Concurrent Programming (R10) 30.11.2009

Lesson 9

Concurrency Control in
Distributed Environment

Ch 8 [BenA 06]

Messages
Channels
Rendezvous
RPC and RMI
Distributed System

No shared memory

Communication with
messages

Tighly coupled systems
— Processes alive at the same time
Persistent systems

— Data stays even if processes die
Fully distributed systems

— Everything goes

30.11.2009 Copyright Teemu Kerola 2008 2

Lecture 9: Channels and RPC 1

Concurrent Programming (RIO) 30.11.2009

Communication with Messages ()

Prosess Prosess
A B

X=f(..); receive X from A
send X to B Y=f(X);

1 X:10 | S X:10 |

| communi-

0S send cation receive 0S
kernel ¢ hannel | °¢ kernel

» Sender, receiver
» Synchronous/asynchronous communication

30.11.2009 Copyright Teemu Kerola 2008 3

Message Passing

» Synchronous communication
— Atomic action
— Both wait until communication complete
» Asynchronous communication Usual case
— Sender continues after giving the message to OS for delivery
— May get an acknowledgement later on
» Message received or not

» Addressing

— Some address for receiver process prosessi

* Process name, id, node/name, ...

— Some address for the communication channel kanava

e Port number, channel name, ...
— Some address for requested service palvelu

» Broker will find out, sooner or later meklari

— After message has been sent?
« Service address not known at service request time
30.11.2009 Copyright Teemu Kerola 2008 4

Lecture 9: Channels and RPC 2

Concurrent Programming (RIO)

Process A

Synchronization levels (o)

Process B

reliable comm
X=f(..); receive X from A
send X to B Y=f(X};]
[X:10 | |X:5 |
OS [Kng ‘ DC DC ‘ regeiye ‘ 0S
>| |
kerne - kernel
synchronous?
30.11.2009 Copyright Teemu Kerola 2008 _ 5

Process A

X=f(..);
send X to B

[X:10 |

oS send‘ DC
kerne

30.11.2009 Copyright Teemu Kerola 2008

Synchronization levels s

Process B

receive X from A
Y=£(X);

|X:5

DC

receive (ON)

kernel

Lecture 9: Channels and RPC

30.11.2009

Concurrent Programming (RIO)

asynchronous?

X=F(..):

send X to B

[X:10

Synchronization levels @s)

Process A

Process B

receive X from A
Y=£(X);

|X:5 |

0S send ‘

kerne

Data
Com

DC | | receive (ON)

30.11.2009 Copyright Teemu Kerola 2008

kernel

asynchronous?

X=F(..):

send X to B

[X:10

Synchronization levels @)

Process A

Process B

receive X from A
Y=£(X);

|X:5 |

0S send ‘

DC

kerne

DC | | receive (ON)
kernel

30.11.2009 Copyright Teemu Kerola 2008

Lecture 9: Channels and RPC

30.11.2009

Concurrent Programming (RIO) 30.11.2009

Synchronization levels ws)

Process A Process B

reliable comm
X=f(..); receive X from A
send X to B Y=f(X);
[X:10 | |X:5 |
OS [kend |nc DC || receive 0S
kerne ‘] >] | kernel
30.11.2009 Copyright Teemu Kerola 2008 9

Synchronization levels @)

Process A Process B

X=f(..); receive X from A
send X to B Y=F(X);]
[X:10 | |X:5 |
OS [&ng ‘ DC DC ‘ redeiye ‘ 0S
kerne . : kernel
synchronous?
30.11.2009 Copyright Teemu Kerola 2008 10

Lecture 9: Channels and RPC 5

Concurrent Programming (R10) 30.11.2009

Message Passing

e Symmetric communication
— Cooperating processes at same level
— Both know about each others address
— Communication method for a fixed channel

Asymmetric communication
— Different status for communicating processes
— Client-server model
« Server address known, client address given in request

Broadcast communication
— Receiver not addressed directly
— Message sent to everybody (in one node?)
— Receivers may be limited in number
* Just one?
 Only the intended recipient will act on it?

