
Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 1

14.11.2008 Copyright Teemu Kerola 2008

Verifying Concurrent Programs
Advanced Critical Section

Solutions
Ch 4.1-3, App B [BenA 06]
Ch 5 (no proofs) [BenA 06]Propositional Calculus

Invariants
Temporal Logic

Automatic Verification
Bakery Algorithm & Variants

Lesson 4

24.11.2008 Copyright Teemu Kerola 2008

Propositional
Calculus

• Atomic propositions
– A, B, C, …
– True (T) or False (F)

• Operators
– not

– disjunction, or

– conjunction, and

– implication

– equivalence

propositiolaskenta, propositiologiikka
totuusarvoilla laskeminen

ei

disjunktio, tai

konjuktio, ja

implikaatio

ekvivalenssi

(App B [BenA 06])

atominen propositio, tilapropositio

Boolean
algebra

34.11.2008 Copyright Teemu Kerola 2008

Propositional Calculus

• Implication

– Premise or antecedent
– Conclusion or consequent

• Formula
– Atomic proposition
– Atomic propositions or formulaes combined with operators

• Assignment v(f) of formula f
– Assigned values (T or F) for each atomic proposition in formula
– Interpretation v(f) of formula f computed with operator rules
– Formula f is true if v(f) = T, false if v(f)=F

premissit, oletukset

johtopäätös

lauseke, argumentti

implikaatio

(totuusarvo-) asetus

44.11.2008 Copyright Teemu Kerola 2008

Propositional Calculus
• Formula

– Implication
• Premise or antecedent
• Conclusion or consequent

– Formula f is true/false if it’s
interpretation v(f) is true/false

• Given assignment values for each argument
– Formula is valid if it is tautology

• Always true for all interpretations (all atomic propos. values)
– Formula is satisfiable if true

in some interpretation
– Formula is falsiable if sometimes false
– Formula is unsatisfiable if always false

propositiolaskenta

premissit, oletukset
johtopäätös

pätevä, validi

ei pätevä

toteutuva

ei toteutuva

tosi/epätosi

54.11.2008 Copyright Teemu Kerola 2008

Methods for Proving Formulaes Valid
• Induction proof F(n) for all n=1, 2, 3, …

– F(1)
– F(n) F(n+1)

• Dual approach: f is valid ¬f is unsatisfiable
– Find one interpretation that makes ¬f true

• Go through (automatically) all interpretations of ¬f
• If such interpretation found, ¬f is satisfiable, i.e.,

f is not valid
• O/w f is valid

• Proof by contradiction
– Assume: f is not valid
– Deduce contradiction with propositional calculus

¬X X

ristiriita

induktio

come up with
counter example

vasta-
esimerkki

64.11.2008 Copyright Teemu Kerola 2008

Methods for Proving Formulaes Valid

• Deductive proof
– Deduce formula from axioms and existing

valid formulaes
– Start from the “beginning”

• Material implication
– Formula is in the form “p q ”
– Can show that “¬(p q)“ can not be

(or can not become): v(p)=T and v(q)=F
• if v(p) = v(q) = T and v(q) becomes F,

then v(p) will not stay T
• if v(p) = v(q) = F and v(p) becomes T,

deduktiivinen todistus

“implikaatiotodistus”?

Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 2

74.11.2008 Copyright Teemu Kerola 2008

Correctness of Programs
• Program P is partially correct

– If P halts, then it gives the correct answer
• Program P is totally correct

– P halts and it gives the correct answer
– Often very difficult to prove (“halting problem” is difficult)

• Program P can have
– preconditions A(x1, x2, …) for input values (x1, x2, …)
– postconditions B(y1, y2, …) for output values (y1, y2, …)

• Partial and total correctness with respect
to A(…) and B(…)

More? Se courses on specification and verification

84.11.2008 Copyright Teemu Kerola 2008

Verification of Concurrent Programs

• State diagrams can be very large
– Can do them automatically

• Making conclusions on state diagrams is
difficult
– Mutex, no deadlock, no starvation?
– Can do automatically with temporal logic based on

propositional calculus
• Model checker programs

(not covered in this course!)

