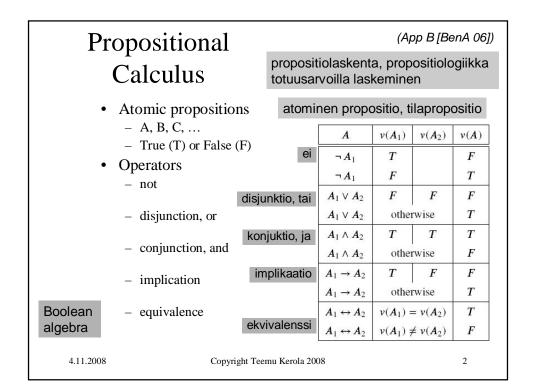
Lesson 4

Verifying Concurrent Programs Advanced Critical Section Solutions

Ch 4.1-3, App B [BenA 06] Ch 5 (no proofs) [BenA 06] Propositional Calculus

Invariants
Temporal Logic
Automatic Verification
Bakery Algorithm & Variants

4.11.2008 Copyright Teemu Kerola 2008



Propositional Calculus

- Implication
- $(A_1 \wedge A_2 \wedge \cdots \wedge A_n) \to B$

 $A \rightarrow B$

implikaatio

- Premise or antecedent
- premissit, oletukset
- Conclusion or consequent
- johtopäätös

Formula

- lauseke, argumentti
- Atomic proposition
 - Atomic propositions or formulaes combined with operators
- Assignment v(f) of formula f
- (totuusarvo-) asetus
- Assigned values (T or F) for each atomic proposition in formula
- Interpretation v(f) of formula f computed with operator rules
- Formula f is *true* if v(f) = T, *false* if v(f)=F

4.11.2008

Copyright Teemu Kerola 2008

3

Propositional Calculus

propositiolaskenta

- Formula
- $(A_1 \wedge A_2 \wedge \cdots \wedge A_n) \to B$
- Implication
 - Premise or antecedent
 - ent premissit, oletukset
 - Conclusion or consequent
- johtopäätös
- Formula f is true/false if it's interpretation v(f) is true/false
- tosi/epätosi
- Given assignment values for each argument
- Formula is <u>valid</u> if it is tautology
- pätevä, validi
- Always true for all interpretations (all atomic propos. values)
- Formula is *satisfiable* if true in <u>some</u> interpretation
- toteutuva
- Formula is *falsiable* if sometimes false
- ei pätevä
- Formula is *unsatisfiable* if always false
- ei toteutuva

4.11.2008

Copyright Teemu Kerola 2008

Methods for Proving Formulaes Valid

- Induction proof F(n) for all n=1, 2, 3, ... induktio
 - F(1)
 - $F(n) \rightarrow F(n+1)$
- Dual approach: f is valid ↔ ¬f is <u>un</u>satisfiable
 - Find one interpretation that makes ¬f true
 - · Go through (automatically) all interpretations of ¬f
 - If such interpretation found, ¬f is satisfiable, i.e.,
 f is not valid come up with vas
 - · O/w f is valid

counter example

vastaesimerkki

Proof by contradiction

ristiriita

- Assume: f is not valid
- Deduce contradiction with propositional calculus

 $\neg X \wedge X$

4.11.2008

Copyright Teemu Kerola 2008

5

Methods for Proving Formulaes Valid

Deductive proof

deduktiivinen todistus

- Deduce formula from axioms and existing valid formulaes
- Start from the "beginnin "implikaatiotodistus"?
- · Material implication
 - Formula is in the form " $p \rightarrow q$ "
 - Can show that " $\neg(p \rightarrow q)$ " can not be (or can not become): v(p)=T and v(q)=F
 - if v(p) = v(q) = T and v(q) becomes F, then v(p) will not stay T

4.11.2008

• if v(n) = v(n) = F and v(n) becomes T

Correctness of Programs

- Program P is partially correct
 - If P halts, then it gives the correct answer
- · Program P is totally correct
 - P halts and it gives the correct answer
 - Often very difficult to prove ("halting problem" is difficult)
- · Program P can have
 - preconditions A(x1, x2, ...) for input values (x1, x2, ...)
 - postconditions B(y1, y2, ...) for output values (y1, y2, ...)
- Partial and total correctness with respect to A(...) and B(...)