30.11.2009 Copyright Teemu Kerola 2008 11

Wait Semantics

» Sender
— Continue after OS has taken the message
 Non-blocking send

— Continue after message reached receiver node
* Blocking send

— Continue after message reached receiver process
* Blocking send
* Receiver
— Continue only after message received

Usual case

- - Usual case
* Blocking receive
— Continue even if no message received
» Status indicated whether message received or not
 Non-blocking receive
30.11.2009 Copyright Teemu Kerola 2008 12

Lecture 9: Channels and RPC 6

Concurrent Programming (R10)

30.11.2009

Message Passing

 Data flow
— One-way
 Synchronous may be one-way data flow
 Asynchronous is always one-way Z?ntrol o

— Two-way
 Synchronous may be two-way
» Two asynchronous communications

e Primitives

— One message at a time
— Need addresses for communicating processes
— Operating system level service

— Usually not programming language level construct

* Too primitive: need to know node id, process id, port
number,...

Copyright Teemu Kerola 2008 13

30.11.2009

Copyright Teemu Kerola 2008 14

Lecture 9: Channels and RPC

30.11.2009

Concurrent Programming (R10) 30.11.2009

Channels

 History of languages utilizing channels
— Guarded Commands
* Dijkstra, 1975

— Communicating Sequential {
Processes

* CSP, Hoare, 1978
— Occam
» David May et al, 1983
 Hoare as consultant
* Inmos Transputer David May

C.AR. Hoare

30.11.2009 Copyright Teemu Kerola 2008 15

Guarded Commands (Dijkstra)

» Way to describe predicate transformer semantics

» Communication not really specified predikaatti-
muunnos-
Guarded command CLsS semantiikka

— Condition or guard

— Statement .
greatest common divisor

X,y=X,Y --statement (unguarded)
do --loop command, loop terminates when x =y

XY — vartioitu
/ if -- conditional command (itself guarded) EUEEC
guard _____——> X>y—Xx:i=x-y --guarded statement in the if
— > y>X—Yyi=yX
i can be also
od input/output

print x ; -- another statement, also unguarded ~ Statement
http://en.wikipedia.org

30.11.2009 Copyright Teemu Kerola 2008 16

Lecture 9: Channels and RPC 8

Concurrent Programming (RIO) 30.11.2009

Communicating Sequential
Processes — CSP (Hoare)

e Language for modeling and analyzing the behavior of
concurrent communicating systems

» A known group of processes A, B, ...
» Communication:
output statement: Ble
* evaluate e, send the value to B
input statement: A?x e
* receive the value from A to x
input, output: blocking statements
— output & input: “distributed assignment”

» Communicate value from one process to a
variable in some other process

A: Ble

B: A?x

30.11.2009 Copyright Teemu Kerola 2008 17

CSP communication

* Input/output statements

— Destination!port (e, ..., €,) ;

— Source?port (Xy, ..., X,) ;
 Binding

— Communication with named processes

— Matching types for communication
 Example: Copy (West => Copy => East)

West: Copy: East:
do true -> do true -> do true ->
Copy!c; Westc; Copy7c;
East!c ;
od od od
30.11.2009 Copyright Teemu Kerola 2008 18

Lecture 9: Channels and RPC

Concurrent Programming (RIO)

OCCAM .
Language

— Each

chan

30.11.2009

» Communication throug
named channels

— Globally defined
» Somewhere, in advance

sender and one receiver
* Process in some node
* Transputer
— Multicomputer
*E.
— Automatic message routing for

— Programmedwith OCCAM

C
channel has one Y:

RAM

AN

T

Memory Inferface

IMS T800

g., 100 node Hathi-2 in AA

nels

http://www.embedded.com.au/reference/transputers.html
19

Copyright Teemu Kerola 2008

OCCAM Example

(Andrews, p 331)

Copy

West o 2 Ea§

PROC Copy (CHAN OF BYTE West, EAsks, East)
BYTE c1, c2, dummy; -- buffer size =2

—

30.11.2009

West ? c2
/ SEQ
|
block here, / East!cl

EAsks West ? cl - - West has 1st byte
WHILE TRUE
ALT

- - West has new byte

- - send previous byte

cl:=c2 --copy to buffercl

until other - — £ qks 2 dummy - - East wants a byte
(“guards”) \East Icl --send previous byte
West ? cl - - receive next one

» How to bind processes to nodes? 8 vs. 100 nodes?

