
Lesson 1

CConcurrency
Ch 1 [B A 06]Ch 1 [BenA 06]

i lTerminology
Concurrency in Systems

Problem Examples
Solution ConsiderationsSolution Considerations

129.10.2009 Copyright Teemu Kerola 2009

Concurrency Terminologyy gy
• Process, thread
• “Ordinary” program

tavallinen ohjelma

• Ordinary program
– Sequential process, one thread of execution

• Concurrent program rinnakkaisohjelmap g
– Many sequential process, that may be executed in parallel

• multi-threaded Java-program, runs in one system
W b li ti di t ib t d t

prosessi,
säie• Web-application, distributed on many systems

• Multiprocessor system, parallel program
– Many sequential or concurrent processes are executed in

säie

Many sequential or concurrent processes are executed in
parallel

– Many architectures, no winner yet
Di t ib t d t di t ib t d

rinnakkaisohjelma, moniprosessorisovellus

• Distributed system, distributed program
– No shared memory
– Interconnected systems

hajautettu ohjelma
y

229.10.2009 Copyright Teemu Kerola 2009

Concurrency at HW-levely

• Processor
– Execute many instructions in parallel
– Execute many threads in parallel
– Execute many processes in parallel

• System STI Cell
– Many processors/display processors
– Many I/O devices

• LAN or WAN
– Many systems (in clusters)

• Internet and other networks
– Many sub-systems

329.10.2009 Copyright Teemu Kerola 2009
http://ops.fhwa.dot.gov/publications/telecomm_handbook/images/fig2-14.gif

Problem
• Moore’s Law will not

give us (any more)give us (any more)
faster processors
– But it gives us nowBut it gives us now

more processors on
one chip

• Multicore CPU
• Chip-level

multiprocessor
(CMP)

Herb Sutter, “A Fundamental Turn
Toward Concurrency in SW”,
D D bb’ J l 2005

429.10.2009 Copyright Teemu Kerola 2009

Dr. Dobb’s Journal, 2005.
http://www.ddj.com/web-development/184405990;jsessionid=BW05DMMAOT3ZGQSNDLPCKH0CJUNN2JVN?_requestid=1416784

(h(hyper-
threads)

B k D b K h t l “Pl tf 2015 ” I t l Whit P 2005

529.10.2009 Copyright Teemu Kerola 2009

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005.
http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

The Multicore Challengeg
• We have a heat-barrier dead-end to develop

simple to program single core chipssimple to program single core chips
– So, we leap to multicore chips in pursuit for ever higher

processing powerp g p

• Parallel Challenge: how to use these multicore
computers efficiently to speed up computing?computers efficiently to speed up computing?
– Concurrent programming

We should have launched a parallel programming– We should have launched a parallel programming
“Manhattan Project” a long time ago

• Would need now 100’s of millions ($) not 10’s of• Would need now 100 s of millions ($), not 10 s of
millions ($) per year for long term funding

David Patterson The Multicore Challenge The CCC Blog Aug 26 2008

629.10.2009 Copyright Teemu Kerola 2009

David Patterson, The Multicore Challenge, The CCC Blog, Aug 26, 2008,
http://www.cccblog.org/2008/08/26/the-multicore-challenge/

Concurrency at HW-levely
• Machine language code

– Many instructions at execution Comp.Org. I, II
(tito tikra)concurrently

– Logically “one at a time” (von Neumann arch.)
• At least one “instruction cluster” at a time

(tito, tikra)

• At least one instruction cluster at a time
– Program execution may stop/pause after any instruction

• High level programming language codeHigh level programming language code
– Process switch can occur at any time
– No “handle” on process switch times (in general)

• Operating system & external events decide
– Need to synchronize with other programs

Need to communicate with other programs– Need to communicate with other programs
– Need to get handle to process switch occurrences
– Other processes may be in execution at the same timep y

729.10.2009 Copyright Teemu Kerola 2009

Problem Free Concurrency?y
• No problems at all?

C h d i i– Concurrent threads in execution
– No shared data, no I/O (or private I/O)
– No communication, no synchonization

• No shared data, but data in shared memory
– Bus congestion may be problem

• Concurrency problem (bus use) solved in HW
• Slows down execution

• Communication/synchronization is needed y
eventually
– Combine results from concurrent threadsCombine results from concurrent threads

829.10.2009 Copyright Teemu Kerola 2009

Concurrency Problemsy
• Keep data consistent

Update all fields of shared data– Update all fields of shared data
– Complete writing a buffer before reading starts

• Synchronize with someone• Synchronize with someone
– Complete writing before reading starts
– Give money only after bank card is takenGive money only after bank card is taken
– Compile new Java class before execution resumes
– Do not wait forever, if the other party is dead, p y

• Communicate with someone
– Send a short message to someoneSend a short message to someone
– Send data to be processed to someone
– Send 2 GB data for remote processing, wait for resultp g,

929.10.2009 Copyright Teemu Kerola 2009

Concurrency Examplesy p
• Playstation 3

U ff ti l 2 ll 9 t h ll– Use effectively 2 cells, 9 processors at each cell
• Use two different processor architectures

Divide and conquer or filtering approach?– Divide-and-conquer or filtering approach?