Spin STeP

mallin tarkastin

94.11.2008 Copyright Teemu Kerola 2008

Atomic propositions
• Boolean variables

– Consider them as atomic propositions
– Proposition wantp is true, iff variable wantp is true in given

state
• Integer variables

– Comparison result is an atomic proposition
– Example: proposition “turn 2” is true, iff variable turn value

is not 2 in given state
• Control pointers

– Comparison to given value is an atomic proposition
– Example: proposition p1 is true, iff control pointer for P is p1

in given state

wantp flag

turn x

p1 p4 q2

Idea: system state described with propositional logic

104.11.2008 Copyright Teemu Kerola 2008

Formulaes

• Formula: p1 q1 ¬wantp ¬wantq
– True only in the starting state

• Formula: p4 q4
– True only if mutex is broken
– Mutex condition can be defined: ¬(p4 q4)

• Must be true in all possible states in all possible
computations

• Invariant invariantti

114.11.2008 Copyright Teemu Kerola 2008

Mutex Proof

• Invariant ¬(p4 q4)
– If this is proven correct (true in all states), then mutex is

proven
• Inductive proof

– True for initial state
– Assuming true for current state, prove that it still applies in

next state
• Consider only statements that affect propositions in invariant

invariantti, aina tosi

124.11.2008 Copyright Teemu Kerola 2008

Mutex
Proof

• Invariant ¬(p4 q4)
– Can not prove directly (yet) – too difficult

• Need proven Lemma 4.3
– Lemma 4.1: p3..5 wantp is invariant
– Lemma 4.2: wantp p3..5 is invariant
– Lemma 4.3: p3..5 wantp and q3..5 wantq are invariants

• Can now prove original invariant ¬(p4 q4)
– Inductive proof with Lemma 4.3
– Details on next slide

lemma, apulause

Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 3

134.11.2008 Copyright Teemu Kerola 2008

Mutex
Proof

• Lemma 4.3: p3..5 wantp and q3..5 wantq invariants
• Theorem 4.4: ¬(p4 q4) is invariant

– Prove (p4 q4) inductively false in every state
– Initial state: trivial
– Only states {p3, …} need to be considered

• p4 may become true only here, i.e., state {p4, q?, …}
• States {…, q3, …} similar, symmetrical

– Can execute {p3, …} only if wantq=false (i.e., ¬ wantq)
• Because wantq=false, q4 is also false (Lemma 4.3)
• Next state can not be {p4, q4, …}, i.e., (p4 q4) is false

144.11.2008 Copyright Teemu Kerola 2008

Temporal Logic
• Propositional logic with extra temporal

operators
• Computation

– Infinite sequence of states: {s0, s1, s2, …}
• Temporal operators

– Value (T or F) of given predicate does not
necessarily depend only on current state

• It may depend on also on (some or all) future states
– Always or box () operator

• A true in state si if A true in all sj, j i
• E.g., mutex must always be true

– Eventually or diamond () operator
• A true in state si if A true in some sj, j i
• E.g., no starvation means that something eventually will

become true

(p2 p4)

¬(p4 q4)

{s0, s1, s2, …}

aina

lopulta, joskus
tulevaisuudessa

temporaalilogiikka,
aikaperustainen logiikka

154.11.2008 Copyright Teemu Kerola 2008

Other Temporal Logic Operators

• True in next state (O) operator
– Op true in state si, if p is true in the state si+1

• Until eventually (U) operator
– p U q true in state si, if p is true in every state

in future until eventually q becomes true
• …
• Not used (needed) in this course…

More? See courses on specification and verification.

tosi kunnes,
kunnes lopulta

seuraavassa tilassa

164.11.2008 Copyright Teemu Kerola 2008

Some Laws of Temporal Logic
• deMorgan

• Distributive Laws

• Duality
- Not always is equivalent to eventually not

- Not eventually is equivalent to always not

¬(A B) (¬A ¬B) ¬(A B) (¬A ¬B)

¬ A ¬A
A ¬A

(A B) (A B) (A B) (A B)
vaihdantalaki

dualiteetti

174.11.2008 Copyright Teemu Kerola 2008

Sequence
• Eventually always

– Will come true and then stays true forever

• Always eventually
– Always will become true some times in future (again)

A A

A

A

lopulta aina, joskus
tulevaisuudessa pysyvästi totta

aina lopulta, äärettömän
usein tulevaisuudessa

184.11.2008 Copyright Teemu Kerola 2008

More Complex Proofs

• State diagrams become easily too large for manual
analysis

• Use model checkers
– Spin for Promela programs (algorithms)
– Java PathFinder for Java programs

• More details?
– Course

An Introduction to Specification and Verification

Spesifioinnin ja verifioinnin perusteet

Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 4

194.11.2008 Copyright Teemu Kerola 2008 204.11.2008 Copyright Teemu Kerola 2008

Advanced Critical Section Solutions
Ch 5 [BenA 06] (no proofs)

Bakery Algorithm
Bakery for N processes

Fast for N processes

214.11.2008 Copyright Teemu Kerola 2008

Bakery Algorithm
• Environment

– Shared memory, atomic read/write
• No HW support needed

– Short exclusive access code segments
• Wait in busy loop (no process switch)

• Goal
– Mutex and Customers served in request order
– Independent (distributed) decision making

• Solution idea
– Get queue number, service requests in ascending order

• Possible problems
– Shared, distributed queuing machine, will it work?
– Get same queue number as someone else? Problem?
– Some number skipped? Problem or not?
– Will numbers grow indefinitely (overflow)?