» How to bind channels to processes, physical system?
— 4 physical ports (N, S, E, W) in each processor

Copyright Teemu Kerola 2008

Discussion 1 10

Lecture 9: Channels and RPC

30.11.2009

10

Concurrent Programming (R10)

* B0042
e 2D array
10 boards
420 cpu’s
30 boards
1260 cpu’s
http://www.cs.bris.ac.uk/~dave/transputer.html
30.11.2009 Copyright Teemu Kerola 2008 21
Channels
» Communication through named channels
— Typed, global to processes
— Programming language concept
— Any one can read/write
(usually limited in practice)
* Pipe or mailbox
» Synchronous, one-way (?)
* How to tie in with many nodes?
— Not really thought through! Easy with shared memory!
Algorithm B.1: Producer-consumer (channels)
channel of integer ch
FII‘DC'III:E!I’ consumer
integer x integer y
loop farever loop forever
pl: X « produce ql: ch =y
p2: ch & x buffer size? q2: consume(y)
30.11.2009 Copyright Teemu Kerola 2008 22

Lecture 9: Channels and RPC

30.11.2009

11

Concurrent Programming (R10) 30.11.2009

Filtering Problem

@ compress output @»

...aaaabbb..|aaaa—4a k'thch —\n | ...4a\n3b...

Y

» Compress many (at most MAX) similar characters
to pairs ...
— {nr of chars, char}

... and place newline (\n) after every K’th

“compress”

character in the compressed string “output”
* Why is it called “Conway’s problem”?
— “Classic coroutine example” vuorottaisrutiinit

Conway, M. “Design of a separable transition-diagram
compiler,” CACM 8, 1963, pages 396-408.

30.11.2009 Copyright Teemu Kerola 2008 23
] Filtering Algorithm.3.2: Conway’s problem
constant integer MAX < 9
P_rOblem constant integer K « 4
with Channels channel of integer inC, pipe, outC
compress output
char ¢, previous < 0 char ¢
integer n « 0 integer m « 0
loop forever no last char? loop forever
p: QC = ai: Qipe = O
p2: if (c = previous) and @ QutC < O
(n < MAX = 1)
p3: n<n+1 q3: me<m+1
else
pé: ifn>0 qé: ifm>=K
pb: <@ipe = intToChar(nI> | a5
pb: n<2o0 qb: m«< 0
ps: previous <« c q8:
30.11.2009 Copyright Teemu Kerola 2008 24

Lecture 9: Channels and RPC 12

Concurrent Programming (R10)

Matrix

. 16=(78
- 30=(78

channels

o

» Process for every multiply-add

.........
. .

Multiplication with Channels

123 1|0 4 2 6
456 X 012_ 10 5 18
[789] |ilolo] [16]8 30
9 e(101) 72+ 82+ 90+ 0

9) ¢ (220) other

processes

S>— 7

+30

Result

F
I
iy
+

+ e Zero

30.11.2009

Copyright Teemu Kerola 2008 25

27 processes
24 channels

Process Array for Matrix Multiplication

How to
initialize

2 2 everything?
y0 y1

Source Saurce Source
7

[l =g]

contains 1 row,
sends it down Result
one element

‘l-&-
R
[=a

[
=
.
i}

0,0 3,0,0
3 Zero

I
Lo
[#

L

at a time

-

West-bound
multiply-add,

Result

5 4".'0‘0 6 43‘0'(: Zero

,_.
[
m
-
[+s]

6.,5,10

South-bound
copy North

Result

5 |€= ¢ 200 Zero

._.
o
[+
(5}
*
[7]
=S
i
=
-
=)
=)

three multiply-adds,
forwards values down

30.11.2009

contains 1 value, makes

(=l &
L=

How to
synchronize
everything?