More? Se courses on specification and verification

4.11.2008

Copyright Teemu Kerola 2008

7

Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
 - Model checker programs (not covered in this course!)

mallin tarkastin

STeP

4.11.2008

Copyright Teemu Kerola 2008

Atomic propositions

Boolean variables

wantp

flag

- Consider them as atomic propositions
- Proposition wantp is true, iff variable wantp is true in given state
- Integer variables

- Comparison result is an atomic proposition
- Example: proposition "turn ≠ 2" is true, iff variable turn value is not 2 in given state
- Control pointers

- Comparison to given value is an atomic proposition
- Example: proposition p1 is true, iff control pointer for P is p1 in given state

system state described with propositional logic

4.11.2008

Copyright Teemu Kerola 2008

Formulaes

Algorithm 3.8: Third attempt

	boolean wantp ← false, wantq ← false		ntq ← false		
	р		q		
	loop forever	1	loop forever		
p1:	non-critical section	q1:	non-critical section		
p2:	wantp ← true	q2:	wantq ← true		
р3:	await wantq = false	q3:	await wantp = false		
p 4:	critical section	q4:	critical section		
p5:	wantp ← false	q5:	wantq ← false		

- Formula: p1 Λ q1 Λ ¬wantp Λ ¬wantq
 - True only in the starting state
- Formula: p4 Λ q4
 - True only if mutex is broken
 - Mutex condition can be defined: ¬(p4 ∧ q4)
 - Must be true in all possible states in all possible computations
 - Invariant

invariantti

4.11.2008

Copyright Teemu Kerola 2008

Mutex Proof

Algorithm 3.8: Third attempt

	7 agortami 3.5. Tima attempt		
	boolean wantp	← false, war	ntq ← false
	р		q
	loop forever		loop forever
p1:	non-critical section	q1:	non-critical section
p2:	wantp ← true	q2:	wantq ← true
р3:	await wantq = false	q3:	await wantp $=$ false
p4:	critical section	q4:	critical section
p5:	wantp ← false	q5:	wantq ← false

Invariant ¬(p4 ∧ q4)

invariantti, aina tosi

- If this is proven correct (true in all states), then mutex is proven
- Inductive proof
 - True for initial state
 - Assuming true for *current state*, prove that it still applies in next state
 - · Consider only statements that affect propositions in invariant

4.11.2008

Copyright Teemu Kerola 2008

11

Mutex Proof

Algorithm 3.8: Third attempt boolean wantp ← false, wantq ← false loop forever loop forever q1: non-critical section p1: non-critical section wantp ← true p2: q2: wantq ← true p3: await wantq = false q3: await wantp = false p4: critical section q4: critical section wantp ← false wantq ← false p5: q5:

- Invariant ¬(p4 ∧ q4)
 - Can not prove directly (yet) too difficult
- Need proven Lemma 4.3

lemma, apulause

- Lemma 4.1: $p3..5 \rightarrow wantp$ is invariant
- Lemma 4.2: $wantp \rightarrow p3..5$ is invariant
- Lemma 4.3: p3..5 ↔ wantp and q3..5 ↔ wantq are invariants
- Can now prove original invariant ¬(p4 Λ q4)
 - Inductive proof with Lemma 4.3
 - Details on next slide

