
Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 1

Deadlocks
Ch 6 [Stall 05]

Problem
Dining Philosophers

Deadlock occurrence
Deadlock detection

Deadlock prevention
Deadlock avoidance

113.11.2009 Copyright Teemu Kerola 2009

Lesson 5

Motivational Example
• New possible laptop for CS dept use

– Lenovo 400, dual-core, Intel Centrino 2 technology
– Ubuntu Linux 8.10

• Wakeup from suspend/hibernation, freezes often

• Read, study, experiment – some 15 hours?
– No network?, at home/work?, various units?, …., ???
– Problem with Gnome desktop, not with KDE, …, ???

• Could two processors cause it?
– Shut down one processor during hibernation/wakeup
– Wakeup works fine now

• Same problem with many new laptops running Linux
– All new laptops with Intel Centrino 2 with same Linux driver?

• Concurrency problem in display driver startup?
– Bug not found yet, use 1-cpu work-around

213.11.2009 Copyright Teemu Kerola 2009

http://ubuntuforums.org/showthread.php?t=959712

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=70740d6c93030b339b4ad17fd58ee135dfc13913
(search "i915_enable_vblank“ …)

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 2

Deadlock: Background

313.11.2009 Copyright Teemu Kerola 2009

P Q

A

B
}

{

{} C

processes

objects for exclusive use

object?

buffer,
page,
user input,
critic. section
disk driver,
scanner,
message,
...

tim
e

Basic problem: a process needs multiple objects at the same time

Mutex: competition for one object (critical section)

Deadlock: an Example (10)

413.11.2009 Copyright Teemu Kerola 2009

P Q

A

B

reserve A? OK.
reserve B? OK.

objects for
exclusive use

reserve B? Wait.
(for resource
held by Q)

reserve A? Wait.
(for resource
held by P)

tim
e

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 3

Resource Reservation Graph

513.11.2009 Copyright Teemu Kerola 2009

P Q

A

B

ProcessProcess

Resource

Resource

Deadlock cycle in resource reservation graph

Resource Reservation Graph

613.11.2009 Copyright Teemu Kerola 2009

P Q

A

B

ProcessProcess

Resource

Resource

Does this graph contain a deadlock?

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 4

Resource Reservation Graph

713.11.2009 Copyright Teemu Kerola 2009

P Q

A

B

Resource

Resource

T

C

D

Does this graph contain a deadlock?

Gridlock

• Processes: cars 1, 2, 3 and 4
• Resources: quadrants a, b, c, d

– Car 4 needs quadrants d and a (exclusive use for each)
813.11.2009 Copyright Teemu Kerola 2009

(Fig. 6.1 [Stal06])
Real life gridlock: http://img209.imageshack.us/img209/5781/deadlocknajkcomafarialibh3.jpg

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 5

Consequences
• The processes do not advance

– Cars do not move
• Resources remain reserved

– Cpu? Street quadrant?
– Memory? I/O-devices?
– Logical resources (semaphores, critical sections, ...)?

• The computation fails
– Execution never finishes?

• One application?

– The system crashes? Traffic flow becomes zero?

913.11.2009 Copyright Teemu Kerola 2009

Resources
• Reusable resources

– Limited number or amount
– Wait for it, allocate it, deallocate (free) it
– Memory, buffer space, intersection quadrant
– Critical section code segment execution
– …

• Consumable resources
– Unlimited number or amount
– Created and consumed
– Someone may create it, wait for it, destroy it
– Message, interrupt, turn for critical section
– …

1013.11.2009 Copyright Teemu Kerola 2009

kulutettava
resurssi

uudelleen-
käytettävä
resurssi

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 6

1113.11.2009 Copyright Teemu Kerola 2009

(Fig. 6.2 [Stal06])

P alone

Q requests B
when
P has A&B

Q gets B
when
P has A

1: scenario Q alone

1213.11.2009 Copyright Teemu Kerola 2009

(Fig. 6.3 [Stal06])