Copyright Teemu Kerola 2008 26

Sink Sink Sink

Lecture 9: Channels and RPC

30.11.2009

13

Concurrent Programming (R10) 30.11.2009

Algorithm 8.3: Multiplier process with channels
integer FirstElement
<channel of integer North, East, South, West—>
integer Sum, integer SecondElemant ' Relative
loop forever names?
pl: North = SecondElement «— wait 1st for this (*)
pz: East = Sum « and then for this
p: Sum « Sum + FirstElement « SecondElement 5
pd: South <= SecondElement lo
ph- West <= Sum L
* How to map processes to nodes? UIEER 7 M’
» How to map channels to processes? >
— North channel of one process the l 0
South channel of some other 1
* North-South data flow has priority (*)
— Waitingeven when data-flow East-West available
— Node on East may be blocked unnecessarily
30.11.2009 Copyright Teemu Kerola 2008 Discussion2 27

Algorithm 8.4; Multiplier with channels and Gelective input
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever

either
pl: North = SecondElement If message from North
p2: East = Sum available, do this
or
p3 East = Sum If message from East
pé: North = SecondElement available, do this
p5: South < SecondElement — sequential block
p6: Sum « Sum + FirstElement - SecondElement

P West < Sum

» Guarded statement
— Execute one selective input statement
» Nondeterministic selection (if both available)
 p2follows p1, it does not compete with p3

30.11.2009 Copyright Teemu Kerola 2008 Discussion3 28

Lecture 9: Channels and RPC 14

Concurrent Programming (R10)

Dining Philosophers with Channels

» Each fork i is a process, forks[i] is a channel
» Each philosopher i is a process

Algorithm 8.5: Dining philosophers with channels

channel of boolean forks[3]

philosopher i

fork i

30.11.2009

pl:
pd:
p3:
pd:
p5:
pé:

boclean dummy
loop foraver
think
forks[i] = dummy
forks[iO1] = dummy
eat
forksli] « true (would false
forks[i©l] < true be ok?)

ql:
q2:
q3:
q4:
q5:
qf:
» Would it be enough to initialize each forks[i] <= true ?

boolzan dummy
loop forever
forks[i] < true
forks[i] = dummy

mutex?

deadlock?

— Do you really need forks[i] == dummy in fork i? Why?

Copyright Teemu Kerola 2008

29

30.11.2009

Copyright Teemu Kerola 2008

30

Lecture 9: Channels and RPC

30.11.2009

15

Concurrent Programming (R10) 30.11.2009

Rendezvous (1978, Abrial & Andrews)
 Synchronization with communication
— No channels, usage similar to procedure calls

— One (accepting) process waits for one of the (calling)
processes

« One request in service at a time asymmetric
— Calling process must know id of the accepting process

— Accepting process does not need to know the id of
calling process

— May involve parameters and return value
» Good for client-server synchronization
— Clients are calling processes &ervedservice(parm, result)
— Server is accepting process accept service(p, r)
— Server is active process

— Language construct, no mapping for real system nodes
30.11.2009 Copyright Teemu Kerola 2008 31

Algorithm 8.6: Rendezvous

client server
integer parm, result integer p, r
loop forever loop forever
pl: parm « ... ql:
p2: server.service(parm, result) e——»q2: accept service(p, r)
p3: use(result) - q3: r « do the service(p)

» Can have many similar clients

* Implementation with messages (e.g.)
— Service request in one message

» Arguments must be marshalled
(make them suitable for transmission)

— Wait until reply received
— Reply result in another message

30.11.2009 Copyright Teemu Kerola 2008 32

Lecture 9: Channels and RPC 16

Concurrent Programming (R10) 30.11.2009

Guards in Rendezvous

» Additional constraint for accepting given service call
» Accept service call, if
— Someone requests it and
— Guard for that request type is true
» Guard is based on local state
 If many such requests (with open guards) available, select one

randomly
» Complete one request at a time
— Implicit mutex
30.11.2009 Copyright Teemu Kerola 2008 33
begin
Ada

loop

Rendezvous select

. when Count < Index'Last =>
Bounded Buffer in Ada accept Append(l: in Integer) do