(Leslie Lamport)

numerolappualgoritmi

Very strong requirement!

224.11.2008 Copyright Teemu Kerola 2008

Bakery Algorithm (2 processes)

• Can enter CS, if ticket (np or nq) is “smaller” than that of
the other process

• Priority: if equal tickets, both compete, but P wins
– Fixed priority not so good, but acceptable (rare occurrence)

q in non-critical section q in q3 or q4

In real life
usually
not atomic!

234.11.2008 Copyright Teemu Kerola 2008

Correctness Proof for 2-process
Bakery Algorithm

• Mutex?
• No deadlock?
• No starvation?
• No counter overflow?

• What else, if any?

• How?
– Temporal logic

Alg. 5.1

Spesifioinnin ja verifioinnin perusteet

(Slides Conc.Progr. 2006)
(for those who really like temporal logic…)

244.11.2008 Copyright Teemu Kerola 2008

Bakery for n Processes

• No write competition to shared variables
– Load/store assumed atomic

• Ticket numbers increase continuously while critical section is
taken – danger?

• All other processes polled
– Not so good!

when equality,
give priority to
smaller number[x]

not atomic!?

in non-critical section? in q3..q6?

Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 5

254.11.2008 Copyright Teemu Kerola 2008

Bakery for n Processes
• Mutex OK?

– Yes, because of priorities at competition time
• Deadlock OK?

– Yes, because of priorities at competition time
• Starvation OK?

– Yes, because
• Your (i) turn will come eventually
• Others (j) will progress and leave CS
• Next time their number[j] will be bigger than yours

• Overflow
– Not good. Numbers grow unbounded if some process

always in CS
• Must have other information/methods to guarantee that this

does not happen.

Alg. 5.2

e.q., max 100 processes, CS less than 0.01% of executed code ??
264.11.2008 Copyright Teemu Kerola 2008

• Concurrent read & write may result to bad read
• Lamport, 1974

– Correct behaviour in p7 even if number[j] value read wrong!
• Assuming that await is in busy loop

do not read number[j]
when j is changing it

http://research.microsoft.com/users/lamport/pubs/bakery.pdf click

critical section within
entry protocol to critical section…

what if j is real fast: p9, p1,.., p3 ?

(3)

274.11.2008 Copyright Teemu Kerola 2008

Performance Problems with
Bakery Algorithm

• Problem
– Lots of overhead work, if many concurrent processes
– Check status for all possibly competing other processes

• Other processes (not in CS) slow down the one process trying
to get into CS – not good

– Most of the time wasted work
• Usually not much competition for CS

• How to do it better?
– Check competition in fixed time
– In a way not dependent on the number of possible

competitors
– Suffer overhead only when competition occurs

284.11.2008 Copyright Teemu Kerola 2008

• Assume atomic read/write
• 2 shared variables, both read/written by P and Q
• Block at gate1, if contention

– Last one to get there waits
• Access to CS, if success in writing own id to both gates

294.11.2008 Copyright Teemu Kerola 2008

• No contention for P, if P alone (i.e., gate2 =0)
– Little overhead in entry

• 2 assignments and 2 comparisons

304.11.2008 Copyright Teemu Kerola 2008

• Q pass gate2 (q3), when P tries to get in
– P blocks at p2, until Q releases gate2
– Q will advance even if P gets to p1 before q4 executed

http://research.microsoft.com/users/lamport/pubs/bakery.pdfclick

Concurrent Programming (RIO) 4.11.2008

Lecture 4: Verifying Solutions and Turn-
Ticket Problem 6

314.11.2008 Copyright Teemu Kerola 2008

• Q arrives at the same time with P
– Competition on who wrote to gate1 and gate2 last
– P & P: P advances, Q blocks at q5
– P & Q; P advances, Q advances, i.e., no mutex (ouch!)

p, 0

p, q

ok ok

(2)

ga
te

1
ga

te
2

324.11.2008 Copyright Teemu Kerola 2008

Q blocks here

P last at gate1
Q last at gate 2

(2)

334.11.2008 Copyright Teemu Kerola 2008

Fast N Process Baker
• Expand Alg. 5.6

– Still with just 2 gates

• Still fast, even with “for all other”
– Fast when no contention (gate2 = 0)

• Entry: 3 assignments, 2 if’s
– Awaits done only when contention

• p4: if gate1 i

await wantq=false For all other j
await want[j]=false

Pi:P:

Alg. 5.6