Q gets B
when
P has A,
P release A,
Q gets A
Q release B
A gets B
A release B

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 7

Definitions
• Deadlock

– Eternal wait in blocked state
– Does not block processor (unless one resource is processor)

• Livelock
– Two or more processes continuously change their state

(execute/wait) as response to the other process(es),
but never advance to real work

– E.g., ping-pong ”you first – no, you first - ...”
• two processes alternate offering the turn to each other - no

useful work is started
– Consumes processor time

• Starvation
– the process will never get its turn
– E.g., in ready-to-run queue, but never scheduled

1313.11.2009 Copyright Teemu Kerola 2009

lukkiintuminen

”elolukko”

nälkiintyminen

Deadlock Problems
• How to know if deadlock exists?

– How to locate deadlocked processes?
• How to prevent deadlocks?
• How to know if deadlock might occur?
• How to break deadlocks?

– Without too much damage?
– Automatically?

• How to prove that your solution is free of
deadlocks?

1413.11.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 8

Good Deadlock Solution

• Prevents deadlocks in advance, or
detects them, breaks them, and fixes the system

• Small overhead
• Smallest possible waiting times
• Does not slow down computations when no danger

exists
• Does not block unnecessarily any process when the

resource wanted is available

1513.11.2009 Copyright Teemu Kerola 2009

Conditions for Deadlock (6)

• Three policy conditions
– S1. Mutual exclusion

• one user of any resource at a time (not just code)
– S2. Hold and wait

• a process may hold allocated resources
while waiting for others

– S3. No preemption
• resource can not be forcibly removed from a process

holding it
• A dynamic (execution time) condition takes

place
– D1. Circular wait: a closed chain of processes exists,

each process holds at least one resource needed
by the next process in chain

1613.11.2009 Copyright Teemu Kerola 2009

Coffman, 1971

E.G. Coffman

E.g., slide 5

http://portal.acm.org/citation.cfm?id=356588&coll=GUIDE&dl=GUIDE&CFID=4442763&CFTOKEN=75849639&ret=1#Fulltext

yksi käyttäjä

pidä ja odota

ei keskeytettävissä

kehäodotus

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 9

Dining Philosophers (Dijkstra)

1713.11.2009 Copyright Teemu Kerola 2009

Philosopher:
think
take two forks ...
… one from each side
eat rice until satisfied
return the forks

0

1
2

3

4

Problem:
how to reserve the forks
without causing
- deadlock
- starvation

and everybody may be
presentSee philosopher art in web

Dijkstra

http://images.google.fi/images?q=dinig%20philosophers&ie=UTF-8&oe=utf-8&rls=org.mozilla:en-US:official&client=firefox-a&um=1&sa=N&tab=wi

Dining Philosophers in Java
• Tapio Lehtomäki,

MikroBitti
• Load program

from course
schedule page

• Modify paths in
script
philosophers.bat
and run it

• Modify program
for homework?
– Next year?

1813.11.2009 Copyright Teemu Kerola 2009

Lehtomaki.zip

http://www.cs.helsinki.fi/u/kerola/rio/Lehtomaki/Lehtomaki.zip

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 10

• Possible deadlock – not good
– All 5 grab left fork “at the same time”

1913.11.2009 Copyright Teemu Kerola 2009

(Fig. 6.12 [Stal06])

Trivial
Solution

#1

/* mutex, one at a time */

/* left fork */
/* right fork */

Trivial
Solution

#2

• No deadlock, no starvation, and no company while eating – not good
• Waiting when resources are available – not good

2013.11.2009 Copyright Teemu Kerola 2009

(Fig. 6.13 [Stal06])
/* only 4 at a time, 5th waits */

which scenario?