Export public ops defined B(In Ptr) = I;
before task body - '
task body Buffer is end Append;
B: Buffer Array; Count := Count + 1; In_Ptr:=1In_Ptr 4+ 1;

or

In_Ptr, Out_Ptr, Count: Index := 0; when Count > 0 —=

accept Take(l: out Integer) do

| := B(Out_ Ptr);
Buffer.Append (456); end Take:
Buffer.Appen ; '
Wireri e () Count := Count — 1; Out_ Ptr:= Out_ Ptr + I;
or Terminates when no
rendezvous processes
Buffer. Take(x); end select; available? Tricky!
Buffer. Take(y); end loop:; How to know?
I |
end Buffer: No concurrent operations!
30.11.2009 Copyright Teemu Kerola 2008 34

Lecture 9: Channels and RPC 17

Concurrent Programming (R10) 30.11.2009

30.11.2009 Copyright Teemu Kerola 2008 35

Remote Procedure Call

« Common operating system service for client-
server model synchronization
— Implemented with messages
— Parameter marshalling
 Semantics remain, implementation may change
— Mutex problem
» Combines monitor and synchronized messages?
— Automatic mutex for service
» Multiple calls active simultaneously? Usual case
— Mutex problems solved within called service
— Semantics similar to ordinary procedure call
 But no global environment (e.g., shared array)
— Two-way synchronized communication channel
* Clientwaits until service completed (usually)

30.11.2009 Copyright Teemu Kerola 2008 36

Lecture 9: Channels and RPC 18

Concurrent Programming (R10) 30.11.2009

Qremote
Remote server

application

Local application
ar
operating system
Qlocal

30.11.2009 Copyright Teemu Kerola 2008 37

RPC Module

module mname
[op] opname (formals) [returns result] _
body
variable declarations ;
initialization code ;
opname (formal identifiers) returns result identifier
declarations of local variables;
statements
end

local procedures and processes;
end mname

Call: call mname.opname (arguments)

30.11.2009 Copyright Teemu Kerola 2008 38

Lecture 9: Channels and RPC 19

Concurrent Programming (R10)

RPC Example: Time Server

module TimeServer
op get time() returns int;| # retrieve time of day

op delay(int interwval); # delay interval ticks
body

int tod = 0; # the time of day

semm = 1; # mutual exclusion semaphore

sem d[n] = ([n] 0); # private delay semaphores

queue of (int waketime, int process_id) napQ;

when m == 1, tod < waketime for delayed processes

proc |get time() |returns time {

time = tod;

}

proc| delay (interval)] { # assume interval > 0
int waketime = tod + interval;
P(m);

mutex\ insert (waketime, myid) atappropriate place on napQ;

V(m);
P(d[myid]); # wait to be awakened

} (And0O Fig 8.1)

(process Clock{} on next slide)

30.11.2009 Copyright Teemu Kerola 2008 39
process Clock {
start hardware timer;
{
wait for interrupt, then restart hardware timer;
tod = tod+l;
P(m); :D
while (tod >= smallest waketime on napQ) {
remove (waketime, id) from napQ:
V(d([id]); # awaken process id
}
V(m);
}
}
end TimeServer
* Internal process
— Keeps the time
— Wakes up delayed clients
e Service RPC’s: time= TimeServer.get time();
TimeServer.delay(10);
30.11.2009 Copyright Teemu Kerola 2008 40

Lecture 9: Channels and RPC

30.11.2009

20

Concurrent Programming (R10) 30.11.2009

30.11.2009 Copyright Teemu Kerola 2008 41

Remote Method Invocation (RMI)

» Java RPC
* Start rmiregistry _ _
— Stub lookup (default at port 1099)

* Start rmi server
— Server runs until explicitly terminated by user

30.11.2009 Copyright Teemu Kerola 2008 42

Lecture 9: Channels and RPC 21

Concurrent Programming (R10) 30.11.2009

30.11.2009 Copyright Teemu Kerola 2008 43

Output: |response: Hello, world!

30.11.2009 Copyright Teemu Kerola 2008 44

Lecture 9: Channels and RPC 22

Concurrent Programming (RIO)

30.11.2009

Summary

* Distributed communication with messages
— Synchronization and communication
— Computation time + communication time = ?
 Higher level concepts
— Guarded commands (theoretical background)
— CSP (idea) & Occam (application)
— Named Channels (ok without shared memory?)
— Rendezvous
— RPC & RMI (Java)

Copyright Teemu Kerola 2008 45

Lecture 9: Channels and RPC

30.11.2009

23

