesConcurrency Examples

Li B lf 6 d l t• Linux Beowulf 6 node cluster
– How to solve weather forecast Hirlam model as fast 

ibl ?as possible?
– How to best distribute data?

S l ti l bl t 100 1000 d ?– Solution scalable to 100 or 1000 nodes?

• Web server
– How to serve 1000 or 10000 concurrent requests with 

100 file servers
M d b i fil ?• Most reads, but some writes to same files?

• How to guarantee consistent reads with simultaneous writes?
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Concurrency ExamplesConcurrency Examples
• Operating systemp g y

– How to keep track of all concurrent processes, each 
with multiple threads?

– What type of concurrency control utilities should be 
offered to user programs?

• Which utilities offered to OS services?
– How do we guarantee that the system does not 

“freeze”
– How to write an 8-disk disk controller device driver?
– How do I guarantee, that nothing disturbs an ongoing 

process switch?
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Concurrency Problem Solution Level
• Processor level, i.e., below machine language level

– HW solutions, automatic, no errors
– Need to understand, this is where it really happens, y pp

• Machine language level
– Specific (HW) machine instructions for concurrency solutions

Clever solutions without specific instructions– Clever solutions without specific instructions
– Need to be used properly, this is where it really happens

• Program level, i.e., programming language level
– SW solutions, many possibilities for error
– Solve problem by programming the solution your self

• Very error prone y p
• Requires privileged execution mode (usually)

– Solve problem directly by invoking certain available library 
services

• Error prone – may invoke wrong routines at wrong times
– Solve problem by letting available library service do it all for you

• Not suitable always – may not fit to your problem wellNot suitable always may not fit to your problem well
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Library Solutions for
Concurrency ProblemsConcurrency Problems

• Programming language run-time library 
E J th d t– E.g., Java thread management

– Usually within one process (in one system)
– Any program can useAny program can use
– May be implemented directly or with OS-libraries

• Operating systems services (libraries) p g y ( )
– Any process can use these, not so portable across OS’s
– Usually only choice between many processes

• Exception: programming language library that 
implements its services with OS

– Only choice between many systemsOnly choice between many systems
– May need privileged execution mode

• Some services reserved only for OS programs or 
ili iutilities
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Basic Concurrency Problem TypesBasic Concurrency Problem Types

• Mutex
Mutual exclusion, 
poissulkemisongelma• Mutex

– One or more critical code
segments, i.e., critical section

poissulkemisongelma
Person.id = idX;
Person.name = nameX;
Person age = ageX;

– At most one process executing 
critical section (of code) at any time
I e at most one process

Person.age = ageX;

– I.e., at most one process 
holds this resource
(code) at any time

Q
P1

P2

• Synchronization
Q

P3 P4

continue
• Communication P Q

P Qdata

continue
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Basic Concurrency Problemsy
• Dining philosophers

think eat cycle
Edsger Dijkstra, 1971 Aterioivat filosofit

– think-eat cycle
– need 2 forks to eat
– can take one fork at a time
– no discussion
– question: what protocol to 

f k ?use to reserve forks?
– multi-process 

synchronizationy
– Avoid deadlock
– Avoid starvation
– Prove correctness

http://en.wikipedia.org
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Basic Concurrency Problems
Sl i b b• Sleeping barber
– One barber, one barber chair

Waiting room with n chairs

Nukkuva parturi

– Waiting room with n chairs
– No customers?

• Barber sleeps until arriving 
k hi

Dijkstra

customer wakes him up
– Customer arrives?

• Barber sleeps? Wake him up!p p
• Barber busy and empty chairs? 

Reserve one and wait.
• o/w leave

– Question: what protocol for 
barber & customers?
Inter process communication– Inter-process communication, 
synchronization?

– Avoid deadlock and starvation
Fred G Martin
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Fred G. Martin



Basic Concurrency Problemsy
• Bakery algorithm

Baker ticket machine
Leipurin vuorolappu

– Baker, ticket machine
– Each arriving customer gets a 

ticket number
– Customers are served in 

increasing ticket number order
– Question: how to implement the 

ticket machine 
I di t ib t d t ?• In distributed system?

• With/without shared 
memory?memory?

– Multi-threaded mutual 
exclusion

Leslie Lamport 1974

http://research.microsoft.com/users/
lamport/leslie.gif 

– Critical section use order?
1929.10.2009 Copyright Teemu Kerola 2009

Leslie Lamport, 1974



Basic Concurrency Problemsy
• Producer-Consumer tuottaja-kuluttaja

– Bounded shared buffer area
– Producers insert data items
– Consumers take data items in arriving order
– Full buffer? P2

• Producer blocks

– Empty buffer?
C bl k

P1

P

C1

C2

data
data

data
• Consumer blocks

– Question: protocol for producer/consumer
C i ti h i ti

P3

– Communication, synchronization
• Unix/linux “pipe”

Avoid deadlock starvation– Avoid deadlock, starvation
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Basic Concurrency ProblemsBasic Concurrency Problems
• Readers-writers lukijat-kirjoittajat

– Shared data-base
– Many can read same item re

concurrently
– Only one can write at a time

ead
re

• Reading not allowed at that time
– Readers have priority over writers

ead

p y
– Question: protocol for 

readers/writers?

w
rite

– Mutual exclusion, synchronization
– Avoid deadlock, starvationAvoid deadlock, starvation
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System ConsiderationsSystem Considerations

• Different threads in same process?• Different threads in same process?
– Who controls thread switching? Application or OS?

Diff t i t ?• Different processes in same system?
– Shared memory or not?

Many threads in each process?– Many threads in each process?
• Different threads/processes in processors grid? 

N h d– No shared memory
• Different threads/processes in distributed system?

N h d– No shared memory
– Large communication delays
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Solution Considerations
• Solution at application level without HW support

– Do everything from scratchDo everything from scratch
• Solution at application level with HW support

– Use special machine language level instructions orUse special machine language level instructions or 
structures

• Solution at operating system levelp g y
– Use utilities in operating system library

• Solution at programming language levelSolution at programming language level
– Use utilities in programming language library

• Solution at network levelSolution at network level
– Use utilities in some network server

• Need to understand what really happensNeed to understand what really happens
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SummarySummary

T i l• Terminology
• Concurrency in systemsy y
• Concurrency problem examples

Ed i l hil h b b b k– Educational: philophers, barber, bakery 
– Practical: consumer-producer, readers-writers

• Solution considerations
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