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 11

Deadlock Prevention
• How to prevent deadlock occurrence in advance?
• Deadlock possible only when

all 4 conditions are met:
– S1. Mutual exclusion
– S2. Hold and wait
– S3. No preemption
– D1. Circular wait

• Solution: disallow any one of the conditions
– S1, S2, S3, or D1?
– Which is possible to disallow?
– Which is easiest to disallow?

2113.11.2009 Copyright Teemu Kerola 2009

poissulkemistarve

pidä ja odota

ei saa ottaa pois kesken kaiken

kehäodotus

Disallow S1 (mutual exclusion)
• Can not do always

– There are reasons for mutual exclusion!
• Can not split philosophers fork into 2 resources

• Can do sometimes
– Too high granularity blocks too much

• Resource room in trivial solution #2
– Finer granularity allows parallelism

• Smaller areas, parallel usage, more locks
• More administration to manage more locks
• Too fine granularity may cause too much administration work

– Normal design approach in data bases, for example
• Get more resources, avoid mutex competition?

– Buy another fork for each philosopher?

2213.11.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 12

Disallow S2 (hold and wait)
• Request all needed resources at one time
• Wait until all can be granted simultaneously

– Can lead to starvation
• Reserve both forks at once (simultaneous wait!)
• Neighbouring philosophers eat all the time alternating

• Inefficient
– long wait for resources (to be used much later?)
– worst case reservation (long wait period for resources which are

possibly needed - who knows?)
• Difficult/impossible to implement?

– advance knowledge: resources of all possible execution paths of
all related modules ...

2313.11.2009 Copyright Teemu Kerola 2009

A
B

Disallow S3 (no preemption)
• Allow preemption in crisis
• Release of resources => fallback to some earlier state

– Initial reservation of these resources
– Fall back to specific checkpoint
– Checkpoint must have been saved earlier
– Must know when to fall back!

• OK, if the system has been designed for this
– Practical, if saving the state is cheap and the chance of

deadlock is to be considered
– Standard procedure for transaction processing

•

– What will philosopher i 1 do now? Think? Eat? Die?

2413.11.2009 Copyright Teemu Kerola 2009

wait (fork[i]);
if “all forks taken” then

“remove fork” from philosopher [i 1]
wait (fork[i 1])

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 13

Disallow D1 (circular wait)
• Linear ordering of resources

– Make reservations in this order only – no loops!
• Pessimistic approach – prevent “loops” in advance

– Advance knowledge of resource requirements needed
– Reserve all at once in given order
– Prepare for ”worst case” behavior

• Optimistic approach – worry only at the last moment
– Reservation dynamically as needed (but in order)
– Reservation conflict => restart from some earlier stage

• Must have earlier state saved somewhere
2513.11.2009 Copyright Teemu Kerola 2009

Forks in global ascending order
philosophers 0, 1, 2, 3:

wait (fork[i]);
wait (fork[i+1]);

last philosopher 4:
wait (fork[0]);
wait (fork[4]);

Deadlock Detection and Recovery (4)

• Let the system run until deadlock problem occurs
– “Detect deadlock existance”
– “Locate deadlock and fix the system”

• Detection is not trivial:
– Blocked group of processes is deadlocked? or
– Blocked group is just waiting for an external event?

• Recovery
– Detection is first needed
– Fallback to a previous state (does it exist?)
– Killing one or more members of the deadlocked group

• Must be able to do it without overall system
damage

• Needed: information about resource allocation
– In a form suitable for deadlock detection!

2613.11.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 14

Resource Allocation
• Processes Pi P1..Pn
• Resources (or objects) Rj R1..Rm
• Number of resources of type Rj

– total amount of resources R = (r1, ..., rm)
– currently free resources V = (v1, ..., vm)

• Allocated resources (allocation matrix)
– A = [aij], “process Pi has aij units of resource Rj”

• Outstanding requests (request matrix)
– Q = [qij], “process Pi requests qij units of

resource Rj”

2713.11.2009 Copyright Teemu Kerola 2009

2813.11.2009 Copyright Teemu Kerola 2009

Is there now a
deadlock or not?(Fig. 6.10 [Stal06])

P2 has now R1 and R2,

Who has
now R4?

