
Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 1

116.11.2008 Copyright Teemu Kerola 2007

Semaphore Use In
Synchronization

Ch 6 [BenA 06]

Consumer Producer Revisited
Readers and Writers

Baton Passing
Private Semaphores

Resource Management

Lesson 7

216.11.2008 Copyright Teemu Kerola 2007

Synchronization
with Semaphores

R1
R2
R3
R4

Q

sem gate = -3; # must know number of R’s (!)

Process R[i = 1 to 4]
….
V(gate); # signal Q
…

Process Q
….
P (gate)
…
how to prepare for next time?
sem_set (gate, -3) ??

sem g[i = 1 to 4] = 0;

Process R[i = 1 to 4]
….
V(g[i]); # signal Q
…

Process Q
….
P(g[1]); P(g[2]); P(g[3]); P(g[4]);
…
Q must know number of R’s

316.11.2008 Copyright Teemu Kerola 2007

Barrier Synchronization
with Semaphores

• Barrier is implemented as separate process
– This is just one possibility to implement the barrier
– Cost of process switches?
– How many process switches?

Q1
Q2
Q3
Q4

sem g[i = 1 to 4] = 0;
cont = 0;

Process Q[i = 1 to 4]
….
V(g[i]); # signal others
P(cont); # wait for others
…

Process Barrier
….
P(g[1]); P(g[2]); P(g[3]); P(g[4]); #wait for all
V(cont); V(cont); V(cont); V(cont); #signal all
…
Barrier must know number of Q’s

Q1
Q2
Q3
Q4

416.11.2008 Copyright Teemu Kerola 2007

Barrier Synchronization
with

Barrier OS-Primitive
• Specific synchronization primitive in OS

– Implemented with semafores…
– No need for extra process – less process switches

Q1
Q2
Q3
Q4

Q1
Q2
Q3
Q4

barrier br;

barrier_init (br, 4); # must be done before use

process Q[i = 1 to 4]
….
barrier_wait (br) # wait until all have reached this point
if (pid==1) # is this ok? is this done in time?

barrier_init (br, 4)
…

516.11.2008 Copyright Teemu Kerola 2007

Communication with
Semaphores W R

Sem mutex=1, data_ready = 0;
Int buffer; # one data item buffer

Process W
….
P(mutex)

write_buffer(data)
V(mutex)
V(data_ready); # signal Q
…

Process R
….
P(data_ready); # wait for data
P(mutex)

read_buffer(data)
V(mutex)
….

data

• What is wrong?

– Might have extra knowledge to avoid the problem
W might rewrite data buffer before R reads it

616.11.2008 Copyright Teemu Kerola 2007

Communication with
Semaphores Correctly W R

Sem mutex=1, data_ready = 0, buffer_empty=1;
Int buffer

Process W
….
P(buffer_empty);
P(mutex)

write_buffer(data)
V(mutex)
V(data_ready); # signal Q
…

Process R
….
P(data_ready); # wait for data
P(mutex)

read_buffer(data)
V(mutex)
V(buffer_empty)

data

• Fast W can not overtake R now
• One reader R, one writer W, binary semaphores
• Communication with buffer in shared memory

– Use: 1 producer – 1 consumer – size 1 buffer

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 2

716.11.2008 Copyright Teemu Kerola 2007

Producer-Consumer
with Binary Semaphores
• Binary semaphore has values 0 and 1

– OS or programming language library
• Semaphore does not keep count

– Must have own variable count (nr of elements in buffer)
• Protect it with critical section

• Two important state changes
– Empty buffer becomes not empty

• Consumer may need to be awakened
– Full buffer becomes not full

• Producer may need to be awakened

mutex

items

space

(Liisa Marttinen)

816.11.2008 Copyright Teemu Kerola 2007

Simple Solution #1
(Producer-Consumer with Binary Semaphores)

typeT buf[n]; /* n element buffer */
int front=0, /* read from here */

rear=0, /* write to this one */
count=0; /* nr of items in buf */

sem space=1, /* need this to write */
items=0, /* need this to read */
mutex=1; /* need this to update count */