4.11.2008

Copyright Teemu Kerola 2008

	Algorithm 3.8:	: Third attempt
Mutex	boolean wantp ← fal	se, wantq ← false
IVIUICA	р	q
Proof	loop forever	loop forever
1001	p1: non-critical section	q1: non-critical section
	p2: wantp ← true	q2: wantq ← true
	p3: await wantq = false	q3: await wantp = false
	p4: critical section	q4: critical section
	p5: wantp ← false	q5: wantq ← false
• Lemma 4.3	: <i>p35 ↔ wantp</i> and q <i>35 ↔ war</i>	<i>ntq</i> invariants
 Theorem 4. 	4 : ¬(p4 ∧ q4) is invariant	
– Prove <i>(p</i>	p4 \Lambda q4) inductively false in every	<u>y state</u>
– Initial sta	ate: trivial	
– Only sta	tes {p3,} need to be considered	ed
	ay become true only here, i.e., s	
<u> </u>	s {, q3,} similar, symmetric	•
– Can exe	cute {p3,} only if wantq=false	(i.e., ¬ wantq)
• Beca	use wantq=false, q4 is also false	e (Lemma 4.3)
	state can not be {p4, q4,}, i.e	,
4.11.2008	Copyright Teemu Kerola 2008	13

Temporal Logic temporaalilogiikka, aikaperustainen logiikka Propositional logic with extra temporal <u>operators</u> $\{s_0, s_1, s_2, ...\}$ Computation - <u>Infinite</u> sequence of states: {s₀, s₁, s₂, ...} Temporal operators - Value (T or F) of given predicate does not necessarily depend only on current state · It may depend on also on (some or all) future states aina Always or box (□) operator • $\Box A$ true in state s_i if A true in <u>all</u> s_i , $j \ge i$ □¬(p4 ∧ q4) • E.g., mutex must always be true lopulta, joskus Eventually or diamond (◊) operator tulevaisuudessa • $\Diamond A$ true in state s_i if A true in some s_i , $j \ge i$ $\Box (p2 \rightarrow \Diamond p4)$ · E.g., no starvation means that something eventually will become true 4.11.2008 Copyright Teemu Kerola 2008 14

Other Temporal Logic Operators

seuraavassa tilassa

- True in next state (O) operator
 - Op true in state s_{i} , if p is true in the state s_{i+1}
- Until eventually (U) operator

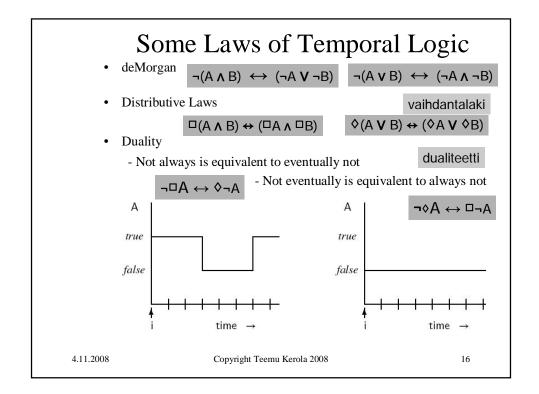
tosi kunnes, kunnes lopulta

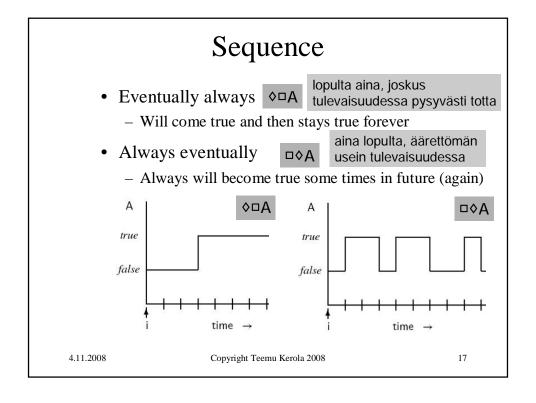
- p U q true in state s_i, if p is true in every state in future until eventually q becomes true
- •
- Not used (needed) in this course...

More? See courses on specification and verification.

4.11.2008

Copyright Teemu Kerola 2008





More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 An Introduction to Specification and Verification

Spesifioinnin ja verifioinnin perusteet

4.11.2008 Copyright Teemu Kerola 2008 18

4.11.2008 Copyright Teemu Kerola 2008

Advanced Critical Section Solutions

Ch 5 [BenA 06] (no proofs)

19

Bakery Algorithm
Bakery for N processes
Fast for N processes

4.11.2008 Copyright Teemu Kerola 2008 20

Bakery Algorithm

(Leslie Lamport)

numerolappualgoritmi

Very strong requirement!