Which
resources
are now free?

P2 wants now R3 and R5

How many R4 resources exists?

V

R

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 15

Deadlock Detection (Dijkstra) (4)

1. Find a (any) process that could terminate
• All of its current resource requests can

be satisfied
2. Assume now that

a. This process terminates, and
b. It releases all of its resources

3. Repeat 1&2 until can not find any more such processes
4. If any processes still exist, they are deadlocked

a. They all each need something
b. The process holding that something is waiting for

something else
• That process can not advance and release it

2913.11.2009 Copyright Teemu Kerola 2009

Dijkstra

Deadlock Detection Algorithm (DDA)

3013.11.2009 Copyright Teemu Kerola 2009

When the algorithm terminates, unmarked processes
correspond to deadlocked processes. Why?

DL1. [Remove the processes with no resources]
Mark all processes with null rows in A.

DL2. [Initialize counters for available objects]
Initialize a working vector W = V

DL3. [Search for a process Pi which could get
all resources it requires]

Search for an unmarked row i such that
qij wj j = 1..n

If none is found terminate the algorithm.
DL4. [Increase W with the resources of the chosen process]

Set W = W+Ai* i.e. wj = wj+ aij when j = 1..n
Mark process Pi and return to step DL3.

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 16

Example: Initial state

3113.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

allocation matrix
A

request matrix
Q

0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R

free resources V

Deadlock or not?

2 1 1 2 1

0 0 0 0 1

row 1:
2:
3:
4:

E.g.,
”process 2 has
resources 1 & 2,
and it wants
resources 3 & 5”

Who holds
resource 4?

Which resources
are free?

What now?(Fig. 6.10 [Stal06])

Example: Deadlock Detection

3213.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

0 0 0 1 1DL4: new W +

DL3: this request
can be satisfied:
q3j wj j

DL1: mark
DL4: mark

DL3: no request
can be satisfied:

i j: qij wj
Deadlock

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 17

Example: Deadlock Detection (phases)

3313.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

Example: Deadlock Detection (phases)

3413.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

DL1: mark

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 18

Example: Deadlock Detection (phases)

3513.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

DL1: mark

Example: Deadlock Detection (phases)

3613.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

DL3: this request
can be satisfied:
q3j wj j

DL1: mark

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 19

Example: Deadlock Detection (phases)

3713.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

0 0 0 1 1DL4: new W +

DL3: this request
can be satisfied:
q3j wj j

DL1: mark

Example: Deadlock Detection (phases)

3813.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

0 0 0 1 1DL4: new W +

DL3: this request
can be satisfied:
q3j wj j

DL1: mark
DL4: mark

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 20

Example: Deadlock Detection (phases)

3913.11.2009 Copyright Teemu Kerola 2009

1 0 1 1 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

A Q
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 1 0 1

all resources R:

free resources V:

may become free W:

2 1 1 2 1

0 0 0 0 1

0 0 0 0 1
DL2: copy

0 0 0 1 1DL4: new W +

DL3: this request
can be satisfied:
q3j wj j

DL1: mark
DL4: mark

DL3: no request
can be satisfied:

i j: qij wj
Deadlock

Example: Breaking Deadlocks
• Processes P1 and P2 are in deadlock

– What next?
• Abort P1 and P2

– Most common solution
• Rollback P1 and P2 to previous safe state, and try again

– Rollback states must exist
– May deadlock again (or may not!)

• Abort P1 because it is less important
– Must have some basis for selection
– Who makes the decision? Automatic?

• Preempt R3 from P1
– Must be able to preempt (easy if R3 is CPU?)
– Must know what to preempt from whom
– How many resources need preemption?

4013.11.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 21

Deadlock Avoidance with DDA

• Use Dijstra’s algorithm to avoid
deadlocks in advance?