916.11.2008 Copyright Teemu Kerola 2007

Sol.
#1

process Producer [i=1 to M] {
while(true) {

... produce data …
P(space); /* wait until space to write*/
P(mutex);

buf[rear] = data; rear = (rear+1) %n; count++;
if (count == 1) V(items); /* first item to empty buffer */
if (count < n) V(space); /* still room for next producer */

V(mutex);
}

}
process Consumer [i=1 to N] {
while(true) {

P(items); /* wait until items to consume */
P(mutex);
data=buf[front]; front = (front+1) %n; count--;
if (count == n-1) V(space); /* buffer was full */
if (count > 0) V(items); /* still items for next consumer */

V(mutex);
... consume data …
}

}
1016.11.2008 Copyright Teemu Kerola 2007

Evaluate Solution #1
• Simple solution

– Mutex and synchronization ok
– Mutex inside space or items

• Get space first and then mutex
• Buffer reserved for one producer/consumer at a

time
– Does not allow for simultaneous buffer use

• Producer inserts item to “rear”
• Consumer removes item from “front”

• First waiting producer/consumer advances when
signalled
– Queued in semaphores

Not good

Simulta-
neously?

1116.11.2008 Copyright Teemu Kerola 2007

Better Solution #2
(Producer-Consumer with Binary Semaphores)

typeT buf[n]; /* n element buffer */
int front=0, /* read from here */

rear=0, /* write to this one */
count=0; /* nr of items in buf */

sem space=1, /* need this to write */
items=0, /* need this to read */
mutex=1; /* need this to update count */

1216.11.2008 Copyright Teemu Kerola 2007

Sol.
#2

process Producer [i=1 to M] {
while(true) {

... produce data …
P(space); /* wait until space to write*/
buf[rear] = data; rear = (rear+1) %n; /* outside mutex, ok? */
P(mutex);

count++; /* this must be in mutex */
if (count == 1) V(items); /* first item to empty buffer */
if (count < n) V(space); /* still room for next producer */

V(mutex);
} }

process Consumer [i=1 to N] {
while(true) {

P(items); /* wait until items to consume */
data=buf[front]; front = (front+1) %n; /* outside mutex, ok? */
P(mutex);

count--;
if (count == n-1) V(space); /* buffer was full */
if (count > 0) V(items); /* still items for next consumer */

V(mutex);
... consume data …

} }

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 3

1316.11.2008 Copyright Teemu Kerola 2007

Evaluate Solution #2
• Relatively simple solution

– Data copying (insert, remove) outside critical section
• Protected by a semaphore (items and space)

• Simultaneous insert and remove ops
– Producer inserts item to “rear”
– Consumer removes item from “front”

• First waiting producer/consumer advances when
signalled
– Queued in semaphores

1416.11.2008 Copyright Teemu Kerola 2007

Another Solution #3
(Producer-Consumer with Binary Semaphores)

typeT buf[n]; /* n element buffer */
int front=0, /* read from here */

rear=0, /* write to this one */
count=0, /* nr of items in buf */
cwp=0, /* nr of waiting producers */
cwc=0; /* nr of waiting consumers */

sem space=1, /* need this to write */
items=0, /* need this to read */
mutex=1; /* need this to update count */

• Use condition synchronization
– Do P(space) or P(items) only when needed

• Expensive op?
• Requires execution state change (kernel/user)?