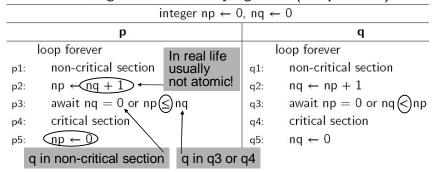
21

- Environment
 - Shared memory, atomic read/write
 - · No HW support needed
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)
- Goal
 - Mutex and Customers served in request order
 - Independent (distributed) decision making
- Solution idea
 - Get queue number, service requests in ascending order
- Possible problems
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?

4.11.2008 Copyright Teemu Kerola 2008

Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)



- Can enter CS, if ticket (np or nq) is "smaller" than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)

4.11.2008 Copyright Teemu Kerola 2008 2

Lecture 4: Verifying Solutions and Turn-Ticket Problem

Correctness Proof for 2-process Bakery Algorithm

- Mutex?
- No deadlock?

Alg. 5.1

- No starvation?
- No counter overflow?
- · What else, if any?
- · How?

Spesifioinnin ja verifioinnin perusteet

- Temporal logic

(Slides Conc. Progr. 2006)

(for those who really like temporal logic...)

23

4.11.2008 Copyright Teemu Kerola 2008

Bakery for n Processes

Algorithm 5.2: Bakery algorithm (N processes)

integer array[1..n] number \leftarrow [0,...,0] loop forever when equality, not atomic!? non-critical section p1: give priority to p2: $number[i] \leftarrow 1 + max(number)$ smaller number[x] for all other processes j p3: await (number[j] = 0) or $(number[i] \ll number[j])$ p4: critical section p5: $number[i] \leftarrow 0$ in non-critical section? in q3..q6?

- No write competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken – danger?
- · All other processes polled
 - Not so good!

4.11.2008

Copyright Teemu Kerola 2008

Bakery for n Processes

• Mutex OK?

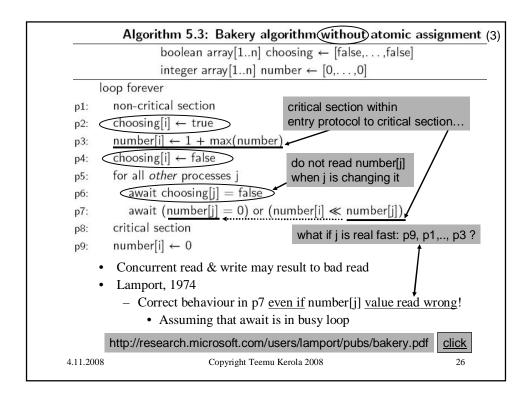
Alg. 5.2

- Yes, because of priorities at competition time
- Deadlock OK?
 - Yes, because of priorities at competition time
- Starvation OK?
 - Yes, because
 - Your (i) turn will come eventually
 - Others (j) will progress and leave CS
 - Next time their number[j] will be bigger than yours
- Overflow
 - Not good. Numbers grow unbounded if <u>some</u> process always in CS
 - Must have <u>other information/methods</u> to guarantee that this does not happen.

e.q., max 100 processes, CS less than 0.01% of executed code ??

4.11.2008

Copyright Teemu Kerola 2008



Performance Problems with Bakery Algorithm

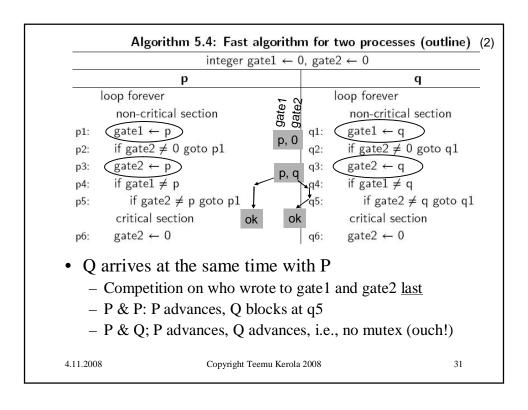
- Problem
 - Lots of overhead work, if <u>many</u> concurrent processes
 - Check status for all <u>possibly competing</u> other processes
 - Other processes (not in CS) slow down the one process trying to get into CS not good
 - Most of the time wasted work
 - Usually not much competition for CS
- How to do it better?
 - Check competition in <u>fixed</u> time
 - In a way not dependent on the number of <u>possible</u> competitors
 - Suffer overhead <u>only</u> when competition occurs