• Desktop PC
U ff i l 4 d hi d– Use effectively 4 processors and a graphics adapter to
generate graphics for fast moving game
Di id i f CPU’ d hi d t ?– Divide processing for CPU’s and graphics adapter?

– Utilize all 4 processors
C t l h d t d t b– Control shared access to game data base

• In memory? In disk?
• In a file server in Japan?In a file server in Japan?

1029.10.2009 Copyright Teemu Kerola 2009

Concurrency Examplesy p
• Multithreaded Java program on a multiprocessor

system
– Access to shared clickvera: javac Plusminus1.java

vera: time java Plusminus1

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus1.java

data structures
clickvera: javac Plusminus8.java

i j Pl i 8 & &

vera: time java Plusminus1
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus8.java

vera: time java Plusminus8 >& a &

vera has 8 processors visible to operating system

vera: ps -eo pcpu,pid,user,args | sort -k 1 -r | head -10

– Synchronization between threads

vera has 8 processors visible to operating system
Why is result different with extra output?

y

• Displaying these slides from file server
– Transfer slides to local buffer and display themTransfer slides to local buffer and display them

1129.10.2009 Copyright Teemu Kerola 2009

Concurrency ExamplesConcurrency Examples

Li B lf 6 d l t• Linux Beowulf 6 node cluster
– How to solve weather forecast Hirlam model as fast

ibl ?as possible?
– How to best distribute data?

S l ti l bl t 100 1000 d ?– Solution scalable to 100 or 1000 nodes?

• Web server
– How to serve 1000 or 10000 concurrent requests with

100 file servers
M d b i fil ?• Most reads, but some writes to same files?

• How to guarantee consistent reads with simultaneous writes?

1229.10.2009 Copyright Teemu Kerola 2009

Concurrency ExamplesConcurrency Examples
• Operating systemp g y

– How to keep track of all concurrent processes, each
with multiple threads?

– What type of concurrency control utilities should be
offered to user programs?

• Which utilities offered to OS services?
– How do we guarantee that the system does not

“freeze”
– How to write an 8-disk disk controller device driver?
– How do I guarantee, that nothing disturbs an ongoing

process switch?

1329.10.2009 Copyright Teemu Kerola 2009

Concurrency Problem Solution Level
• Processor level, i.e., below machine language level

– HW solutions, automatic, no errors
– Need to understand, this is where it really happens, y pp

• Machine language level
– Specific (HW) machine instructions for concurrency solutions

Clever solutions without specific instructions– Clever solutions without specific instructions
– Need to be used properly, this is where it really happens

• Program level, i.e., programming language level
– SW solutions, many possibilities for error
– Solve problem by programming the solution your self

• Very error prone y p
• Requires privileged execution mode (usually)

– Solve problem directly by invoking certain available library
services

• Error prone – may invoke wrong routines at wrong times
– Solve problem by letting available library service do it all for you

• Not suitable always – may not fit to your problem wellNot suitable always may not fit to your problem well

1429.10.2009 Copyright Teemu Kerola 2009

Library Solutions for
Concurrency ProblemsConcurrency Problems

• Programming language run-time library
E J th d t– E.g., Java thread management

– Usually within one process (in one system)
– Any program can useAny program can use
– May be implemented directly or with OS-libraries

• Operating systems services (libraries) p g y ()
– Any process can use these, not so portable across OS’s
– Usually only choice between many processes

• Exception: programming language library that
implements its services with OS

– Only choice between many systemsOnly choice between many systems
– May need privileged execution mode

• Some services reserved only for OS programs or
ili iutilities

1529.10.2009 Copyright Teemu Kerola 2009

Basic Concurrency Problem TypesBasic Concurrency Problem Types

• Mutex
Mutual exclusion,
poissulkemisongelma• Mutex

– One or more critical code
segments, i.e., critical section

poissulkemisongelma
Person.id = idX;
Person.name = nameX;
Person age = ageX;

– At most one process executing
critical section (of code) at any time
I e at most one process