Ehto-
synkro-
nointi

1516.11.2008 Copyright Teemu Kerola 2007

Sol.
#3

process Producer [i=1 to M] {
while(true) {

... produce data …
P(mutex);
while (count == n) /* usually not true? while, not if !*/

{ cwp++; V(mutex); P(space); P(mutex); cwp-- }
buf[rear] = data; rear = (rear+1) %n; count++;
if (count == 1 && cwc>0) V(items);
if (count < n && cwp>0) V(space);

V(mutex);
} }

process Consumer [i=1 to N] {
while(true) {

P(mutex);
while (count == n) /* while, not if !*/

{ cwc++; V(mutex); P(items); P(mutex); cwc-- }
data=buf[front]; front = (front+1) %n; count--;
if (count == n-1 && cwp>0) V(space);
if (count > 0 && cwc > 0) V(items);

V(mutex);
... consume data …

} }
1616.11.2008 Copyright Teemu Kerola 2007

Evaluate Solution #3
• No simultaneous insert and remove ops

– Data copying inside critical section
• In general case, only mutex semaphore operations

needed
– Most of the time?
– Can they be busy-wait semaphores?

• First waiting producer/consumer does not
necessarily advance when signalled
– Someone else may get mutex first

• E.g., consumer signals (Vspace), another producer gets mutex
and places its data in buffer.

– Need “while” loop in waiting code
– Unfair solution even with strong semaphores?

• How to fix?
• Baton passing (pass critical section to next process)?

1716.11.2008 Copyright Teemu Kerola 2007

Solutions #1, #2, and #3
• Which one is best? Why? When?
• How to maximise concurrency?

– Separate data transfer (insert, remove) from permission
to do it

• Allow obtaining permission
(e.g., code with P(space) and updating count)

for one process run concurrently with data transfer
for another process

(e.g., code with buf[rear] = data; …)
• Need new mutexes to protect data transfers and

index (rear, front) manipulation
– Problem: signalling to other producers/consumers

should happen in same critical section with updating
count, but should happen only after data transfer is
completed

1816.11.2008 Copyright Teemu Kerola 2007

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 4

1916.11.2008 Copyright Teemu Kerola 2007

Readers and Writers Problem
• Shared data structure or data base
• Two types of users: readers and writers
• Readers

– Many can read at the same time
– Can not write when someone reads
– Can not read when someone writes

• Writers
– Read and modify data
– Only one can be active at the same time
– Can be active only when there are no readers

Jeff Magee
example

(Imperial College,
London)

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadersWriters.html
2016.11.2008 Copyright Teemu Kerola 2007

• Simple solution
– Only one reader or writer at a time (not good)

(Fig 4.8 [Andr00])

reader
entry
protocol

reader
exit
protocol

writer
entry
protocol

writer
exit
protocol

2116.11.2008 Copyright Teemu Kerola 2007

(And00, Fig 4.9)

std
mutex

Jeff Magee example

How should you
adjust the readers to
starve writers?
(Fig 4.9 [Andr00])

Writers may starve – not good.
Writers have no chance to cut in between readers.

Only the first
reader waits

Release mutex before P(rw)? (no need)

synchronization

2216.11.2008 Copyright Teemu Kerola 2007

Readers and Writers with Baton Passing
Split Binary Semaphore

• Component semaphores e, r, w
– Mutex wait in P(e), initially 1
– Readers wait in P(r) if needed, initially 0
– Writers wait in P(w) if needed, initially 0

• In critical control areas only one process advances at a time
– Wait in e, r, or w

• One advances, others wait in e, r or w
– New reader/writer: wait in P(e)
– Waiting for read turn: V(e); P(r)

• Wait while not holding mutex
– Waiting for write turn: V(e); P(w)

• Wait while not holding mutex
– When done, pass the baton (turn) to next one

(Fig 4.13 [Andr00])

(Alg. 6.21 [BenA06])

P(e) … V(e)

P(e) … V(r)

P(r) … V(r)

P(r) … V(w)

P(w) … V(e)

P(e) … V(w)

…

…

0 e+r+w 1

2316.11.2008 Copyright Teemu Kerola 2007

Andrews Fig. 4.12:
Outline of readers
and writers with
passing the baton.

(rStart)

(rExit)

(wExit)

(wStart)

?