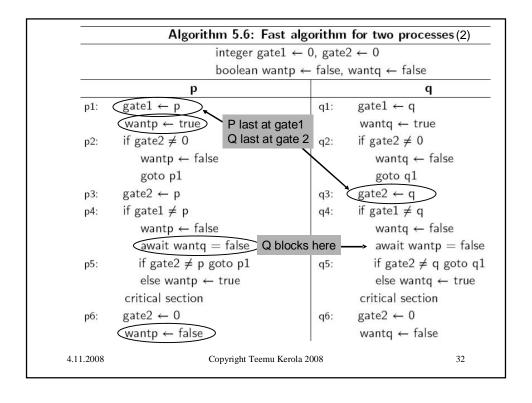
4.11.2008 Copyright Teemu Kerola 2008 27

	integer gate1	← 0, gate	e2 ← 0
	р		q
1	oop forever		loop forever
	non-critical section		non-critical section
p1:	gate1 ← p	q1:	gate1 ← q
p2:	if gate $2 \neq 0$ goto p1	q2:	if gate $2 \neq 0$ goto q1
p3:	gate2 ← p	q3:	gate2 ← q
p4:	if gate1 ≠ p	q4:	if gate1 ≠ q
p5:	if gate2 \neq p goto p1	q5:	if gate2 ≠ q goto q
	critical section		critical section
p6:	gate2 ← 0	q6:	gate2 ← 0
•	Assume atomic read/write		
•	2 shared variables, both re	ad/writte	n by P and Q
•	Block at gate1, if contention	on	•
	 Last one to get there waits 		
	Access to CS, if success in	writing	own id to both gates
_	recess to es, it success it	i wiiiiig	own in to both gates
1.2008	Copyright Teemu Ke	erola 2008	28

p	q
	7
loop forever	loop forever
non-critical section	non-critical section
pl: gate1 ← p	q1: gate1 ← q
$p2:$ if gate2 \neq 0 goto p1	q2: if gate $2 \neq 0$ goto q1
p3: gate2 ← p	q3: gate2 ← q
p4: if gate1 ≠ p	q4: if gate1 ≠ q
p5: if gate2 \neq p goto p1	q5: if gate $2 \neq q$ goto q:
critical section	critical section
p6: gate2 ← 0	q6: gate2 ← 0
No contention for P, if P alo - Little overhead in entry • 2 assignments and 2 comp	, , , <u>, , , , , , , , , , , , , , , , </u>

p1:	poop forever	loop forever
	oop forever	loop forover
n1:		loop forever
n1.	non-critical section	non-critical section
PI.	gate1 ← p	q1: gate1 ← q
p2: 0	if gate $2 \neq 0$ goto p1	q2: if gate $2 \neq 0$ goto q
p3:	gate2 ← p	q3: gate2 ← q
p4:	if gate1 ≠ p	q4: if gate1 ≠ q
p5:	if gate2 \neq p goto p1	q5(if gate2 ≠ q gote
	critical section	critical section
p6:	gate2 ← 0	q6: gate2 ← 0
– P	ass gate2 (q3), when P blocks at p2, until Q relead will advance even if P ge	•





Fast N Process Baker

- Expand Alg. 5.6
 - Still with just 2 gates

Alg. 5.6

P: await wantq=false

Pi: For all other j

await want[j]=false

- Still fast, even with "for all other"
 - Fast when no contention (gate 2 = 0)
 - Entry: 3 assignments, 2 if's
 - Awaits done only when contention
 - p4: if gate $1 \neq i$

4.11.2008

Copyright Teemu Kerola 2008