• Banker’s Algorithm
– Originally for one resource (money)
– Why ”Banker’s”?

• ”Ensure that a bank never allocates its available
cash so that it can no longer satisfy the needs of
all its customers”

4113.11.2009 Copyright Teemu Kerola 2009

Pankkiirin algoritmi

Banker’s Algorithm (6)

• Keep state information on resources
allocated to each process

• Keep state information on number of resources
each process might still allocate

• For each resource allocation, first find an ordering
which allows processes to terminate, if that
allocation is made
– Assume that allocation is made and then use DDA to

find out if the system remains in a safe state even in the
worst case

– If deadlock is possible, reject resource request
– If deadlock is not possible, grant resource request

4213.11.2009 Copyright Teemu Kerola 2009

Dijkstra

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 22

Deadlock Avoidance with
Banker’s Algorithm (6)

Matrices as before, and some more
• For each process: the maximum needs of resources

– C = [cij], “Pi may request cij units of Rj”
• The current hypothesis of resources in use

– A’ = [a’ij], “if this allocation is made,
Pi would have a’ij units of Rj”

• The current hypothesis of future maximum demands
– Q’ = [q’ij], “Pi could still request q’ij units of Rj”

Q’ = C - A’
• Apply DDA to A’ and Q’

– If no deadlock possible, grant resource request

4313.11.2009 Copyright Teemu Kerola 2009

Possible
allocation

Possible request

Banker’s Algorithm Example

4413.11.2009 Copyright Teemu Kerola 2009

Allocation A

01100P4
10100P3
00011P2
00010P1
R5R4R3R2R1

Requests Q

10000
01000
10000
00001
R5R4R3R2R1

Max allocation C

11120
11101
10011
01012
R5R4R3R2R1

Resources R 21232

Available V 10011
R5R4R3R2R1

P1 requests R1. Is request granted?
Could system deadlock, if R1 is granted?

(Fig. 16.11, Bacon, Concurrent Systems, 1993)

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 23

Banker’s Algorithm Example (7)

4513.11.2009 Copyright Teemu Kerola 2009

Possible allocation A'

01100P4
10100P3
00011P2
00011P1
R5R4R3R2R1

Q’ = C – A’
Possible requests Q’

10020
01001
10000
01001
R5R4R3R2R1

Max allocation C

11120
11101
10011
01012
R5R4R3R2R1

Resources R 21232

If P1 request for R1 approved, can deadlock occur?

Available V 10011
R5R4R3R2R1

Possibly
available V' 10010

R5R4R3R2R1
11132W

21232W

DDA-4: mark P1

DDA-4: mark P3

DDA-4: mark P2

W 10021

W 10010
R5R4R3R2R1

11121W

DDA-4: mark P4

DDA: no deadlock, allocation request OK

Avoidance: Problems
• Each allocation: a considerable overhead

– Run Banker’s algorithm for 20 processes and 100 resources?

• Knowledge of maximum needs
– In advance?

• An educated guess? Worst case?
– Dynamically?

• Even more overhead
• A safe allocation does not always exist

– An unsafe state does not always lead to deadlock
– You may want to take a risk!

4613.11.2009 Copyright Teemu Kerola 2009

Another Banker’s Algorithm example: B. Gray, Univ. of Idaho
http://www.if.uidaho.edu/~bgray/classes/cs341/doc/banker.html

Concurrent Programming (RIO) 13.11.2009

Lecture 5: Deadlocks 24

Summary
• Difficult real problem
• Can detect deadlocks

– Need specific data on resource usage
• Difficult to break deadlocks

– How will killing processes affect the system?
• Can prevent deadlocks

– Prevent any one of those four conditions
• E.g., reserve resources always in given order

– Can analyze system at resource reservation time
to see whether deadlock might result

• Complex and expensive
4713.11.2009 Copyright Teemu Kerola 2009

Dijkstra’s DDA

Bankers