??
P(r) … V(w) ?

P(e) … V(e) ?
P(r) … V(e) ?

P(e) … V(w) ?

?

P(e) …
V(

w) ?

Baton passing = “do not just release CS, give it to someone special…”
2416.11.2008 Copyright Teemu Kerola 2007

Baton passing
• When done your own mutex zone, wake up next …

(one or more semaphores control the same mutex)
–If reader waiting and no writers: V(r)

• Do not release mutex (currently reserved e, r, or w)
• New reader will continue with mutex already locked

“pass the mutex baton to next reader”
– No one else can come to mutex zone in between

• Last waiting reader will close the mutex with V(e)
• Can happen concurrently when reading database

–Else if writer waiting and no readers: V(w)
• Do not release mutex, pass baton to writer

–Else (let new process to compete with old ones): V(e)
• Release mutex to let new process in the game

(to execute entry or exit protocols)
• New process gets in mutex only when no old one can be advance
• Can happen concurrently when reading database

SIGNAL()

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadersWriters.html

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 5

2516.11.2008 Copyright Teemu Kerola 2007

Baton Passing with SIGNAL
SIGNAL – CS baton passing, priority on readers

if (nw == 0 and dr > 0) {
dr = dr -1;
V(r); # wake up waiting reader

}
else if (nr == 0 and nw == 0 and dw > 0) {

dw = dw -1;
V(w); # wake up waiting writer

}
else

V(e); # let new process to mix

not
possible
in wStart,
rExit

not
possible
in rStart

“pass
the
baton
within
CS”

“just
complete
CS”

2616.11.2008 Copyright Teemu Kerola 2007

Fig. 4.13 [Andr00]:
readers / writers
solution using
passing the baton
(with SIGNAL code)

Still readers first

Unnecessary parts of SIGNAL
code is removed

Modify to give writers priority?

next writer

next reader

1st reader

1st writer

2716.11.2008 Copyright Teemu Kerola 2007

Resource Management
• Problem

– Many types of resources
– N units of given resource
– Request allocation: K units

• Wait suspended until
resource available

• Solution
– Semaphore mutex (init 1)
– Semaphore Xavail

• init N – wait for available resource
• init 0 - wait for permission to continue

use printer
use webcam
access database
access CS
allocate memory
allocate buffer
use comm port
get user focus
etc. etc.

2816.11.2008 Copyright Teemu Kerola 2007

Simple Bad Solution
• What is wrong?

– everything
• Mutex?
• Deadlock?
• Unnecessary delays?

– Each P() may result
in (long) delay?

– Hold mutex while
waiting for resource

• Very, very bad
• Others can not get

mutex to release
resources…

sem Xmutex = 1, Xavail = N

Xres_request () # one unit at a time
P(Xmutex)
P(Xavail) # ok if always

allocate just 1 unit
take 1 unit # not simple,

may take long time?
V(Xmutex);

Xres_release ()
P(Xmutex)
return 1 unit
V(Xavail);
V(Xmutex);

2916.11.2008 Copyright Teemu Kerola 2007

Another Not So Good Solution

• What is wrong?
– Works only for

resources allocated
and freed one unit at
a time

• Mutex?
– Mutex of control

data?
– Mutex of resource

allocation data
structures?

sem Xmutex = 1, Xavail = N

Xres_request () # one unit at a time
P(Xavail) # ok if always

allocate just 1 unit
P(Xmutex)
take 1 unit # not simple,

may take long time?
V(Xmutex);

Xres_release ()
P(Xmutex)

return 1 unit
V(Xmutex);
V(Xavail);

3016.11.2008 Copyright Teemu Kerola 2007

Resource Management with
Baton Passing Split Semaphore

sem Xmutex = 1, Xavail = 0 (not N) ; split semaphore

Xres_request (K) – request K units of given resource
P(Xmutex)
if “not enough free units” {V(Xmutex); P(Xavail);}
take K units ; assume short time
if “requests pending and enough free units” {V(Xavail); }
else V(Xmutex);

Xres_release (K)
P(Xmutex)
return K units
if “requests pending and enough free units” {V(Xavail);}
else V(Xmutex);

baton passing

baton passing

CS

CS

; (short wait) (long wait)

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 6

3116.11.2008 Copyright Teemu Kerola 2007

Problems with Resource
Management

• Need strong semaphores
• Strong semaphores are FIFO

– What if 1st in line want 6 units, 2nd wants 3
units, and there are 4 units left?