Person.age = ageX;

– I.e., at most one process
holds this resource
(code) at any time

Q
P1

P2

• Synchronization
Q

P3 P4

continue
• Communication P Q

P Qdata

continue

1629.10.2009 Copyright Teemu Kerola 2009

P Qdata

Basic Concurrency Problemsy
• Dining philosophers

think eat cycle
Edsger Dijkstra, 1971 Aterioivat filosofit

– think-eat cycle
– need 2 forks to eat
– can take one fork at a time
– no discussion
– question: what protocol to

f k ?use to reserve forks?
– multi-process

synchronizationy
– Avoid deadlock
– Avoid starvation
– Prove correctness

http://en.wikipedia.org

1729.10.2009 Copyright Teemu Kerola 2009
photo ©2002 Hamilton Richards, http://www.cs.utexas.edu/users/EWD/EWDwww.jpg

Basic Concurrency Problems
Sl i b b• Sleeping barber
– One barber, one barber chair

Waiting room with n chairs

Nukkuva parturi

– Waiting room with n chairs
– No customers?

• Barber sleeps until arriving
k hi

Dijkstra

customer wakes him up
– Customer arrives?

• Barber sleeps? Wake him up!p p
• Barber busy and empty chairs?

Reserve one and wait.
• o/w leave

– Question: what protocol for
barber & customers?
Inter process communication– Inter-process communication,
synchronization?

– Avoid deadlock and starvation
Fred G Martin

1829.10.2009 Copyright Teemu Kerola 2009
http://www.cs.uml.edu/~fredm/courses/91.308-fall05/assignment7.shtml

Fred G. Martin

Basic Concurrency Problemsy
• Bakery algorithm

Baker ticket machine
Leipurin vuorolappu

– Baker, ticket machine
– Each arriving customer gets a

ticket number
– Customers are served in

increasing ticket number order
– Question: how to implement the

ticket machine
I di t ib t d t ?• In distributed system?

• With/without shared
memory?memory?

– Multi-threaded mutual
exclusion

Leslie Lamport 1974

http://research.microsoft.com/users/
lamport/leslie.gif

– Critical section use order?
1929.10.2009 Copyright Teemu Kerola 2009

Leslie Lamport, 1974

Basic Concurrency Problemsy
• Producer-Consumer tuottaja-kuluttaja

– Bounded shared buffer area
– Producers insert data items
– Consumers take data items in arriving order
– Full buffer? P2

• Producer blocks

– Empty buffer?
C bl k

P1

P

C1

C2

data
data

data
• Consumer blocks

– Question: protocol for producer/consumer
C i ti h i ti

P3

– Communication, synchronization
• Unix/linux “pipe”

Avoid deadlock starvation– Avoid deadlock, starvation
2029.10.2009 Copyright Teemu Kerola 2009

Basic Concurrency ProblemsBasic Concurrency Problems
• Readers-writers lukijat-kirjoittajat

– Shared data-base
– Many can read same item re

concurrently
– Only one can write at a time

ead
re

• Reading not allowed at that time
– Readers have priority over writers

ead

p y
– Question: protocol for

readers/writers?

w
rite

– Mutual exclusion, synchronization
– Avoid deadlock, starvationAvoid deadlock, starvation

2129.10.2009 Copyright Teemu Kerola 2009

System ConsiderationsSystem Considerations

• Different threads in same process?• Different threads in same process?
– Who controls thread switching? Application or OS?

Diff t i t ?• Different processes in same system?
– Shared memory or not?

Many threads in each process?– Many threads in each process?
• Different threads/processes in processors grid?

N h d– No shared memory
• Different threads/processes in distributed system?

N h d– No shared memory
– Large communication delays

2229.10.2009 Copyright Teemu Kerola 2009

Solution Considerations
• Solution at application level without HW support

– Do everything from scratchDo everything from scratch
• Solution at application level with HW support

– Use special machine language level instructions orUse special machine language level instructions or
structures

• Solution at operating system levelp g y
– Use utilities in operating system library

• Solution at programming language levelSolution at programming language level
– Use utilities in programming language library

• Solution at network levelSolution at network level
– Use utilities in some network server

• Need to understand what really happensNeed to understand what really happens
2329.10.2009 Copyright Teemu Kerola 2009

SummarySummary

T i l• Terminology
• Concurrency in systemsy y
• Concurrency problem examples

Ed i l hil h b b b k– Educational: philophers, barber, bakery
– Practical: consumer-producer, readers-writers

• Solution considerations

2429.10.2009 Copyright Teemu Kerola 2009