– What about priorities?
• Each priority class has its own semaphore
• Baton passing within each priority class?

– How to release just some specific process?
• Strong semaphore releases 1st in line
• Answer: private semaphores

3216.11.2008 Copyright Teemu Kerola 2007

Private Semaphore
• Semaphore, to which only one process can ever make a

P-operation
– Initialized to 0, belongs to that process

• Usually part of PCB (process control block) for the
process
– Can create own semaphore arrays for this purpose

• Process makes demands, and then waits in private
semaphore for turn

• Most often just one process at a time
– Usually P(mutex) does not lead to process switches

• Usually still need to wait in private semaphore

P(mutex)
set up resource demands

V(mutex)
P(me.PrivSem)

P(mutex)
locate next process Q to release
V(Q.PrivSem)

V(mutex)

Process User Process Server

3316.11.2008 Copyright Teemu Kerola 2007

Shortest Job Next
(Private Semaphore Use Example)

• Common resource allocation method
– Here: time = amount of resource requested
– Here: just select next job (with shortest time)
– Here: just one job (at most) holding the resource at a time

• Use private semaphores
• request(time,id): # requested time, user id

P(e);
if (!free) DELAY(); # wait for your turn
free = false; # got it!
V(e); # not SIGNAL(), only 1 at a time

• release():
P(e);
free = true;
SIGNAL(); # who gets the next one?

pass baton, or release mutex

CS

CS

??

3416.11.2008 Copyright Teemu Kerola 2007

• DELAY:
– Place delayed process in queue PAIRS

(ordered in ascending requested resource amount
order) in correct place

– V(e) – release mutex
– Wait for your turn in private semaphore P(b[ID])

• Each process has private semaphore, where only
that process waits (initial value 0)

• PAIRS queue determines order, one always
wakes up the process at the head of the queue

– Priority: smallest resource request first

• SIGNAL (in Release)
– If someone waiting, take first one (time, ID), and

wake up that process: V(b[ID]);
– o/w V(e)

3516.11.2008 Copyright Teemu Kerola 2007

PAIRS: P2 P15 P3 P1
3 6 17 64

ID
time

Queue can be ordered according
to requested cpu-time
(requested cpu-time is the resource in this example)

request(26, P11)

…b[n]

Private semaphore b[ID] for each process ID: 0 ..n-1

Process release is dependent on its location in PAIRS.
When resource becomes free, the 1st process in line may
advance.

0 1 2 3 n-1
P1 P3

3616.11.2008 Copyright Teemu Kerola 2007

Andr00 Fig. 4.14
Shortest job next
(cpu scheduling
policy)
allocation using
semaphores.

CS

CS

Concurrent Programming (RIO) 16.11.2008

Lecture 7: Readers and Writers 7

3716.11.2008 Copyright Teemu Kerola 2007

Semaphore Feature Summary
• Many implementations and semantics

– Be careful to use
– E.g., is the (process) scheduler called after each V()?

• Which one continues with processor, the process executing V()
or the process just woken up?

– Busy wait vs. suspend state?
• Hand coded synchronization solutions

– Can solve almost any synchronization problem
– Baton passing is useful and tricky

• Explicit handover of some resource
– Be careful to use

• Do not leave mutex’es open
• Do not suspend inside mutex
• Avoid deadlocks
• Do (multiple) P’s and V’s in correct order

